CN107742688B - A kind of polyolefin lithium battery separator and preparation method thereof - Google Patents
A kind of polyolefin lithium battery separator and preparation method thereof Download PDFInfo
- Publication number
- CN107742688B CN107742688B CN201710812779.0A CN201710812779A CN107742688B CN 107742688 B CN107742688 B CN 107742688B CN 201710812779 A CN201710812779 A CN 201710812779A CN 107742688 B CN107742688 B CN 107742688B
- Authority
- CN
- China
- Prior art keywords
- lithium battery
- inorganic oxide
- polyolefin
- battery separator
- dispersion liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000098 polyolefin Polymers 0.000 title claims abstract description 63
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 55
- 238000002360 preparation method Methods 0.000 title claims description 19
- 239000005020 polyethylene terephthalate Substances 0.000 claims abstract description 66
- 229920000139 polyethylene terephthalate Polymers 0.000 claims abstract description 66
- -1 polyethylene terephthalate Polymers 0.000 claims abstract description 51
- 239000000835 fiber Substances 0.000 claims abstract description 47
- 229910052809 inorganic oxide Inorganic materials 0.000 claims abstract description 47
- 239000002105 nanoparticle Substances 0.000 claims abstract description 47
- 239000002131 composite material Substances 0.000 claims abstract description 29
- 239000011159 matrix material Substances 0.000 claims abstract description 14
- 239000004743 Polypropylene Substances 0.000 claims abstract description 9
- 229920001155 polypropylene Polymers 0.000 claims abstract description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 80
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 52
- 238000009987 spinning Methods 0.000 claims description 41
- 239000006185 dispersion Substances 0.000 claims description 39
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 36
- 238000000576 coating method Methods 0.000 claims description 33
- 239000011248 coating agent Substances 0.000 claims description 31
- 239000007788 liquid Substances 0.000 claims description 24
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 19
- 239000000377 silicon dioxide Substances 0.000 claims description 18
- 239000002002 slurry Substances 0.000 claims description 17
- 230000007062 hydrolysis Effects 0.000 claims description 12
- 238000006460 hydrolysis reaction Methods 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000002243 precursor Substances 0.000 claims description 11
- 230000032050 esterification Effects 0.000 claims description 10
- 238000005886 esterification reaction Methods 0.000 claims description 10
- 238000006068 polycondensation reaction Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 150000007522 mineralic acids Chemical class 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 9
- 239000002202 Polyethylene glycol Substances 0.000 claims description 8
- 229920001223 polyethylene glycol Polymers 0.000 claims description 8
- 239000003054 catalyst Substances 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 238000000707 layer-by-layer assembly Methods 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 230000002194 synthesizing effect Effects 0.000 claims description 4
- 238000007865 diluting Methods 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- 239000004408 titanium dioxide Substances 0.000 claims description 3
- 238000013329 compounding Methods 0.000 claims description 2
- 239000003085 diluting agent Substances 0.000 claims description 2
- 230000007613 environmental effect Effects 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 claims 7
- 238000010041 electrostatic spinning Methods 0.000 claims 3
- 238000001523 electrospinning Methods 0.000 abstract description 21
- 238000002844 melting Methods 0.000 abstract description 8
- 230000008018 melting Effects 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 6
- 239000011148 porous material Substances 0.000 abstract description 6
- 239000004698 Polyethylene Substances 0.000 abstract description 4
- 229920000573 polyethylene Polymers 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 23
- 239000000243 solution Substances 0.000 description 21
- 238000003756 stirring Methods 0.000 description 20
- 239000002121 nanofiber Substances 0.000 description 8
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 8
- 239000012528 membrane Substances 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 6
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 6
- 238000009835 boiling Methods 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 230000035699 permeability Effects 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000005543 nano-size silicon particle Substances 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000010954 inorganic particle Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 229920005596 polymer binder Polymers 0.000 description 3
- 239000002491 polymer binding agent Substances 0.000 description 3
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical group O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 238000005524 ceramic coating Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000110 poly(aryl ether sulfone) Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cell Separators (AREA)
Abstract
本发明公开了一种聚烯烃锂电隔膜,以多孔聚烯烃隔膜为基体,所述聚烯烃隔膜的单侧或双侧电纺有改性的聚对苯二甲酸乙二醇酯(PET)纤维涂层,所述的改性的聚对苯二甲酸乙二醇酯纤维是无机氧化物纳米颗粒和聚对苯二甲酸乙二醇酯复合而成的纤维。本发明针对现有聚丙烯或者聚乙烯多孔隔膜高温完整性较低的问题,以及现有静电纺丝隔膜存在的孔隙结构或者复合结构不均匀等问题,提供一种聚烯烃锂电隔膜,可承受温度能够达到250~260℃,有效避免在电池滥用的极限条件下材料融化闭孔的难题,具有良好的高温完整性,可以大幅度改善电池的热安全性。
The invention discloses a polyolefin lithium battery separator, which uses a porous polyolefin separator as a matrix. The polyolefin separator is electrospun on one side or both sides and is coated with modified polyethylene terephthalate (PET) fibers. layer, the modified polyethylene terephthalate fiber is a composite fiber of inorganic oxide nanoparticles and polyethylene terephthalate. Aiming at the problems of low high temperature integrity of the existing polypropylene or polyethylene porous diaphragm, and the problems of uneven pore structure or composite structure existing in the existing electrospinning diaphragm, the invention provides a polyolefin lithium battery diaphragm, which can withstand temperature It can reach 250-260 °C, effectively avoiding the problem of material melting and closing pores under the extreme conditions of battery abuse, and has good high-temperature integrity, which can greatly improve the thermal safety of the battery.
Description
技术领域technical field
本发明属于新能源材料领域,具体涉及一种聚烯烃锂电隔膜及其制备方法。The invention belongs to the field of new energy materials, and particularly relates to a polyolefin lithium battery diaphragm and a preparation method thereof.
背景技术Background technique
隔膜是决定锂电池安全性的最关键材料,一般由聚丙烯或者聚乙烯通过干法单拉、干法双拉或者湿法工艺制备而成。在过充/过放或其它非正确使用的极限条件下,锂电池电池内部的温度会极速上升到聚烯烃熔点以上,使隔膜发生熔断、正负极在局部区域直接接触而短路、电池起火或爆炸。The separator is the most critical material that determines the safety of lithium batteries. It is generally prepared from polypropylene or polyethylene by dry single drawing, dry double drawing or wet method. Under the extreme conditions of overcharge/overdischarge or other improper use, the temperature inside the lithium battery will rapidly rise above the melting point of polyolefin, causing the separator to fuse, the positive and negative electrodes to directly contact in local areas and short-circuit, the battery catches fire or explode.
目前,改善锂电池隔膜的方法主要是在隔膜表面涂覆惰性高分子粘结剂(主要为聚偏氟乙烯PVDF、偏氟乙烯-六氟丙乙烯共聚物PVD-HFP)粘结的纳米无机氧化物颗粒涂层。在聚丙烯或聚乙烯基体膜融化的温度范围,如120~160℃,无机氧化物具有较好的尺寸稳定性,具体方法为:在水性分散性的作用下将粘结剂和无机氧化物充分分散成浆料,再涂覆在隔膜上干燥后形成陶瓷涂层,如专利CN201110048688公开了一种采用聚偏氟乙烯等高分子粘结剂和氧化铝等无机颗粒在聚乙二醇等水性分散剂辅助下,分散在水溶液中,从而制备无机涂层的方法;专利CN201310017708公开了一种在羧甲基纤维素等增稠剂辅助下,采用偏氟乙烯~六氟丙乙烯共聚物等粘结剂与沸石混合制备隔膜陶瓷涂层的方法;专利CN201510706160.2公开了一种含锂离子传导多孔无机氧化物的锂电池隔膜及其制备方法,利用锂离子传导聚合物与无机氧化物前驱体在表面活性剂作用下形成先复合,然后在水热条件下晶化,形成可传导锂离子的多孔无机氧化物,然后与粘结剂、稳定剂、烷基链紫外交联剂混合制备浆料、最后涂布于锂离子电池隔膜表面、紫外照射并干燥,获得带涂层的隔膜。但是,涂层中高分子粘结剂的热稳定温度对涂层的热稳定性也有很大的影响,粘结剂软化后失去粘结力脱落;此外,这种涂层在隔膜本体软化后不能独立存在,较大面积的隔膜本体熔化会导致涂层的粉化,从而难以起到在极端情况下阻隔正负极的作用。At present, the method to improve the lithium battery separator is mainly to coat the surface of the separator with an inert polymer binder (mainly polyvinylidene fluoride PVDF, vinylidene fluoride-hexafluoropropylene copolymer PVD-HFP) bonded nano-inorganic oxide particle coating. In the melting temperature range of polypropylene or polyethylene base film, such as 120 ~ 160 ℃, the inorganic oxide has good dimensional stability. The specific method is: under the action of water dispersion, the binder and inorganic oxide are fully It is dispersed into slurry, and then coated on the diaphragm to form a ceramic coating after drying. For example, patent CN201110048688 discloses a kind of water-based dispersion of polyvinylidene fluoride and other polymer binders and inorganic particles such as alumina in polyethylene glycol. With the aid of a thickener such as carboxymethyl cellulose, it is dispersed in an aqueous solution to prepare an inorganic coating method; patent CN201310017708 discloses a method of using vinylidene fluoride to hexafluoropropylene copolymer to bond with the aid of thickeners such as carboxymethyl cellulose. A method for preparing a diaphragm ceramic coating by mixing the agent and zeolite; the patent CN201510706160.2 discloses a lithium battery diaphragm containing a lithium ion conductive porous inorganic oxide and a preparation method thereof. The lithium ion conductive polymer and the inorganic oxide precursor are used in Under the action of surfactant, it is first compounded, and then crystallized under hydrothermal conditions to form a porous inorganic oxide that can conduct lithium ions, and then mixed with binder, stabilizer, and alkyl chain UV cross-linking agent to prepare slurry, Finally, it is coated on the surface of the lithium ion battery separator, irradiated with ultraviolet rays and dried to obtain a coated separator. However, the thermal stability temperature of the polymer binder in the coating also has a great influence on the thermal stability of the coating. After the binder softens, it loses its cohesive force and falls off; in addition, the coating cannot be independent after the separator body is softened. There is, the melting of the larger area of the separator body will lead to the pulverization of the coating, which makes it difficult to play the role of blocking the positive and negative electrodes in extreme cases.
静电纺丝(电纺)技术可以以融化温度较好的聚合物为原料获得高孔隙率的隔膜或者涂层。如专利CN201510849210.2公开了静电纺丝复合隔膜的制备方法,采用静电纺丝技术,将聚偏氟乙烯与另一种聚合物复合的前驱体溶液A、聚偏氟乙烯与无机纳米材料混合的前驱体溶液B,制备成多孔网状复合纤维隔膜;专利CN201610747668.1采用一种同轴静电纺丝技术制备核/壳结构的复合纤维膜,复合纤维膜的核壳两层呈同心轴状,核层由高熔点的聚芳醚砜酮纳米纤维构成,壳层由低熔点的聚偏氟乙烯纳米纤维构成,孔隙率达到75%以上,可耐180℃高温。但是,静电纺丝膜直接作为电池隔膜存在两个问题,其一是隔膜孔隙率非常高,典型值达到60~80%,导致隔膜电子隔绝能力较低,电池自放电严重,其二是静电纺丝隔膜没有经过定向拉伸,一般强度仅为5~20MPa,远低于经过拉伸传统隔膜的100MPa以上,难以满足电池制造工艺和机械安全性的需要。Electrospinning (electrospinning) technology can use polymers with better melting temperature as raw materials to obtain high-porosity separators or coatings. For example, patent CN201510849210.2 discloses the preparation method of electrospinning composite diaphragm. Electrospinning technology is used to combine polyvinylidene fluoride and another polymer precursor solution A, polyvinylidene fluoride and inorganic nanomaterials. The precursor solution B is prepared into a porous mesh composite fiber membrane; the patent CN201610747668.1 adopts a coaxial electrospinning technology to prepare a composite fiber membrane with a core/shell structure. The core and shell layers of the composite fiber membrane are concentric. The core layer is composed of polyarylethersulfone ketone nanofibers with high melting point, and the shell layer is composed of polyvinylidene fluoride nanofibers with low melting point. However, there are two problems with the electrospinning film directly used as a battery separator. One is that the porosity of the separator is very high, with a typical value reaching 60-80%, which leads to a low electronic isolation capability of the separator and serious battery self-discharge. The silk separator has not undergone directional stretching, and its general strength is only 5-20 MPa, which is much lower than the 100 MPa of the traditional stretched separator, which is difficult to meet the needs of battery manufacturing process and mechanical safety.
CN201510069176.7公开了一种复合型锂离子电池隔膜,包含无纺布基材层、静电纺丝层和聚合物多孔涂层,具体是用无纺布做基材,保证了隔膜的高孔隙率和耐热性;在无纺布基材上下表面设置静电纺丝层,降低了无纺布孔径大小,使得孔径均匀;专利CN201510069135.8采用类似工艺,以环保型的水溶性高分子制备静电纺丝层,但是静电纺丝膜自放电与强度的问题仍然没有被解决。专利CN201210128618.7公开了一种三层纳米纤维复合锂离子电池膜及其制备技术,该电池膜包括位于中间层的无纺布或纳米纤维薄膜和位于中间层两侧的第一外层和第二外层,采用静电纺丝技术制备第一外层和第二外层,然后与中间层热压复合获得复合结构,但是热压复合对聚合物多孔基材和多孔涂层的孔隙结构有较大影响,而且,热压复合需要单层膜具有较大的厚度,不符合当前隔膜薄层化的趋势。CN201510069176.7 discloses a composite lithium-ion battery separator, comprising a non-woven substrate layer, an electrospinning layer and a polymer porous coating, specifically using non-woven fabric as the substrate to ensure high porosity of the separator and heat resistance; the electrospinning layer is arranged on the upper and lower surfaces of the non-woven substrate, which reduces the pore size of the non-woven fabric and makes the pore size uniform; the patent CN201510069135.8 adopts a similar process to prepare electrospinning with environmentally friendly water-soluble polymers. filament layer, but the problems of self-discharge and strength of electrospun membranes remain unsolved. Patent CN201210128618.7 discloses a three-layer nanofiber composite lithium-ion battery film and its preparation technology. The battery film includes a non-woven or nanofiber film located in the middle layer and a first outer layer and a second outer layer located on both sides of the middle layer. For the second outer layer, the first outer layer and the second outer layer are prepared by electrospinning technology, and then combined with the middle layer by hot pressing to obtain a composite structure. In addition, the hot-pressing composite requires a large thickness of the single-layer film, which is not in line with the current trend of thin-layer diaphragms.
专利CN201710142596.2公开了一种聚合物复合锂电池隔膜及其制备方法,其聚合物复合锂电池隔膜包括基膜和涂覆在基膜一面或两面的无机粒子涂层,并且,无机粒子涂层的表面涂覆有至少一层高温树脂层,涂层采用浸渍涂布、凹版印刷、喷雾涂布、挤压涂布、静电纺丝和转移涂布中的一种方法转移到基膜上,但是,这种结构中无机氧化物为物理方式添加,存在难以分散的困难。Patent CN201710142596.2 discloses a polymer composite lithium battery separator and a preparation method thereof. The polymer composite lithium battery separator includes a base film and an inorganic particle coating coated on one or both sides of the base film, and the inorganic particle coating The surface of the film is coated with at least one layer of high temperature resin, and the coating is transferred to the base film by one of dip coating, gravure printing, spray coating, extrusion coating, electrospinning and transfer coating, but , In this structure, the inorganic oxide is added in a physical way, and it is difficult to disperse.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是针对上述现有技术存在的不足而提供一种聚烯烃锂电隔膜,具有良好的高温完整性,可承受温度达到240~260℃,可以大幅度改善电池的热安全性。The technical problem to be solved by the present invention is to provide a polyolefin lithium battery separator, which has good high temperature integrity, can withstand temperatures up to 240-260°C, and can greatly improve the thermal safety of the battery. .
本发明为解决上述提出的问题所采用的技术方案为:The technical scheme adopted by the present invention to solve the above-mentioned problems is:
一种聚烯烃锂电隔膜,以多孔聚烯烃隔膜为基体,所述聚烯烃隔膜的单侧或双侧涂覆有改性的聚对苯二甲酸乙二醇酯(PET)纤维涂层,所述的改性的聚对苯二甲酸乙二醇酯(PET)纤维是无机氧化物纳米颗粒和聚对苯二甲酸乙二醇酯复合而成的纤维。A polyolefin lithium battery separator, which uses a porous polyolefin separator as a matrix, one side or both sides of the polyolefin separator is coated with a modified polyethylene terephthalate (PET) fiber coating, and the The modified polyethylene terephthalate (PET) fiber is a fiber composed of inorganic oxide nanoparticles and polyethylene terephthalate.
按上述方案,所述的多孔聚烯烃隔膜,厚度为6~50μm,孔隙率为35~50vol%;改性的聚对苯二甲酸乙二醇酯(PET)纤维涂层的厚度为2~10μm。According to the above scheme, the porous polyolefin separator has a thickness of 6-50 μm and a porosity of 35-50 vol%; the thickness of the modified polyethylene terephthalate (PET) fiber coating is 2-10 μm .
按上述方案,所述的多孔聚烯烃隔膜基材主要选自干法单拉聚丙烯、干法双拉聚丙烯或湿法聚乙烯锂电隔膜等中的任意一种。According to the above scheme, the porous polyolefin membrane base material is mainly selected from any one of dry-process single-stretch polypropylene, dry-process double-stretch polypropylene or wet-process polyethylene lithium battery membrane.
按上述方案,所述涂覆主要采用静电纺丝(电纺)。According to the above scheme, the coating mainly adopts electrospinning (electrospinning).
按上述方案,所述无机氧化物主要选自二氧化硅、三氧化二铝、二氧化钛等。According to the above scheme, the inorganic oxide is mainly selected from silicon dioxide, aluminum oxide, titanium dioxide and the like.
本发明还提供上述聚烯烃锂电隔膜的制备方法,主要过程为:The present invention also provides the preparation method of the above-mentioned polyolefin lithium battery separator, the main process is:
第一步,在对苯二甲酸和乙二醇的混合溶液中,无机氧化物前驱体采用静电自组装的方法合成无机氧化物纳米颗粒,获得无机氧化物纳米颗粒的分散液,即该分散液以对苯二甲酸和乙二醇为溶剂,以无机氧化物纳米颗粒为溶质;In the first step, in the mixed solution of terephthalic acid and ethylene glycol, the inorganic oxide precursors use electrostatic self-assembly to synthesize inorganic oxide nanoparticles to obtain a dispersion liquid of inorganic oxide nanoparticles, that is, the dispersion liquid Using terephthalic acid and ethylene glycol as solvent and inorganic oxide nanoparticles as solute;
第二步,将第一步所得无机氧化物纳米颗粒的分散液进行加热,使其中的乙二醇和对苯二甲酸发生酯化和缩聚反应,获得无机氧化物纳米颗粒复合的聚对苯二甲酸乙二醇酯(PET)分散液;In the second step, the dispersion liquid of the inorganic oxide nanoparticles obtained in the first step is heated to make the ethylene glycol and terephthalic acid in it undergo esterification and polycondensation reaction, so as to obtain the polyterephthalic acid compounded by the inorganic oxide nanoparticles Ethylene glycol ester (PET) dispersion;
第三步,将第二步所得无机氧化物纳米颗粒复合的PET分散液稀释后,作为纺丝浆料;然后将纺丝浆料在多孔聚烯烃隔膜进行单面或者双面静电纺丝,获得改性聚对苯二甲酸乙二醇酯(PET)纤维复合的聚烯烃锂电隔膜。In the third step, the PET dispersion liquid compounded by the inorganic oxide nanoparticles obtained in the second step is diluted and used as a spinning slurry; and then the spinning slurry is electrospun on one or both sides of the porous polyolefin membrane to obtain a Modified polyethylene terephthalate (PET) fiber composite polyolefin lithium battery separator.
按上述方案,第一步中,对苯二甲酸、无机氧化物前驱体和乙二醇的重量比为1:0.01~0.1:2~5。According to the above scheme, in the first step, the weight ratio of terephthalic acid, inorganic oxide precursor and ethylene glycol is 1:0.01-0.1:2-5.
按上述方案,第一步中,所述的无机氧化物前驱体选自正硅酸乙酯、四乙氧基硅烷、钛酸乙酯、异丙醇铝等中的任意一种。According to the above scheme, in the first step, the inorganic oxide precursor is selected from any one of ethyl orthosilicate, tetraethoxysilane, ethyl titanate, aluminum isopropoxide, and the like.
按上述方案,第一步中,静电自组装的反应条件为:无机酸作为水解催化剂,pH为0.1~2,反应体系pH控制在0.1~2,反应时间为1~4h。According to the above scheme, in the first step, the reaction conditions of electrostatic self-assembly are as follows: inorganic acid is used as hydrolysis catalyst, pH is 0.1-2, pH of reaction system is controlled at 0.1-2, and reaction time is 1-4h.
按上述方案,第一步中,所述的无机酸优选浓度为10~30wt%水溶液,例如:硝酸水溶液、盐酸水溶液等中的任意一种。According to the above scheme, in the first step, the preferred concentration of the inorganic acid is an aqueous solution of 10-30 wt%, for example: any one of an aqueous nitric acid solution, an aqueous hydrochloric acid solution, and the like.
按上述方案,第一步中,合成无机氧化物纳米颗粒的步骤后还包括除酸除水的步骤,具体为:在搅拌条件下加热以蒸馏去除游离无机酸和低沸点水溶剂。其中,加热温度为180~193℃。According to the above scheme, in the first step, the step of synthesizing inorganic oxide nanoparticles further includes the step of removing acid and water, specifically: heating under stirring condition to remove free inorganic acid and low-boiling water solvent by distillation. Here, the heating temperature is 180 to 193°C.
按上述方案,第二步中,酯化和缩聚反应的条件为加热至220~240℃,保温30~40min。其中,加热时的升温速率优选2~5℃/min。According to the above scheme, in the second step, the conditions for the esterification and polycondensation reaction are heating to 220-240° C. and keeping the temperature for 30-40 min. Among them, the temperature increase rate during heating is preferably 2 to 5°C/min.
按上述方案,第三步中,稀释至粘度为1000~3000mPa.S之间,优选异丙醇作为稀释剂。According to the above scheme, in the third step, dilute to a viscosity between 1000 and 3000 mPa.S, preferably isopropanol as the diluent.
按上述方案,第三步中,静电纺丝的环境温度控制为10~30℃、湿度控制为50~70RH%;纺丝正电压30~50kV、负电压为-30~-10kV,纺丝层厚度控制为2~10μm。According to the above scheme, in the third step, the ambient temperature of the electrospinning is controlled to be 10-30°C, and the humidity is controlled to be 50-70RH%; The thickness is controlled to be 2 to 10 μm.
进一步地,本发明还提供一种更为具体的聚烯烃锂电隔膜的制备方法,详细过程为:Further, the present invention also provides a more specific preparation method of the polyolefin lithium battery separator, and the detailed process is:
1)将对苯二甲酸、无机氧化物前驱体分散在乙二醇中,对苯二甲酸、无机氧化物前驱体和乙二醇的重量比为1:0.01~0.1:2~5,混合后搅拌0.5~2h;然后,在搅拌状态下缓缓加入浓度为10~30wt%的无机酸水溶液作为水解催化剂,控制酸的加入速度使溶液体系pH值保持在0.1~2之间,继续搅拌1~4h充分水解完全;水解完成后,在搅拌条件下加热溶液体系至溶液温度上升到180~193℃,以蒸馏去除游离无机酸和低沸点水溶剂,然后冷却至室温,获得无机氧化物纳米颗粒的分散液;1) The terephthalic acid and inorganic oxide precursor are dispersed in ethylene glycol, and the weight ratio of terephthalic acid, inorganic oxide precursor and ethylene glycol is 1:0.01~0.1:2~5, after mixing Stir for 0.5 to 2 hours; then, slowly add a mineral acid aqueous solution with a concentration of 10 to 30 wt% as a hydrolysis catalyst under stirring, and control the addition speed of the acid to keep the pH value of the solution system between 0.1 to 2, and continue to stir for 1 to 4h is fully hydrolyzed; after the hydrolysis is completed, the solution system is heated under stirring until the solution temperature rises to 180-193 ° C, to remove free inorganic acid and low-boiling water solvent by distillation, and then cooled to room temperature to obtain inorganic oxide nanoparticles. Dispersions;
2)将第一步所得无机氧化物纳米颗粒的分散液以2~5℃/min升温至220~240℃,保温30~40min使乙二醇和对苯二甲酸发生酯化和缩聚反应,获得无机氧化物纳米颗粒复合的PET分散液;2) heating the dispersion liquid of the inorganic oxide nanoparticles obtained in the first step to 220-240° C. at 2-5° C./min, and maintaining the temperature for 30-40 min to cause esterification and polycondensation of ethylene glycol and terephthalic acid to obtain inorganic oxide. Oxide nanoparticle composite PET dispersion;
3)将第二步所得无机氧化物纳米颗粒复合的PET分散液稀释至粘度1000~3000mPa.S之间后,作为纺丝浆料;然后将纺丝浆料在多孔聚烯烃隔膜基体上进行单面或者双面静电纺丝,纺丝环境温度控制为10~30℃、湿度控制为50~70RH%;纺丝正电压30~50kV、负电压为-30~-10kV,纺丝层厚度控制为2~10μm;纺丝完成后经干燥后,获得聚烯烃锂电隔膜。3) After diluting the inorganic oxide nanoparticle composite PET dispersion liquid obtained in the second step to a viscosity between 1000 and 3000 mPa.S, it is used as a spinning slurry; Surface or double-sided electrospinning, the spinning environment temperature is controlled at 10-30°C, and the humidity is controlled at 50-70RH%; the spinning positive voltage is 30-50kV, the negative voltage is -30--10kV, and the spinning layer thickness is controlled at 2 to 10 μm; after the spinning is completed and dried, a polyolefin lithium battery separator is obtained.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
第一,本发明针对现有聚丙烯或者聚乙烯多孔隔膜高温完整性较低的问题,以及现有静电纺丝隔膜存在的孔隙结构或者复合结构不均匀等问题,提供一种聚烯烃锂电隔膜,由于无机氧化物纳米颗粒的改性PET纤维自身形成了稳定的单层结构,因此可承受温度能够达到240~260℃,有效避免在电池滥用的极限条件下材料融化闭孔的难题,具有良好的高温完整性,可以大幅度改善电池的热安全性。First, the present invention provides a polyolefin lithium battery diaphragm for the problems of low high temperature integrity of the existing polypropylene or polyethylene porous diaphragm, and the problem of uneven pore structure or composite structure existing in the existing electrospinning diaphragm. Since the modified PET fiber of inorganic oxide nanoparticles forms a stable single-layer structure, the temperature can reach 240-260 °C, which effectively avoids the problem of material melting and closing pores under the extreme conditions of battery abuse. High temperature integrity can greatly improve the thermal safety of the battery.
第二,本发明采用原位复合的方法,在PET纤维中复合无机氧化物纳米颗粒,无机氧化物表面的官能基团和电解液的极性更近,可以提高PET纤维涂层的韧性和对电解液的亲润性,利于改善复合隔膜的性能。Second, the present invention adopts the method of in-situ compounding to compound inorganic oxide nanoparticles in the PET fiber, and the functional groups on the surface of the inorganic oxide are closer to the polarity of the electrolyte, which can improve the toughness and resistance of the PET fiber coating. The wettability of the electrolyte is beneficial to improve the performance of the composite diaphragm.
附图说明Description of drawings
图1为实施例1中复合隔膜的截面扫描电镜图片;Fig. 1 is the cross-sectional scanning electron microscope picture of composite diaphragm in embodiment 1;
图2为实施例1中复合隔膜纤维涂层的离子减薄高分辨透射电镜照片。FIG. 2 is an ion-thinning high-resolution transmission electron microscope photograph of the composite separator fiber coating in Example 1. FIG.
具体实施方式Detailed ways
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。In order to better understand the present invention, the content of the present invention is further illustrated below in conjunction with the embodiments, but the content of the present invention is not limited to the following embodiments.
实施例1Example 1
一种聚烯烃锂电隔膜,以干法单拉聚丙烯锂电隔膜(20μm,孔隙率42vol%)为基体,所述聚烯烃隔膜的双侧电纺有改性的聚对苯二甲酸乙二醇酯(PET)纤维涂层,改性的聚对苯二甲酸乙二醇酯(PET)纤维涂层的厚度为2μm;所述的改性的聚对苯二甲酸乙二醇酯(PET)纤维是二氧化硅纳米颗粒和聚对苯二甲酸乙二醇酯复合而成的纤维。A polyolefin lithium battery separator is based on a dry single-draw polypropylene lithium battery separator (20 μm, porosity 42 vol%), and the polyolefin separator is electrospun on both sides with modified polyethylene terephthalate. (PET) fiber coating, the thickness of the modified polyethylene terephthalate (PET) fiber coating is 2 μm; the modified polyethylene terephthalate (PET) fiber is Fibers made of silica nanoparticles and polyethylene terephthalate.
上述聚烯烃锂电隔膜的制备方法,具体步骤如下:The preparation method of the above-mentioned polyolefin lithium battery separator, the concrete steps are as follows:
1)将对苯二甲酸、正硅酸乙酯分散在乙二醇中搅拌0.5h,对苯二甲酸、正硅酸乙酯和乙二醇的重量比为1:0.05:2;然后,在搅拌状态下继续缓缓加入浓度为10wt%的硝酸水溶液作为水解催化剂,控制加入速度使溶液体系pH保持在0.1~0.3之间,继续搅拌1h充分水解;水解完成后,在搅拌条件下加热溶液体系至溶液温度上升到180℃,蒸馏去除游离无机酸和低沸点水溶剂,然后冷却至室温,获得二氧化硅纳米颗粒的分散液;1) Disperse terephthalic acid and ethyl orthosilicate in ethylene glycol and stir for 0.5h, and the weight ratio of terephthalic acid, ethyl orthosilicate and ethylene glycol is 1:0.05:2; Continue to slowly add a 10wt% nitric acid aqueous solution as a hydrolysis catalyst under stirring, control the addition speed to keep the pH of the solution system between 0.1 and 0.3, and continue stirring for 1 h to fully hydrolyze; after the hydrolysis is completed, heat the solution system under stirring conditions When the solution temperature rises to 180°C, free inorganic acid and low-boiling water solvent are distilled off, and then cooled to room temperature to obtain a dispersion of silica nanoparticles;
2)将步骤1)所得二氧化硅纳米颗粒的分散液加入反应釜中,以2℃/min升温至220℃,保温30min使乙二醇和对苯二甲酸发生酯化和缩聚反应,获得二氧化硅纳米颗粒复合的PET分散液;2) adding the dispersion of the silicon dioxide nanoparticles obtained in step 1) into the reactor, heating up to 220°C at 2°C/min, and keeping the temperature for 30min to make ethylene glycol and terephthalic acid esterification and polycondensation reaction, to obtain dioxide dioxide. Silicon nanoparticle composite PET dispersion;
3)将步骤2)所得二氧化硅纳米颗粒复合的PET分散液中加入异丙醇进行稀释调节至粘度为2800~3000mPa.S,作为纺丝浆料,其中异丙醇的加入量为步骤1)中苯二甲酸重量的5倍;然后将纺丝浆料通过纳米纤维纺丝机在干法单拉聚丙烯锂电隔膜(20μm,孔隙率42vol%)基体上进行双面静电纺丝,纺丝环境温度控制为10℃、湿度控制为50RH%,纺丝正电压30kV、负电压为-10kV,纺丝层厚度控制为2μm;纺丝完成后,将所得膜放置于90℃烘箱中干燥10小时,获得改性PET纤维复合的聚烯烃锂电隔膜。3) adding isopropyl alcohol to the PET dispersion liquid compounded by the silica nanoparticles obtained in step 2) to dilute and adjust to a viscosity of 2800-3000 mPa.S, as spinning slurry, wherein the addition amount of isopropyl alcohol is step 1 ) 5 times the weight of phthalic acid; then the spinning slurry was subjected to double-sided electrospinning on a dry single-draw polypropylene lithium battery separator (20 μm, porosity 42 vol%) through a nanofiber spinning machine, spinning The ambient temperature was controlled at 10°C, the humidity was controlled at 50RH%, the positive spinning voltage was 30kV, the negative voltage was -10kV, and the thickness of the spinning layer was controlled at 2 μm; after the spinning was completed, the obtained film was placed in a 90°C oven to dry for 10 hours , to obtain a modified PET fiber composite polyolefin lithium battery separator.
本实施例所得聚烯烃锂电隔膜的截面扫描电镜照片如附图1所示,可以看出静电纺丝的纤维涂层和聚丙烯基体结合紧密、界面均匀,并且,无机二氧化硅纳米颗粒的改性PET纤维在基体表面形成了一层几微米厚度的膜,外观结构从扫描电镜可以看出是一个编织形成的稳定结构,推断是一个可以稳定存在的单层结构,故无机氧化物纳米颗粒的改性PET纤维自身形成了稳定的单层结构;而所得聚烯烃锂电隔膜的纤维涂层的离子减薄高分辨透射电镜照片如附图2所示,可以看出二氧化硅纳米颗粒均匀的分布在PET纤维中。The SEM photo of the cross-section of the polyolefin lithium battery separator obtained in this example is shown in Figure 1. It can be seen that the electrospun fiber coating and the polypropylene matrix are closely combined, the interface is uniform, and the modification of the inorganic silica nanoparticles The PET fiber forms a film with a thickness of several microns on the surface of the substrate. The appearance structure can be seen from the scanning electron microscope that it is a stable structure formed by weaving. It is inferred that it is a single-layer structure that can exist stably. The modified PET fiber itself forms a stable single-layer structure; and the ion-thinning high-resolution transmission electron microscope photo of the fiber coating of the obtained polyolefin lithium battery separator is shown in Figure 2, and it can be seen that the silica nanoparticles are uniformly distributed. in PET fibers.
实施例1以及下述其他实施例中,采用万能材料拉伸机测量锂电隔膜的涂层剥离力、断裂强度、穿刺强度;采用Gurley透气仪测量孔隙率;采用粉末状磷酸铁锂为正极材料、人造石墨为负极组装纽扣电池,在环境试验箱中以0.1℃/min的速度升温,采用电化学工作站测量短路出现时的温度。实施例1所得聚烯烃锂电隔膜的各方面性能指标如表1所示,同时表1中还附上本实施例所采用的基体自身的各方面性能指标。In Example 1 and the following other examples, the coating peeling force, breaking strength and puncture strength of the lithium battery diaphragm were measured by a universal material stretching machine; the porosity was measured by a Gurley air permeability tester; powdered lithium iron phosphate was used as the positive electrode material, A button battery was assembled with artificial graphite as the negative electrode, and the temperature was increased at a rate of 0.1 °C/min in an environmental test chamber, and an electrochemical workstation was used to measure the temperature when a short circuit occurred. Various performance indicators of the polyolefin lithium battery separator obtained in Example 1 are shown in Table 1, and Table 1 also includes various performance indicators of the matrix itself used in this example.
表1Table 1
实施例2Example 2
一种聚烯烃锂电隔膜,以干法双拉聚丙烯锂电隔膜(50μm,孔隙率39vol%)为基体,所述聚烯烃隔膜的双侧电纺有改性的聚对苯二甲酸乙二醇酯(PET)纤维涂层,改性的聚对苯二甲酸乙二醇酯(PET)纤维涂层的厚度为5μm;所述的改性的聚对苯二甲酸乙二醇酯(PET)纤维是二氧化硅纳米颗粒和聚对苯二甲酸乙二醇酯复合而成的纤维。A polyolefin lithium battery separator is based on a dry double-drawn polypropylene lithium battery separator (50 μm, 39 vol% porosity), and the polyolefin separator is electrospun on both sides with modified polyethylene terephthalate. (PET) fiber coating, the thickness of the modified polyethylene terephthalate (PET) fiber coating is 5 μm; the modified polyethylene terephthalate (PET) fiber is Fibers made of silica nanoparticles and polyethylene terephthalate.
上述聚烯烃锂电隔膜的制备方法,具体步骤如下:The preparation method of the above-mentioned polyolefin lithium battery separator, the concrete steps are as follows:
1)将对苯二甲酸、四乙氧基硅烷分散在乙二醇中搅拌1h,对苯二甲酸、四乙氧基硅烷和乙二醇的重量比为1:0.01:3;然后,在搅拌状态下继续缓缓加入浓度为20wt%的盐酸水溶液作为水解催化剂,控制加入速度使溶液体系pH保持在0.5~0.7之间,继续搅拌3h充分水解;水解完成后,在搅拌条件下加热溶液体系至溶液温度上升到190℃,蒸馏去除游离无机酸和低沸点水溶剂,然后冷却至室温,获得二氧化硅纳米颗粒的分散液;1) Disperse terephthalic acid and tetraethoxysilane in ethylene glycol and stir for 1 h. The weight ratio of terephthalic acid, tetraethoxysilane and ethylene glycol is 1:0.01:3; Continue to slowly add the aqueous hydrochloric acid solution with a concentration of 20wt% as a hydrolysis catalyst in the state, control the adding speed to keep the pH of the solution system between 0.5 and 0.7, and continue to stir for 3h to fully hydrolyze; after the hydrolysis is completed, heat the solution system under stirring conditions to The temperature of the solution was raised to 190°C, the free inorganic acid and the low-boiling water solvent were distilled off, and then cooled to room temperature to obtain a dispersion of silica nanoparticles;
2)将步骤1)所得二氧化硅纳米颗粒的分散液加入反应釜中,以4℃/min升温至230℃,保温35min使乙二醇和对苯二甲酸发生酯化和缩聚反应,获得二氧化硅纳米颗粒复合的PET分散液;2) adding the dispersion of the silicon dioxide nanoparticles obtained in step 1) into the reactor, heating up to 230°C at 4°C/min, and keeping the temperature for 35min to make ethylene glycol and terephthalic acid esterification and polycondensation reaction, to obtain dioxide dioxide. Silicon nanoparticle composite PET dispersion;
3)将步骤2)所得二氧化硅纳米颗粒复合的PET分散液中加入异丙醇进行稀释调节至粘度为2100~2200mPa.S,作为纺丝浆料,其中异丙醇的加入量为步骤1)中苯二甲酸重量的8倍;然后将纺丝浆料通过纳米纤维纺丝机在干法双拉聚丙烯锂电隔膜(50μm,孔隙率39vol%)基体上进行双面静电纺丝,纺丝环境温度控制为25℃、湿度控制为60RH%,纺丝正电压40kV、负电压为-20kV,纺丝层厚度控制为5μm;纺丝完成后,将所得膜放置于95℃烘箱中干燥8小时,获得改性PET纤维复合的聚烯烃锂电隔膜。3) adding isopropanol to the PET dispersion liquid compounded by the silica nanoparticles obtained in step 2) to dilute and adjust to a viscosity of 2100-2200 mPa.S, as spinning slurry, wherein the addition amount of isopropanol is step 1 ) 8 times the weight of phthalic acid; then the spinning slurry was subjected to double-sided electrospinning on a dry double-drawn polypropylene lithium battery separator (50 μm, porosity 39 vol%) through a nanofiber spinning machine, spinning The ambient temperature was controlled at 25°C, the humidity was controlled at 60RH%, the positive voltage for spinning was 40kV, the negative voltage was -20kV, and the thickness of the spinning layer was controlled at 5 μm; after the spinning was completed, the obtained film was placed in a 95°C oven to dry for 8 hours , to obtain a modified PET fiber composite polyolefin lithium battery separator.
实施例2所得聚烯烃锂电隔膜的各方面性能指标如表2所示,同时表2中还附上本实施例所采用的基体自身的各方面性能指标。The performance indicators of various aspects of the polyolefin lithium battery separator obtained in Example 2 are shown in Table 2. Meanwhile, various performance indicators of the matrix itself used in this example are also attached in Table 2.
表2Table 2
实施例3Example 3
一种聚烯烃锂电隔膜,以湿法聚乙烯锂电隔膜(12μm,46vol%)为基体,所述聚烯烃隔膜的单侧电纺有改性的聚对苯二甲酸乙二醇酯(PET)纤维涂层,改性的聚对苯二甲酸乙二醇酯(PET)纤维涂层的厚度为10μm;所述的改性的聚对苯二甲酸乙二醇酯(PET)纤维是二氧化钛纳米颗粒和聚对苯二甲酸乙二醇酯复合而成的纤维。A polyolefin lithium battery separator, using a wet-process polyethylene lithium battery separator (12 μm, 46 vol%) as a matrix, and one side of the polyolefin separator is electrospun with modified polyethylene terephthalate (PET) fibers The coating, the thickness of the modified polyethylene terephthalate (PET) fiber coating is 10 μm; the modified polyethylene terephthalate (PET) fiber is titanium dioxide nanoparticles and Fiber made from polyethylene terephthalate.
上述聚烯烃锂电隔膜的制备方法,具体步骤如下:The preparation method of the above-mentioned polyolefin lithium battery separator, the concrete steps are as follows:
1)将对苯二甲酸、钛酸乙酯分散在乙二醇中搅拌2h,对苯二甲酸、钛酸乙酯和乙二醇的重量比为1:0.1:5;然后,在搅拌状态下继续缓缓加入浓度为30wt%的盐酸水溶液作为水解催化剂,控制加入速度使溶液体系pH保持在1.6~2之间,继续搅拌4h充分水解;水解完成后,在搅拌条件下加热溶液体系至溶液温度上升到193℃,蒸馏去除游离无机酸和低沸点水溶剂,然后冷却至室温,获得二氧化硅纳米颗粒的分散液;1) Disperse terephthalic acid and ethyl titanate in ethylene glycol and stir for 2h, the weight ratio of terephthalic acid, ethyl titanate and ethylene glycol is 1:0.1:5; then, under stirring Continue to slowly add aqueous hydrochloric acid solution with a concentration of 30wt% as a hydrolysis catalyst, control the addition speed to keep the pH of the solution system between 1.6 and 2, and continue to stir for 4h to fully hydrolyze; after the hydrolysis is completed, heat the solution system to the solution temperature under stirring conditions. Raised to 193°C, distilled to remove free inorganic acid and low-boiling water solvent, and then cooled to room temperature to obtain a dispersion of silica nanoparticles;
2)将步骤1)所得二氧化硅纳米颗粒的分散液加入反应釜中,以5℃/min升温至240℃,保温40min使乙二醇和对苯二甲酸发生酯化和缩聚反应,获得二氧化硅纳米颗粒复合的PET分散液;2) adding the dispersion liquid of the silica nanoparticles obtained in step 1) into the reactor, heating up to 240°C at 5°C/min, and maintaining the temperature for 40min to make ethylene glycol and terephthalic acid esterification and polycondensation reaction, to obtain dioxide dioxide. Silicon nanoparticle composite PET dispersion;
3)将步骤2)所得二氧化硅纳米颗粒复合的PET分散液中加入异丙醇进行稀释调节至粘度为1000~1200mPa.S,作为纺丝浆料,其中异丙醇的加入量为步骤1)中苯二甲酸重量的10倍;然后将纺丝浆料通过纳米纤维纺丝机在湿法聚乙烯锂电隔膜(12μm,46vol%)基体上进行单面静电纺丝,纺丝环境温度控制为30℃、湿度控制为70RH%,纺丝正电压50kV、负电压为-30kV,纺丝层厚度控制为10μm;纺丝完成后,将所得膜放置于100℃烘箱中干燥10小时,获得改性PET纤维复合的聚烯烃锂电隔膜。3) adding isopropanol to the PET dispersion liquid compounded by silica nanoparticles obtained in step 2) to dilute and adjust to a viscosity of 1000-1200 mPa.S, as spinning slurry, wherein the addition amount of isopropanol is step 1 ) 10 times the weight of phthalic acid; then the spinning slurry was subjected to single-sided electrospinning on a wet-process polyethylene lithium battery separator (12 μm, 46 vol%) through a nanofiber spinning machine, and the spinning environment temperature was controlled as 30°C, the humidity is controlled to 70RH%, the positive voltage of spinning is 50kV, the negative voltage is -30kV, and the thickness of the spinning layer is controlled to be 10 μm; after the spinning is completed, the obtained film is placed in a 100°C oven to dry for 10 hours to obtain the modified film. PET fiber composite polyolefin lithium battery separator.
实施例3所得聚烯烃锂电隔膜的各方面性能指标如表3所示,同时表3中还附上本实施例所采用的基体自身的各方面性能指标。The performance indicators of various aspects of the polyolefin lithium battery separator obtained in Example 3 are shown in Table 3. Meanwhile, various performance indicators of the matrix itself used in this example are also attached in Table 3.
表3table 3
实施例4Example 4
一种聚烯烃锂电隔膜,以干法单拉聚丙烯锂电隔膜(15μm,46vol%)为基体,所述聚烯烃隔膜的单侧电纺有改性的聚对苯二甲酸乙二醇酯(PET)纤维涂层,改性的聚对苯二甲酸乙二醇酯(PET)纤维涂层的厚度为3μm;所述的改性的聚对苯二甲酸乙二醇酯(PET)纤维是二氧化铝纳米颗粒和聚对苯二甲酸乙二醇酯复合而成的纤维。A polyolefin lithium battery separator, which uses a dry single-draw polypropylene lithium battery separator (15 μm, 46 vol%) as a matrix, and one side of the polyolefin separator is electrospun with modified polyethylene terephthalate (PET). ) fiber coating, the thickness of the modified polyethylene terephthalate (PET) fiber coating is 3 μm; the modified polyethylene terephthalate (PET) fiber is a carbon dioxide Fiber made of aluminum nanoparticles and polyethylene terephthalate.
上述聚烯烃锂电隔膜的制备方法,具体步骤如下:The preparation method of the above-mentioned polyolefin lithium battery separator, the concrete steps are as follows:
上述聚烯烃锂电隔膜的制备方法,具体步骤如下:The preparation method of the above-mentioned polyolefin lithium battery separator, the concrete steps are as follows:
1)将对苯二甲酸、异丙醇铝分散在乙二醇中搅拌1h,对苯二甲酸、异丙醇铝和乙二醇的重量比为1:0.03:4;然后,在搅拌状态下继续缓缓加入浓度为30wt%的硝酸水溶液作为水解催化剂,控制加入速度使溶液体系pH保持在0.1~0.12之间,继续搅拌3h充分水解;水解完成后,在搅拌条件下加热溶液体系至溶液温度上升到190℃,蒸馏去除游离无机酸和低沸点水溶剂,然后冷却至室温,获得二氧化硅纳米颗粒的分散液;1) Disperse terephthalic acid and aluminum isopropoxide in ethylene glycol and stir for 1 h, and the weight ratio of terephthalic acid, aluminum isopropoxide and ethylene glycol is 1:0.03:4; then, under stirring Continue to slowly add an aqueous solution of nitric acid with a concentration of 30wt% as a hydrolysis catalyst, control the addition speed to keep the pH of the solution system between 0.1 and 0.12, and continue to stir for 3h to fully hydrolyze; after the hydrolysis is completed, heat the solution system to the solution temperature under stirring conditions Raised to 190°C, distilled to remove free inorganic acid and low-boiling water solvent, and then cooled to room temperature to obtain a dispersion of silica nanoparticles;
2)将步骤1)所得二氧化硅纳米颗粒的分散液加入反应釜中,以3℃/min升温至222℃,保温40min使乙二醇和对苯二甲酸发生酯化和缩聚反应,获得二氧化硅纳米颗粒复合的PET分散液;2) adding the dispersion liquid of the silica nanoparticles obtained in step 1) into the reaction kettle, warming up to 222°C at 3°C/min, and maintaining the temperature for 40min to make ethylene glycol and terephthalic acid esterification and polycondensation reaction, to obtain dioxide dioxide. Silicon nanoparticle composite PET dispersion;
3)将步骤2)所得二氧化硅纳米颗粒复合的PET分散液中加入异丙醇进行稀释调节至粘度为2200~2400mPa.S,作为纺丝浆料,其中异丙醇的加入量为步骤1)中苯二甲酸重量的7倍;然后将纺丝浆料通过纳米纤维纺丝机在干法单拉聚丙烯锂电隔膜(15μm,46vol%)基体上进行单面静电纺丝,纺丝环境温度控制为20℃、湿度控制为70RH%,纺丝正电压50kV、负电压为-30kV,纺丝层厚度控制为3μm;纺丝完成后,将所得膜放置于100℃烘箱中干燥7小时,获得改性PET纤维复合的聚烯烃锂电隔膜。3) adding isopropanol to the PET dispersion liquid compounded by the silica nanoparticles obtained in step 2) to dilute and adjust to a viscosity of 2200-2400 mPa.S, as spinning slurry, wherein the addition amount of isopropanol is step 1 ) 7 times the weight of phthalic acid; then the spinning slurry was subjected to single-sided electrospinning on a dry single-draw polypropylene lithium battery separator (15 μm, 46 vol%) through a nanofiber spinning machine, and the spinning ambient temperature Controlled at 20°C, humidity was controlled at 70RH%, positive spinning voltage was 50kV, negative voltage was -30kV, and the thickness of the spinning layer was controlled at 3 μm; after spinning, the resulting film was placed in a 100°C oven to dry for 7 hours to obtain Modified PET fiber composite polyolefin lithium battery separator.
实施例4所得聚烯烃锂电隔膜的各方面性能指标如表4所示,同时表4中还附上本实施例所采用的基体自身的各方面性能指标。The performance indicators of various aspects of the polyolefin lithium battery separator obtained in Example 4 are shown in Table 4. Meanwhile, various performance indicators of the matrix itself used in this example are also attached in Table 4.
表4Table 4
如表1~4所示,本发明所制备聚烯烃锂电隔膜的孔隙率高,透气性佳,穿刺强度和纵向拉伸强度、收缩率适宜,短路温度在243~252℃,具有良好的高温完整性,可以大幅度改善电池的热安全性。其中,相对于各自的基体,由于电纺纤维层的高孔隙率对隔膜的孔隙率、透气性等没有明显的影响。As shown in Tables 1-4, the polyolefin lithium battery separator prepared by the present invention has high porosity, good air permeability, suitable puncture strength, longitudinal tensile strength and shrinkage rate, and the short-circuit temperature is 243-252°C, and has good high temperature integrity. It can greatly improve the thermal safety of the battery. Among them, relative to the respective matrix, the high porosity of the electrospun fiber layer has no obvious influence on the porosity and air permeability of the separator.
以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those of ordinary skill in the art, some improvements and transformations can be made without departing from the inventive concept of the present invention, which all belong to the present invention. scope of protection.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710812779.0A CN107742688B (en) | 2017-09-11 | 2017-09-11 | A kind of polyolefin lithium battery separator and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710812779.0A CN107742688B (en) | 2017-09-11 | 2017-09-11 | A kind of polyolefin lithium battery separator and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107742688A CN107742688A (en) | 2018-02-27 |
CN107742688B true CN107742688B (en) | 2020-08-04 |
Family
ID=61235811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710812779.0A Active CN107742688B (en) | 2017-09-11 | 2017-09-11 | A kind of polyolefin lithium battery separator and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107742688B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108777284A (en) * | 2018-06-11 | 2018-11-09 | 佛山腾鲤新能源科技有限公司 | A kind of preparation method of lithium ion battery composite separation membrane |
KR102279515B1 (en) | 2018-09-03 | 2021-07-20 | 삼성에스디아이 주식회사 | Separator for rechargeable lithium battery and rechargeable lithium battery including the same |
CN112787042B (en) * | 2020-04-24 | 2022-08-26 | 刘桥 | Lithium battery diaphragm and preparation method thereof |
CN111710816B (en) * | 2020-06-23 | 2022-08-30 | 深圳市德立新材料科技有限公司 | Preparation method of nanoscale PET material applied to lithium battery non-woven fabric diaphragm |
CN112531292B (en) * | 2020-12-11 | 2023-03-31 | 宁波启新精合新能源研究院有限公司 | Lithium ion battery diaphragm prepared from inorganic-organic composite material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102629679A (en) * | 2012-04-28 | 2012-08-08 | 中国科学院理化技术研究所 | Nanofiber lithium ion battery diaphragm material with composite structure and preparation method thereof |
CN102779964A (en) * | 2012-08-08 | 2012-11-14 | 龙能科技(苏州)有限公司 | Method for preparing multilayer composite membrane for secondary battery by using electrostatic spinning coating method |
CN102931370A (en) * | 2012-10-24 | 2013-02-13 | 江苏大学 | Organic/inorganic composite nanofiber membrane of lithium ion power battery and preparation method of organic/inorganic composite nanofiber membrane |
-
2017
- 2017-09-11 CN CN201710812779.0A patent/CN107742688B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102629679A (en) * | 2012-04-28 | 2012-08-08 | 中国科学院理化技术研究所 | Nanofiber lithium ion battery diaphragm material with composite structure and preparation method thereof |
CN102779964A (en) * | 2012-08-08 | 2012-11-14 | 龙能科技(苏州)有限公司 | Method for preparing multilayer composite membrane for secondary battery by using electrostatic spinning coating method |
CN102931370A (en) * | 2012-10-24 | 2013-02-13 | 江苏大学 | Organic/inorganic composite nanofiber membrane of lithium ion power battery and preparation method of organic/inorganic composite nanofiber membrane |
Also Published As
Publication number | Publication date |
---|---|
CN107742688A (en) | 2018-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107742688B (en) | A kind of polyolefin lithium battery separator and preparation method thereof | |
CN104766938B (en) | A kind of compound lithium ion battery separator and preparation method thereof | |
JP6300985B2 (en) | Method for producing polymer electrolyte membrane | |
WO2017016373A1 (en) | Aramid fiber polymer coated lithium ion battery membrane and preparation method therefor | |
CN103515561B (en) | Electrochemical device separator and preparation method thereof | |
CN106450115B (en) | Inorganic coated bacterial cellulose porous film and preparation method thereof | |
CN110845957A (en) | Aqueous aramid fiber coating liquid and preparation method thereof, lithium ion battery and diaphragm thereof | |
CN107068951A (en) | A kind of inorganic nanoparticles composite prepared by the use of electrostatic spinning technique and its preparation method as barrier film with being applied in battery | |
CN113690539B (en) | Preparation method of high-performance cellulose-based lithium ion battery diaphragm | |
CN104993084A (en) | A kind of biomass nanocrystal coating polyolefin lithium-ion battery diaphragm and preparation method thereof | |
CN111916622A (en) | Multifunctional double-sided heterogeneous Janus diaphragm for lithium ion battery and preparation method thereof | |
CN113622089B (en) | Polyimide/cerium dioxide composite nanofiber membrane and preparation method thereof | |
CN110444719A (en) | High-strength composite lithium ion battery diaphragm | |
CN114883746A (en) | Novel polyimide microsphere slurry and coating diaphragm thereof | |
CN105161659B (en) | Compound many curved hole membrane materials of politef microsphere filling and its preparation method and application | |
CN107768581A (en) | A kind of lithium battery POSS enhancing aramid fiber coating barrier films and preparation method thereof | |
CN115149211B (en) | Double-layer composite diaphragm, preparation method thereof and HNTs@PI-PP double-layer composite diaphragm | |
CN114388979B (en) | Composite ceramic coated fiber diaphragm and preparation method thereof, lithium battery | |
CN105064007B (en) | PI‑SiO2PTFE ternary nanos are combined many curved hole membrane materials and its preparation method and application | |
CN106099013A (en) | A kind of preparation method of polyimide foraminous barrier film | |
CN107658408B (en) | Composite multilayer polyolefin lithium battery separator and preparation method thereof | |
CN105047847A (en) | PI-AlN-PTFE ternary nano-composite multi-curve pore membrane material and preparing method and application thereof | |
CN114824646A (en) | Composite oil-based diaphragm, preparation method thereof and secondary battery | |
CN105226218B (en) | PI‑PTEF‑Al2O3 ternary nanocomposite porous membrane material and its preparation method and application | |
CN105070871A (en) | Composite multi-arc-hole membrane material filled with crosslinking polystyrene microspheres, preparation method for composite multi-arc-hole membrane material and application of composite multi-arc-hole membrane material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A polyolefin lithium diaphragm and its preparation method Effective date of registration: 20220622 Granted publication date: 20200804 Pledgee: Bank of China Limited Wuhan Jianghan sub branch Pledgor: HUIQIANG (WUHAN) NEW ENERGY MATERIAL TECHNOLOGY CO.,LTD. Registration number: Y2022420000176 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PC01 | Cancellation of the registration of the contract for pledge of patent right |
Granted publication date: 20200804 Pledgee: Bank of China Limited Wuhan Jianghan sub branch Pledgor: HUIQIANG (WUHAN) NEW ENERGY MATERIAL TECHNOLOGY CO.,LTD. Registration number: Y2022420000176 |