CN107817062A - 一种基于Sagnac环与FP腔并联的示波器探测温度传感器 - Google Patents
一种基于Sagnac环与FP腔并联的示波器探测温度传感器 Download PDFInfo
- Publication number
- CN107817062A CN107817062A CN201710982658.0A CN201710982658A CN107817062A CN 107817062 A CN107817062 A CN 107817062A CN 201710982658 A CN201710982658 A CN 201710982658A CN 107817062 A CN107817062 A CN 107817062A
- Authority
- CN
- China
- Prior art keywords
- mrow
- coupler
- msub
- sagnac
- fsr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims description 7
- 230000035945 sensitivity Effects 0.000 claims abstract description 20
- 241001270131 Agaricus moelleri Species 0.000 claims abstract description 17
- 238000001228 spectrum Methods 0.000 claims description 36
- 239000000835 fiber Substances 0.000 claims description 33
- 239000013307 optical fiber Substances 0.000 claims description 28
- 230000003595 spectral effect Effects 0.000 claims description 23
- 238000006073 displacement reaction Methods 0.000 claims description 17
- 239000003708 ampul Substances 0.000 claims description 9
- 239000010453 quartz Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 238000003466 welding Methods 0.000 claims description 5
- 235000007164 Oryza sativa Nutrition 0.000 claims description 4
- 235000009566 rice Nutrition 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000000411 transmission spectrum Methods 0.000 claims description 3
- 240000007594 Oryza sativa Species 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 241000209094 Oryza Species 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
本发明涉及一种基于Sagnac环与FP腔并联的示波器探测温度传感器,包括:第一耦合器,隔离器,第二耦合器,FP腔,衰减器,第三耦合器,Sagnac环,第四耦合器,平顶光栅;第一耦合器与隔离器、第二耦合器第一入口相连,第二耦合器第一出口部分与FP腔入口相连,一部分通过衰减器、第三耦合器与Sagnac环相连,第二耦合器第二入口一部分与FP腔出口相连,一部分与衰减器相连,第二耦合器的第二出口与第四耦合器的第一入口相连,第四耦合器的第一出口与平顶光栅的入口相连,平顶光栅的出口与第四耦合器的第二入口相连,第四耦合器的第二出口与光电探测器和示波器相连。利用游标效应,基于Sagnac环与FP腔并联结构温度传感器比单个Sagnac环结构的温度传感器灵敏度提高几十倍。
Description
技术领域
本发明涉及一种示波器探测温度传感器,特别涉及一种基于Sagnac环与FP腔并联的示波器探测温度传感器。
背景技术
目前基于光纤光栅的温度传感器灵敏度太低,仅为约10pm/℃,基于长周期光栅的温度传感器灵敏度相对较高,但存在对弯曲和外部材料交叉敏感的问题,基于光纤马赫-曾德干涉仪或光纤迈克尔逊干涉仪的温度传感器对外界振动交叉敏感,尽管相比于以上温度传感器,基于单个Sagnac环干涉的温度传感器具有更强的抗外界干扰的能力,但是通常情况下其灵敏度仅有约1nm/℃。因此,研制一种灵敏度较高的光纤传感器成为本领域迫切解决的技术问题。
发明内容
本发明的目的是为了解决目前光纤传感器灵敏度不高的技术问题,开发了一种基于Sagnac环与FP腔并联的示波器探测温度传感器。
具体的,本发明涉及一种基于Sagnac环与FP腔并联的示波器探测温度传感器,包括:
第一耦合器,隔离器,第二耦合器,FP腔,衰减器,第三耦合器,Sagnac环,第四耦合器,平顶光栅;所述第一耦合器,隔离器,第二耦合器,FP腔,衰减器,第三耦合器,Sagnac环,第四耦合器,平顶光栅通过单模光纤连接;
所述第一耦合器与所述隔离器相连,所述隔离器与所述第二耦合器第一入口相连,所述第二耦合器第一出口即与FP腔入口相连,又与衰减器入口相连,所述第二耦合器第二入口即与所述FP腔出口相连,又与衰减器出口相连相连,所述衰减器通过所述第三耦合器与所述Sagnac环相连,所述第二耦合器的第二出口与第四耦合器的第一入口相连,所述第四耦合器的第一出口与所述平顶光栅的入口相连,所述平顶光栅的出口与所述第四耦合器的第二入口相连,所述第四耦合器的第二出口与光电探测器和示波器相连。
进一步的,所述Sagnac环内包含一段长度为0.1-2米的双孔光纤,所述双孔光纤两端与所述单模光纤熔接;所述双孔光纤包含纤芯和两个相对于所述纤芯对称分布的空气孔,两个所述空气孔内填充酒精。
进一步的,所述双孔光纤的直径与单模光纤均为110-140微米,所述双孔光纤的两个空气孔的直径均为10-30微米,两孔间隔40-60微米。
进一步的,所述双孔光纤的长度为1米,直径与单模光纤均为125微米,所述双孔光纤的两个空气孔的直径均为20微米,两孔间隔50微米。
进一步的,FP腔为石英管两端熔接所述单模光纤,所述石英管长度为100-500微米,所述石英管外径与所述单模光纤直径均为110-140微米,所述石英管内径为20-80微米。
进一步的,所述石英管长度为300微米,所述石英管外径与所述单模光纤直径均为125微米,所述石英管内径为60微米。
进一步的,所述FP腔干涉谱为:
其中,IFP为FP腔干涉谱光强,I1和I2分别为FP腔反射面1和反射面2的反射光强,d为FP腔的长度,n为FP腔内空气折射率,λ为入射光的波长,FP腔的自由光谱范围FSRFP为
FSRFP=λ2/2nd (2)
所述Sagnac环的透射谱为:
其中,Isagnac为Sagnac环干涉谱光强,B和L分别为双孔光纤的双折射系数和长度,λ为入射光的波长,Sagnac环的自由光谱范围FSRSagnac为
FSRSagnac=λ2/BL (4)
干涉谱包络的自由光谱范围FSREnvelope与FP腔自由光谱范围FSRFP和Sagnac环自由光谱范围FSRSagnac的关系为
当Sagnac环在温度的作用下频移时,干涉谱包络随之频移,且频移量是Sagnac环频移量的M倍,M为灵敏度增大因子,表示为
所述M的取值范围为10-50。
进一步的,所述M的取值为20。
本发明的有益效果:本发明提出了基于Sagnac环与FP腔并联结构的温度传感器,当Sagnac环的自由光谱范围与FP腔的自由光谱范围接近时,信号光经Sagnac环和FP腔构成的并联结构后,干涉谱将会产生包络,当温度变化时,干涉谱包络的频移为Sagnac环干涉谱频移的几十倍,此现象称为游标效应。利用游标效应,基于Sagnac环与FP腔并联结构的温度传感器比基于单个Sagnac环结构的温度传感器灵敏度提高几十倍。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例温度传感器的结构原理示意图;
图2为本发明实施例双孔光纤截面图;
图3为本发明实施例FP腔结构原理示意图;
图4(a)为单独FP腔和Sagnac环干涉普;
图4(b)为FP腔和Sagnac环并联干涉普;
图5(a)为单个Sagnac环干涉仪和单个FP腔干涉仪的干涉谱;
图5(b)为FP腔和Sagnac环并联干涉普;
图6(a)为42.2℃和43.0℃时单个Sagnac环和单个FP腔的干涉谱;
图6(b)为42.2℃和43.0℃时FP腔和Sagnac环并联干涉谱;
图7为单个Sagnac环与并联结构干涉谱频移随温度的变化。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
下面结合附图详细说明本发明的优选实施例。
如图1所示,本发明涉及一种基于Sagnac环与FP腔并联的示波器探测温度传感器,包括:
第一耦合器,隔离器,第二耦合器,FP腔,衰减器,第三耦合器,Sagnac环,第四耦合器,平顶光栅;所述第一耦合器,隔离器,第二耦合器,FP腔,衰减器,第三耦合器,Sagnac环,第四耦合器,平顶光栅通过单模光纤连接;
所述第一耦合器与所述隔离器相连,所述隔离器与所述第二耦合器第一入口相连,所述第二耦合器第一出口即与FP腔入口相连,又与衰减器入口相连,所述第二耦合器第二入口即与所述FP腔出口相连,又与衰减器出口相连相连,所述衰减器通过所述第三耦合器与所述Sagnac环相连,所述第二耦合器的第二出口与第四耦合器的第一入口相连,所述第四耦合器的第一出口与所述平顶光栅的入口相连,所述平顶光栅的出口与所述第四耦合器的第二入口相连,所述第四耦合器的第二出口与光电探测器和示波器相连。
检测光(通常取C波段到L波段的ASE光源)通过第一耦合器进入单模光纤后,又经过隔离器,避免光路反复,然后光信号通过第二耦合器分成两束,一束光进入FP腔,光信号经过FP腔的前后面反射后,由于出现位相差而形成干涉条纹(如图4(a)所示),另一束光通过第三耦合器进入Sagnac环,经Sagnac环内的双孔光纤时分为分别沿快慢轴传输的两束光,由于快慢轴折射率不同,当此两束光再次经第三耦合器相遇时,就会形成Sagnac干涉条纹,(如图4(a)所示),两部分干涉信号光通过第二耦合器叠加,形成叠加后的包络(如图4(b)所示),所述光经过第四耦合器经过平顶光栅后被光电探测器及示波器接收,其中为了使两部分光束的信号强度相当,容易获得叠加效果,从Sagnac环出来的干涉光需要采用衰减器进行衰减。所述平顶FBG的3dB带宽等于Sagnac环的自由光谱范围。
如图2所示,其中,所述Sagnac环内包含一段长度为0.1-2米的双孔光纤,所述双孔光纤两端与所述单模光纤熔接;所述双孔光纤包含纤芯和两个相对于所述纤芯对称分布的空气孔,两个所述空气孔内填充酒精,也可以填充煤油等其他热敏感液体,通过敏感性液体材料对周围温度的变化,引起光纤折射率的变化,进而使得Sagnac环的自由光谱范围发生变化,入射光发生干涉(如图4(b)所示),最终反映到整体传感器的自由光谱范围的放大变化信号,通过示波器进行检测。
其中,所述双孔光纤的直径与单模光纤均为110-140微米,所述双孔光纤的两个空气孔的直径均为10-30微米,两孔间隔40-60微米,所述尺寸为根据上述公式推导出来的能够精准测量温度变化的较佳尺寸,也通过实验模拟具有优良的可检测性,能够获得最优的温度检测精度。
其中,所述双孔光纤的长度为1米,直径与单模光纤均为125微米,所述双孔光纤的两个空气孔的直径均为20微米,两孔间隔50微米,所述尺寸为根据上述公式推导出来的能够精准测量温度变化的较佳尺寸,也通过实验模拟具有优良的可检测性,能够获得最优的温度检测精度。
其中,如图3所示,FP腔为石英管两端熔接所述单模光纤,所述石英管长度为100-500微米,所述石英管外径与所述单模光纤直径均为110-140微米,所述石英管内径为20-80微米,所述尺寸为根据上述公式推导出来的能够精准测量温度变化的较佳尺寸,也通过实验模拟具有优良的可检测性,能够获得最优的温度检测精度。
入射信号光部分在反射面1反射,部分在反射面1透射,在反射面2反射,在反射面1和反射面2反射的信号光存在相位差,叠加后产生干涉信号(如图4(a)所示)。
其中,所述石英管长度为300微米,所述石英管外径与所述单模光纤直径均为125微米,所述石英管内径为60微米,所述尺寸为根据上述公式推导出来的能够精准测量温度变化的较佳尺寸,也通过实验模拟具有优良的可检测性,能够获得最优的温度检测精度。
其中,当检测光入射到FP腔时,所述FP腔干涉谱为:
其中,IFP为FP腔干涉谱光强,I1和I2分别为FP腔反射面1和反射面2的反射光强,d为FP腔的长度,n为FP腔内空气折射率,λ为入射光的波长,FP腔的自由光谱范围FSRFP为(如图4(a)所示)
FSRFP=λ2/2nd (2)
当检测光入射到Sagnac环时,所述Sagnac环的透射谱为:
其中,Isagnac为Sagnac环干涉谱光强,B和L分别为双孔光纤的双折射系数和长度,λ为入射光的波长,Sagnac环的自由光谱范围FSRSagnac为(如图4(a)所示)
FSRSagnac=λ2/BL (4)
干涉谱包络的自由光谱范围FSREnvelope与FP腔自由光谱范围FSRFP和Sagnac环自由光谱范围FSRSagnac的关系为(如图4(b)所示)
当Sagnac环在温度的作用下频移时,干涉谱包络随之频移,且频移量是Sagnac环频移量的M倍,M为灵敏度增大因子,表示为
原则上,M的取值越大,说明放大信号越大,温度探测灵敏度越高,从上述式(6)可以看出,当FSRFP与FSREnvelope接近时,M的值为无穷大,但此时并联光谱范围FSREnvelope也为无穷大,此时示波器并不能测出该自由光谱范围,也就无法测出温度的变化,因此,经过实验证明,所述M的取值范围为10-50较佳。优选所述M的取值为20。
当温度变化ΔT时,Sagnac环就会产生频移,频移量ΔλSagnac为
其中,ΔB为温度变化ΔT时双孔光纤的双折射系数的变化量。
FP腔对温度极不敏感,作为“游标卡尺”的固定尺,Sagnac环对温度敏感,作为“游标卡尺”的滑动尺。当Sagnac环在温度的作用下频移时,干涉谱包络随之频移,且频移量是Sagnac环频移量的M倍。
因此,干涉谱包络随温度的频移ΔλEnvelope可表示为
即ΔλEnvelope=ΔλSagnac·M (9)
通过检测干涉谱包络随温度变化的频移量即可获得并联FP腔和Sagnac环温度传感器的灵敏度,其灵敏度是单个Sagnac环灵敏度度的M倍,通常M值在10-50。因此,该并联温度传感器相对于单个Sagnac环温度传感器灵敏度的提高了1-2个数量级。
上述基于Sagnac环与FP腔并联结构的温度传感器所需的光源,波长范围优选覆盖约80-100nm,例如包括C波段和L波段的ASE光源,也可以为宽带光源。
实验数据如图5-7所示,图5(a)为单个Sagnac环干涉仪和单个FP腔干涉仪的干涉谱;实验测得,其周期分别为3.21nm和3.38nm,结合公式(5)计算可知M放大因子为19.9,图5(b)为串联干涉谱,实验测得,其周期为48nm。
图6(a)为42.2℃和43.0℃时单个Sagnac环的干涉谱,当温度由42.2℃升高至43.0℃时,单个Sagnac环的干涉谱蓝移0.8nm,图6(b)为42.2℃和43.0℃时单个Sagnac环和单个FP腔级联后的干涉谱,当温度由42.2℃升高至43.0℃时,其干涉谱蓝移23nm。
图7是单个Sagnac环与级联结构干涉谱频移随温度的变化,可知串联结构灵敏度为单个Sagnac环的20.7倍,此实验结果与理论结果(19.9)基本吻合。
综上,本发明提出了基于Sagnac环与FP腔并联结构的温度传感器,当Sagnac环的自由光谱范围与FP腔的自由光谱范围接近时,信号光经Sagnac环和FP腔构成的并联结构后,干涉谱将会产生包络,当温度变化时,干涉谱包络的频移为Sagnac环干涉谱频移的几十倍,此现象称为游标效应。利用游标效应,基于Sagnac环与FP腔并联结构的温度传感器比基于单个Sagnac环结构的温度传感器灵敏度提高几十倍,从而有利于提高光纤传感器的测量精度。
相对于单个Sagnac环温度传感器,基于该并联结构的温度传感器温度测量灵敏度提高了1-2个数量级;该结构对外界振动具有极高的抗干扰能力。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (8)
1.一种基于Sagnac环与FP腔并联的示波器探测温度传感器,其特征在于,包括:
第一耦合器,隔离器,第二耦合器,FP腔,衰减器,第三耦合器,Sagnac环,第四耦合器,平顶光栅;所述第一耦合器,隔离器,第二耦合器,FP腔,衰减器,第三耦合器,Sagnac环,第四耦合器,平顶光栅通过单模光纤连接;
所述第一耦合器与所述隔离器相连,所述隔离器与所述第二耦合器第一入口相连,所述第二耦合器第一出口即与FP腔入口相连,又与衰减器入口相连,所述第二耦合器第二入口即与所述FP腔出口相连,又与衰减器出口相连相连,所述衰减器通过所述第三耦合器与所述Sagnac环相连,所述第二耦合器的第二出口与第四耦合器的第一入口相连,所述第四耦合器的第一出口与所述平顶光栅的入口相连,所述平顶光栅的出口与所述第四耦合器的第二入口相连,所述第四耦合器的第二出口与光电探测器和示波器相连。
2.根据权利要求1所述的示波器探测温度传感器,其特征在于,
所述Sagnac环内包含一段长度为0.1-2米的双孔光纤,所述双孔光纤两端与所述单模光纤熔接;所述双孔光纤包含纤芯和两个相对于所述纤芯对称分布的空气孔,两个所述空气孔内填充酒精。
3.根据权利要求2所述的示波器探测温度传感器,其特征在于,
所述双孔光纤的直径与单模光纤均为110-140微米,所述双孔光纤的两个空气孔的直径均为10-30微米,两孔间隔40-60微米。
4.根据权利要求3所述的示波器探测温度传感器,其特征在于,
所述双孔光纤的长度为1米,直径与单模光纤均为125微米,所述双孔光纤的两个空气孔的直径均为20微米,两孔间隔50微米。
5.根据权利要求1所述的示波器探测温度传感器,其特征在于,
FP腔为石英管两端熔接所述单模光纤,所述石英管长度为100-500微米,所述石英管外径与所述单模光纤直径均为110-140微米,所述石英管内径为20-80微米。
6.根据权利要求5所述的示波器探测温度传感器,其特征在于,
所述石英管长度为300微米,所述石英管外径与所述单模光纤直径均为125微米,所述石英管内径为60微米。
7.根据权利要求1所述的示波器探测温度传感器,其特征在于,
所述FP腔干涉谱为:
<mrow>
<msub>
<mi>I</mi>
<mrow>
<mi>F</mi>
<mi>P</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mi>&lambda;</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>I</mi>
<mn>1</mn>
</msub>
<mo>+</mo>
<msub>
<mi>I</mi>
<mn>2</mn>
</msub>
<mo>+</mo>
<mn>2</mn>
<msqrt>
<mrow>
<msub>
<mi>I</mi>
<mn>1</mn>
</msub>
<msub>
<mi>I</mi>
<mn>2</mn>
</msub>
</mrow>
</msqrt>
<mi>c</mi>
<mi>o</mi>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mfrac>
<mrow>
<mn>4</mn>
<mi>&pi;</mi>
<mi>n</mi>
<mi>d</mi>
</mrow>
<mi>&lambda;</mi>
</mfrac>
<mo>)</mo>
</mrow>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>1</mn>
<mo>)</mo>
</mrow>
</mrow>
其中,IFP为FP腔干涉谱光强,I1和I2分别为FP腔反射面1和反射面2的反射光强,d为FP腔的长度,n为FP腔内空气折射率,λ为入射光的波长,FP腔的自由光谱范围FSRFP为
FSRFP=λ2/2nd (2)
所述Sagnac环的透射谱为:
<mrow>
<msub>
<mi>I</mi>
<mrow>
<mi>s</mi>
<mi>a</mi>
<mi>g</mi>
<mi>n</mi>
<mi>a</mi>
<mi>c</mi>
</mrow>
</msub>
<mo>=</mo>
<mo>&lsqb;</mo>
<mn>1</mn>
<mo>-</mo>
<mi>c</mi>
<mi>o</mi>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>&pi;</mi>
<mi>B</mi>
<mi>L</mi>
</mrow>
<mi>&lambda;</mi>
</mfrac>
<mo>)</mo>
</mrow>
<mo>&rsqb;</mo>
<mo>/</mo>
<mn>2</mn>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>3</mn>
<mo>)</mo>
</mrow>
</mrow>
其中,Isagnac为Sagnac环干涉谱光强,B和L分别为双孔光纤的双折射系数和长度,λ为入射光的波长,Sagnac环的自由光谱范围FSRSagnac为
FSRSagnac=λ2/BL (4)
干涉谱包络的自由光谱范围FSREnvelope与FP腔自由光谱范围FSRFP和Sagnac环自由光谱范围FSRSagnac的关系为
<mrow>
<msub>
<mi>FSR</mi>
<mrow>
<mi>E</mi>
<mi>n</mi>
<mi>v</mi>
<mi>e</mi>
<mi>l</mi>
<mi>o</mi>
<mi>p</mi>
<mi>e</mi>
</mrow>
</msub>
<mo>=</mo>
<mfrac>
<mrow>
<msub>
<mi>FSR</mi>
<mrow>
<mi>F</mi>
<mi>P</mi>
</mrow>
</msub>
<mo>&CenterDot;</mo>
<msub>
<mi>FSR</mi>
<mrow>
<mi>S</mi>
<mi>a</mi>
<mi>g</mi>
<mi>n</mi>
<mi>a</mi>
<mi>c</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mo>|</mo>
<msub>
<mi>FSR</mi>
<mrow>
<mi>F</mi>
<mi>P</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>FSR</mi>
<mrow>
<mi>S</mi>
<mi>a</mi>
<mi>g</mi>
<mi>n</mi>
<mi>a</mi>
<mi>c</mi>
</mrow>
</msub>
<mo>|</mo>
</mrow>
</mfrac>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>5</mn>
<mo>)</mo>
</mrow>
</mrow>
当Sagnac环在温度的作用下频移时,干涉谱包络随之频移,且频移量是Sagnac环频移量的M倍,M为灵敏度增大因子,表示为
<mrow>
<mi>M</mi>
<mo>=</mo>
<mfrac>
<mrow>
<msub>
<mi>FSR</mi>
<mrow>
<mi>F</mi>
<mi>P</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mo>|</mo>
<msub>
<mi>FSR</mi>
<mrow>
<mi>F</mi>
<mi>P</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>FSR</mi>
<mrow>
<mi>S</mi>
<mi>a</mi>
<mi>g</mi>
<mi>n</mi>
<mi>a</mi>
<mi>c</mi>
</mrow>
</msub>
<mo>|</mo>
</mrow>
</mfrac>
<mo>-</mo>
<mo>-</mo>
<mo>-</mo>
<mrow>
<mo>(</mo>
<mn>6</mn>
<mo>)</mo>
</mrow>
</mrow>
所述M的取值范围为10-50。
8.根据权利要求7所述的示波器探测温度传感器,其特征在于,所述M的取值为20。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710982658.0A CN107817062B (zh) | 2017-10-20 | 2017-10-20 | 一种基于Sagnac环与FP腔并联的示波器探测温度传感器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710982658.0A CN107817062B (zh) | 2017-10-20 | 2017-10-20 | 一种基于Sagnac环与FP腔并联的示波器探测温度传感器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107817062A true CN107817062A (zh) | 2018-03-20 |
CN107817062B CN107817062B (zh) | 2018-09-07 |
Family
ID=61608442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710982658.0A Expired - Fee Related CN107817062B (zh) | 2017-10-20 | 2017-10-20 | 一种基于Sagnac环与FP腔并联的示波器探测温度传感器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107817062B (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109507129A (zh) * | 2019-01-17 | 2019-03-22 | 哈尔滨理工大学 | 基于fp双腔级联增敏特性的光谱探测型气体传感器 |
CN109507128A (zh) * | 2019-01-17 | 2019-03-22 | 哈尔滨理工大学 | 基于fp干涉计并联结构及光热技术的强度探测型气体传感器 |
CN109507132A (zh) * | 2019-01-17 | 2019-03-22 | 哈尔滨理工大学 | 基于双光纤fp干涉计并联结构的光谱探测型气体传感器 |
CN109507130A (zh) * | 2019-01-17 | 2019-03-22 | 哈尔滨理工大学 | 基于Sagnac双环并联结构及光热技术的强度探测型气体传感器 |
CN109507134A (zh) * | 2019-01-17 | 2019-03-22 | 哈尔滨理工大学 | 基于大气室Sagnac干涉计与FP干涉计并联结构的光谱探测型气体传感器 |
CN110231104A (zh) * | 2019-06-03 | 2019-09-13 | 南昌大学 | 一种基于原位电镀的f-p光纤高温传感器及其制备方法 |
CN110702148A (zh) * | 2019-08-07 | 2020-01-17 | 西安石油大学 | 一种三参量同时区分测量光纤传感器件的制备方法及应用 |
WO2022199637A1 (zh) * | 2021-03-23 | 2022-09-29 | 广东海洋大学 | 光纤温度传感器及传感头结构 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0575750A2 (en) * | 1992-05-22 | 1993-12-29 | General Instrument Corporation Of Delaware | Laser with longitudinal mode selection |
EP0729012A1 (fr) * | 1995-02-21 | 1996-08-28 | Commissariat A L'energie Atomique | Capteur à réseau de Bragg photoinscrit à bon rapport signal sur bruit |
CN101639387A (zh) * | 2009-09-11 | 2010-02-03 | 北京航空航天大学 | 基于极值对应的波长检测的光纤温度传感器及其温度传感方法 |
CN103941430A (zh) * | 2014-05-15 | 2014-07-23 | 上海交通大学 | 基于硅基fp谐振腔的可调光频率梳滤波器 |
CN104597304A (zh) * | 2015-01-07 | 2015-05-06 | 贵州电力试验研究院 | 一种环形腔式全光纤电流传感器 |
CN105572806A (zh) * | 2015-12-17 | 2016-05-11 | 上海交通大学 | 基于硅基双萨格纳克环镜环路结构的光滤波器件 |
CN105651488A (zh) * | 2016-03-01 | 2016-06-08 | 河南师范大学 | 基于激光拍频实现光纤色散的测量方法 |
-
2017
- 2017-10-20 CN CN201710982658.0A patent/CN107817062B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0575750A2 (en) * | 1992-05-22 | 1993-12-29 | General Instrument Corporation Of Delaware | Laser with longitudinal mode selection |
EP0729012A1 (fr) * | 1995-02-21 | 1996-08-28 | Commissariat A L'energie Atomique | Capteur à réseau de Bragg photoinscrit à bon rapport signal sur bruit |
CN101639387A (zh) * | 2009-09-11 | 2010-02-03 | 北京航空航天大学 | 基于极值对应的波长检测的光纤温度传感器及其温度传感方法 |
CN103941430A (zh) * | 2014-05-15 | 2014-07-23 | 上海交通大学 | 基于硅基fp谐振腔的可调光频率梳滤波器 |
CN104597304A (zh) * | 2015-01-07 | 2015-05-06 | 贵州电力试验研究院 | 一种环形腔式全光纤电流传感器 |
CN105572806A (zh) * | 2015-12-17 | 2016-05-11 | 上海交通大学 | 基于硅基双萨格纳克环镜环路结构的光滤波器件 |
CN105651488A (zh) * | 2016-03-01 | 2016-06-08 | 河南师范大学 | 基于激光拍频实现光纤色散的测量方法 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109507129A (zh) * | 2019-01-17 | 2019-03-22 | 哈尔滨理工大学 | 基于fp双腔级联增敏特性的光谱探测型气体传感器 |
CN109507128A (zh) * | 2019-01-17 | 2019-03-22 | 哈尔滨理工大学 | 基于fp干涉计并联结构及光热技术的强度探测型气体传感器 |
CN109507132A (zh) * | 2019-01-17 | 2019-03-22 | 哈尔滨理工大学 | 基于双光纤fp干涉计并联结构的光谱探测型气体传感器 |
CN109507130A (zh) * | 2019-01-17 | 2019-03-22 | 哈尔滨理工大学 | 基于Sagnac双环并联结构及光热技术的强度探测型气体传感器 |
CN109507134A (zh) * | 2019-01-17 | 2019-03-22 | 哈尔滨理工大学 | 基于大气室Sagnac干涉计与FP干涉计并联结构的光谱探测型气体传感器 |
CN110231104A (zh) * | 2019-06-03 | 2019-09-13 | 南昌大学 | 一种基于原位电镀的f-p光纤高温传感器及其制备方法 |
CN110702148A (zh) * | 2019-08-07 | 2020-01-17 | 西安石油大学 | 一种三参量同时区分测量光纤传感器件的制备方法及应用 |
CN110702148B (zh) * | 2019-08-07 | 2022-04-15 | 西安石油大学 | 一种三参量同时区分测量光纤传感器件的制备方法及应用 |
WO2022199637A1 (zh) * | 2021-03-23 | 2022-09-29 | 广东海洋大学 | 光纤温度传感器及传感头结构 |
US20230184596A1 (en) * | 2021-03-23 | 2023-06-15 | Guangdong Ocean University | Fiber optic temperature sensor and sensing head structure |
US11761827B2 (en) * | 2021-03-23 | 2023-09-19 | Guangdong Ocean University | Fiber optic temperature sensor and sensing head structure |
Also Published As
Publication number | Publication date |
---|---|
CN107817062B (zh) | 2018-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107796530B (zh) | 一种基于Sagnac环与FP腔并联的光谱探测温度传感器 | |
CN107817062B (zh) | 一种基于Sagnac环与FP腔并联的示波器探测温度传感器 | |
CN107990996B (zh) | 一种基于干涉谱游标效应和环形腔衰荡光谱技术的温度传感器 | |
Nan et al. | Ultrasensitive strain sensor based on Vernier-effect improved parallel structured fiber-optic Fabry-Perot interferometer | |
US11346770B2 (en) | Optical fiber sensor for salinity and temperature measurement | |
CN102323239B (zh) | 一种基于非对称双芯光纤的折射率传感器 | |
CN107817063A (zh) | 一种基于Sagnac环与FP腔串联的示波器探测温度传感器 | |
CN108332876A (zh) | 一种光纤温度传感器 | |
CN107830947B (zh) | 一种基于Sagnac环与FP腔串联的光谱探测温度传感器 | |
CN105716755A (zh) | 一种基于Loyt-Sagnac干涉仪的灵敏度增强型传感器 | |
CN110057307A (zh) | 一种提高光纤干涉仪应变灵敏度的方法及光纤干涉仪 | |
CN101639387B (zh) | 基于极值对应的波长检测的光纤温度传感器及其温度传感方法 | |
CN104613889A (zh) | 一种基于光纤环形激光器的弯曲传感测量系统 | |
Li et al. | Ultrasensitive measurement of gas refractive index based on cascaded Mach–Zehnder interferometers and Vernier effect | |
Yang et al. | Simultaneous measurement of liquid level and refractive index based on a sandwich multimode optical fiber structure | |
CN101592526A (zh) | 一种光平均波长的测量方法及装置 | |
Li et al. | Multipoint displacement measurement based on low intracavity-loss FLRD method | |
CN107806944A (zh) | 一种基于Sagnac干涉和环形腔衰荡光谱技术的温度传感器 | |
JP2003166891A (ja) | 物理量測定方法及びその装置 | |
CN105806511A (zh) | 基于球锥串联结构的微光纤超小型温度传感器 | |
CN103134627B (zh) | 一种基于低双折射pm-flm的温度不敏感应力传感器 | |
JP2003084014A (ja) | 光学的センサの擾乱量補償方法および装置 | |
CN113959471A (zh) | 一种少模光纤光栅多参量传感装置 | |
Zhang et al. | Simultaneous measurement of temperature, liquid level and axial strain based on torsional taper Mach-Zehnder interferometer with Vernier effect | |
Wang et al. | Low strain crosstalk curvature MZI based on the cascaded of step index fiber and graded index fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180907 |
|
CF01 | Termination of patent right due to non-payment of annual fee |