CN107730031A - 一种超短期高峰负荷预测方法及其系统 - Google Patents
一种超短期高峰负荷预测方法及其系统 Download PDFInfo
- Publication number
- CN107730031A CN107730031A CN201710874560.3A CN201710874560A CN107730031A CN 107730031 A CN107730031 A CN 107730031A CN 201710874560 A CN201710874560 A CN 201710874560A CN 107730031 A CN107730031 A CN 107730031A
- Authority
- CN
- China
- Prior art keywords
- peak load
- load
- peak
- prediction
- ultra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013277 forecasting method Methods 0.000 title claims abstract 3
- 238000000034 method Methods 0.000 claims abstract description 57
- 238000004364 calculation method Methods 0.000 claims abstract description 8
- 239000013598 vector Substances 0.000 claims description 50
- 238000013528 artificial neural network Methods 0.000 claims description 36
- 238000012549 training Methods 0.000 claims description 26
- 230000000630 rising effect Effects 0.000 claims description 24
- 239000011159 matrix material Substances 0.000 claims description 12
- 238000010219 correlation analysis Methods 0.000 claims description 11
- 238000004458 analytical method Methods 0.000 claims description 7
- 238000010276 construction Methods 0.000 claims description 6
- 238000012795 verification Methods 0.000 claims description 6
- 238000005457 optimization Methods 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 2
- 238000012821 model calculation Methods 0.000 claims description 2
- 238000004393 prognosis Methods 0.000 abstract 2
- 238000004422 calculation algorithm Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000006872 improvement Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011478 gradient descent method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Marketing (AREA)
- General Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Water Supply & Treatment (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710874560.3A CN107730031B (zh) | 2017-09-25 | 2017-09-25 | 一种超短期高峰负荷预测方法及其系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710874560.3A CN107730031B (zh) | 2017-09-25 | 2017-09-25 | 一种超短期高峰负荷预测方法及其系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107730031A true CN107730031A (zh) | 2018-02-23 |
CN107730031B CN107730031B (zh) | 2022-08-09 |
Family
ID=61207953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710874560.3A Active CN107730031B (zh) | 2017-09-25 | 2017-09-25 | 一种超短期高峰负荷预测方法及其系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107730031B (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108898273A (zh) * | 2018-05-29 | 2018-11-27 | 国网能源研究院有限公司 | 一种基于形态分析的用户侧负荷特征聚类评价方法 |
CN108932557A (zh) * | 2018-04-28 | 2018-12-04 | 云南电网有限责任公司临沧供电局 | 一种基于气温累积效应和灰色关联度的短期负荷预测模型 |
CN109409574A (zh) * | 2018-09-27 | 2019-03-01 | 深圳供电局有限公司 | 一种负荷波动特性的处理方法 |
CN109935338A (zh) * | 2019-03-07 | 2019-06-25 | 平安科技(深圳)有限公司 | 基于机器学习的数据预测处理方法、装置和计算机设备 |
CN110068759A (zh) * | 2019-05-22 | 2019-07-30 | 四川华雁信息产业股份有限公司 | 一种故障类型获得方法及装置 |
CN110826750A (zh) * | 2018-08-08 | 2020-02-21 | 阿里巴巴集团控股有限公司 | 一种电力负荷预测方法、装置、设备及系统 |
CN111144650A (zh) * | 2019-12-26 | 2020-05-12 | 南京工程学院 | 电力负荷预测方法、装置、计算机可读存储介质及设备 |
CN111210059A (zh) * | 2019-12-26 | 2020-05-29 | 国网北京市电力公司 | 母线日最高负荷的处理方法和装置 |
CN111428926A (zh) * | 2020-03-23 | 2020-07-17 | 国网江苏省电力有限公司镇江供电分公司 | 一种考虑气象因素的区域电力负荷预测方法 |
CN111784028A (zh) * | 2020-06-08 | 2020-10-16 | 深圳供电局有限公司 | 一种社区负荷预测方法 |
WO2020224111A1 (zh) * | 2019-05-07 | 2020-11-12 | 深圳大学 | 一种多元时间序列的预测方法 |
CN117239739A (zh) * | 2023-11-13 | 2023-12-15 | 国网冀北电力有限公司 | 一种知识大模型预测用户侧负荷方法、装置及设备 |
CN117436707A (zh) * | 2023-12-18 | 2024-01-23 | 厦门锋联信息技术有限公司 | 基于人工智能的消防安全管理方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101383023A (zh) * | 2008-10-22 | 2009-03-11 | 西安交通大学 | 基于样本动态组织与温度补偿的神经网络短期电力负荷预测 |
US20130110756A1 (en) * | 2011-10-31 | 2013-05-02 | Siemens Corporation | Short-term Load Forecast Using Support Vector Regression and Feature Learning |
CN105069525A (zh) * | 2015-07-30 | 2015-11-18 | 广西大学 | 全天候96点日负荷曲线预测及优化修正系统 |
CN106971240A (zh) * | 2017-03-16 | 2017-07-21 | 河海大学 | 一种变量选择与高斯过程回归的短期负荷预测方法 |
-
2017
- 2017-09-25 CN CN201710874560.3A patent/CN107730031B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101383023A (zh) * | 2008-10-22 | 2009-03-11 | 西安交通大学 | 基于样本动态组织与温度补偿的神经网络短期电力负荷预测 |
US20130110756A1 (en) * | 2011-10-31 | 2013-05-02 | Siemens Corporation | Short-term Load Forecast Using Support Vector Regression and Feature Learning |
CN105069525A (zh) * | 2015-07-30 | 2015-11-18 | 广西大学 | 全天候96点日负荷曲线预测及优化修正系统 |
CN106971240A (zh) * | 2017-03-16 | 2017-07-21 | 河海大学 | 一种变量选择与高斯过程回归的短期负荷预测方法 |
Non-Patent Citations (1)
Title |
---|
刘旭: "基于实时气象因素的短期负荷预测方法研究", 《中国优秀硕士学位论文全文数据库 工程科技辑》 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108932557A (zh) * | 2018-04-28 | 2018-12-04 | 云南电网有限责任公司临沧供电局 | 一种基于气温累积效应和灰色关联度的短期负荷预测模型 |
CN108898273A (zh) * | 2018-05-29 | 2018-11-27 | 国网能源研究院有限公司 | 一种基于形态分析的用户侧负荷特征聚类评价方法 |
CN108898273B (zh) * | 2018-05-29 | 2022-04-15 | 国网能源研究院有限公司 | 一种基于形态分析的用户侧负荷特征聚类评价方法 |
CN110826750A (zh) * | 2018-08-08 | 2020-02-21 | 阿里巴巴集团控股有限公司 | 一种电力负荷预测方法、装置、设备及系统 |
CN110826750B (zh) * | 2018-08-08 | 2023-09-26 | 阿里巴巴集团控股有限公司 | 一种电力负荷预测方法、装置、设备及系统 |
CN109409574A (zh) * | 2018-09-27 | 2019-03-01 | 深圳供电局有限公司 | 一种负荷波动特性的处理方法 |
CN109409574B (zh) * | 2018-09-27 | 2022-02-22 | 深圳供电局有限公司 | 一种负荷波动特性的处理方法 |
CN109935338A (zh) * | 2019-03-07 | 2019-06-25 | 平安科技(深圳)有限公司 | 基于机器学习的数据预测处理方法、装置和计算机设备 |
WO2020224111A1 (zh) * | 2019-05-07 | 2020-11-12 | 深圳大学 | 一种多元时间序列的预测方法 |
CN110068759A (zh) * | 2019-05-22 | 2019-07-30 | 四川华雁信息产业股份有限公司 | 一种故障类型获得方法及装置 |
CN111210059A (zh) * | 2019-12-26 | 2020-05-29 | 国网北京市电力公司 | 母线日最高负荷的处理方法和装置 |
CN111144650A (zh) * | 2019-12-26 | 2020-05-12 | 南京工程学院 | 电力负荷预测方法、装置、计算机可读存储介质及设备 |
CN111428926A (zh) * | 2020-03-23 | 2020-07-17 | 国网江苏省电力有限公司镇江供电分公司 | 一种考虑气象因素的区域电力负荷预测方法 |
CN111784028A (zh) * | 2020-06-08 | 2020-10-16 | 深圳供电局有限公司 | 一种社区负荷预测方法 |
CN117239739A (zh) * | 2023-11-13 | 2023-12-15 | 国网冀北电力有限公司 | 一种知识大模型预测用户侧负荷方法、装置及设备 |
CN117239739B (zh) * | 2023-11-13 | 2024-02-02 | 国网冀北电力有限公司 | 一种知识大模型预测用户侧负荷方法、装置及设备 |
CN117436707A (zh) * | 2023-12-18 | 2024-01-23 | 厦门锋联信息技术有限公司 | 基于人工智能的消防安全管理方法及系统 |
CN117436707B (zh) * | 2023-12-18 | 2024-03-22 | 厦门锋联信息技术有限公司 | 基于人工智能的消防安全管理方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN107730031B (zh) | 2022-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107730031B (zh) | 一种超短期高峰负荷预测方法及其系统 | |
CN111860979B (zh) | 一种基于tcn与ipso-lssvm组合模型的短期负荷预测方法 | |
CN111222698B (zh) | 面向物联网的基于长短时记忆网络的积水水位预测方法 | |
CN105069525B (zh) | 全天候96点日负荷曲线预测及优化修正系统 | |
CN112288164B (zh) | 一种计及空间相关性和修正数值天气预报的风功率组合预测方法 | |
CN112001439A (zh) | 基于gbdt的商场建筑空调冷负荷预测方法、存储介质及设备 | |
CN101383023B (zh) | 基于样本动态组织与温度补偿的神经网络短期电力负荷预测 | |
CN107967542B (zh) | 一种基于长短期记忆网络的售电量预测方法 | |
CN111428926B (zh) | 一种考虑气象因素的区域电力负荷预测方法 | |
CN111105104A (zh) | 一种基于相似日和rbf神经网络的短期电力负荷预测方法 | |
CN109359786A (zh) | 一种电力台区短期负荷预测方法 | |
CN105117810A (zh) | 一种阶梯电价机制下居民用电中期负载预测方法 | |
CN111525587B (zh) | 一种基于无功负荷态势的电网无功电压控制方法及系统 | |
Sülo et al. | Energy efficient smart buildings: LSTM neural networks for time series prediction | |
WO2015081660A1 (zh) | 一种居民小区短期负荷预测方法 | |
CN109146063B (zh) | 一种基于重要点分割的多分段短期负荷预测方法 | |
CN113705877A (zh) | 基于深度学习模型的实时月径流预报方法 | |
CN115099511A (zh) | 基于优化copula的光伏功率概率估计方法及系统 | |
CN113554466A (zh) | 一种短期用电量预测模型构建方法、预测方法和装置 | |
CN111915083B (zh) | 一种基于时间分层组合的风电功率预测方法及预测系统 | |
CN117977568A (zh) | 基于嵌套lstm和分位数计算的电力负荷预测方法 | |
CN115222106A (zh) | 一种自适应模型的用户日前负荷预测方法 | |
CN116523142A (zh) | 一种考虑时空特性聚类的光伏集群区间预测方法 | |
CN111680818B (zh) | 一种短期无功负荷预测方法和系统 | |
CN115796915A (zh) | 一种面向电力交易市场的电价预测方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: No. 15, Qinghe Xiaoying East Road, Haidian District, Beijing Applicant after: CHINA ELECTRIC POWER RESEARCH INSTITUTE Co.,Ltd. Applicant after: STATE GRID CORPORATION OF CHINA Address before: No. 15, Qinghe Xiaoying East Road, Haidian District, Beijing Applicant before: China Electric Power Research Institute Applicant before: State Grid Corporation of China |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20190626 Address after: No. 15, Qinghe Xiaoying East Road, Haidian District, Beijing Applicant after: CHINA ELECTRIC POWER RESEARCH INSTITUTE Co.,Ltd. Applicant after: STATE GRID CORPORATION OF CHINA Applicant after: CENTRAL CHINA BRANCH OF STATE GRID CORPORATION OF CHINA Address before: No. 15, Qinghe Xiaoying East Road, Haidian District, Beijing Applicant before: CHINA ELECTRIC POWER RESEARCH INSTITUTE Co.,Ltd. Applicant before: State Grid Corporation of China |
|
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |