CN107729999A - 考虑矩阵相关性的深度神经网络压缩方法 - Google Patents
考虑矩阵相关性的深度神经网络压缩方法 Download PDFInfo
- Publication number
- CN107729999A CN107729999A CN201611205336.7A CN201611205336A CN107729999A CN 107729999 A CN107729999 A CN 107729999A CN 201611205336 A CN201611205336 A CN 201611205336A CN 107729999 A CN107729999 A CN 107729999A
- Authority
- CN
- China
- Prior art keywords
- matrix
- wer
- compression
- compression ratio
- initial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011159 matrix material Substances 0.000 title claims abstract description 235
- 230000006835 compression Effects 0.000 title claims abstract description 162
- 238000007906 compression Methods 0.000 title claims abstract description 162
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000013528 artificial neural network Methods 0.000 title description 33
- 230000007935 neutral effect Effects 0.000 claims abstract description 81
- 238000010206 sensitivity analysis Methods 0.000 claims abstract description 21
- 238000012549 training Methods 0.000 claims description 54
- 238000013138 pruning Methods 0.000 claims description 22
- 230000006870 function Effects 0.000 claims description 18
- 210000002569 neuron Anatomy 0.000 claims description 13
- 238000011478 gradient descent method Methods 0.000 claims description 7
- 238000004422 calculation algorithm Methods 0.000 claims description 3
- 210000005036 nerve Anatomy 0.000 claims description 3
- 235000013399 edible fruits Nutrition 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 15
- 238000002474 experimental method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000000306 recurrent effect Effects 0.000 description 6
- 230000001154 acute effect Effects 0.000 description 5
- 230000006403 short-term memory Effects 0.000 description 5
- 238000013136 deep learning model Methods 0.000 description 4
- 230000015654 memory Effects 0.000 description 4
- 238000003062 neural network model Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- 238000013527 convolutional neural network Methods 0.000 description 3
- 238000002790 cross-validation Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000009966 trimming Methods 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/483—Computations with numbers represented by a non-linear combination of denominational numbers, e.g. rational numbers, logarithmic number system or floating-point numbers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/544—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
- G06F7/5443—Sum of products
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/27—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique
- G10L25/30—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F2207/38—Indexing scheme relating to groups G06F7/38 - G06F7/575
- G06F2207/48—Indexing scheme relating to groups G06F7/48 - G06F7/575
- G06F2207/4802—Special implementations
- G06F2207/4818—Threshold devices
- G06F2207/4824—Neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Neurology (AREA)
- Nonlinear Science (AREA)
- Acoustics & Sound (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
- Complex Calculations (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (18)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610663201 | 2016-08-12 | ||
US15/242,624 US20180046903A1 (en) | 2016-08-12 | 2016-08-22 | Deep processing unit (dpu) for implementing an artificial neural network (ann) |
US15/242,622 US10621486B2 (en) | 2016-08-12 | 2016-08-22 | Method for optimizing an artificial neural network (ANN) |
US15/242,622 | 2016-08-22 | ||
US15/242,624 | 2016-08-22 | ||
US15/242,625 US20180046895A1 (en) | 2016-08-12 | 2016-08-22 | Device and method for implementing a sparse neural network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107729999A true CN107729999A (zh) | 2018-02-23 |
CN107729999B CN107729999B (zh) | 2021-02-02 |
Family
ID=59983021
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611107809.XA Active CN107704916B (zh) | 2016-08-12 | 2016-12-05 | 一种基于fpga实现rnn神经网络的硬件加速器及方法 |
CN201611205336.7A Active CN107729999B (zh) | 2016-08-12 | 2016-12-23 | 考虑矩阵相关性的深度神经网络压缩方法 |
CN201710249355.8A Active CN107239829B (zh) | 2016-08-12 | 2017-04-17 | 一种优化人工神经网络的方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611107809.XA Active CN107704916B (zh) | 2016-08-12 | 2016-12-05 | 一种基于fpga实现rnn神经网络的硬件加速器及方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710249355.8A Active CN107239829B (zh) | 2016-08-12 | 2017-04-17 | 一种优化人工神经网络的方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10621486B2 (zh) |
CN (3) | CN107704916B (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108665067A (zh) * | 2018-05-29 | 2018-10-16 | 北京大学 | 用于深度神经网络频繁传输的压缩方法及系统 |
CN109212960A (zh) * | 2018-08-30 | 2019-01-15 | 周军 | 基于权值敏感度的二值神经网络硬件压缩方法 |
CN110399972A (zh) * | 2019-07-22 | 2019-11-01 | 上海商汤智能科技有限公司 | 数据处理方法、装置及电子设备 |
CN111612144A (zh) * | 2020-05-22 | 2020-09-01 | 深圳金三立视频科技股份有限公司 | 一种应用于目标检测的剪枝方法及终端 |
TWI722434B (zh) * | 2018-05-31 | 2021-03-21 | 耐能智慧股份有限公司 | 深度神經網絡自我調整增量模型壓縮的方法 |
CN112686506A (zh) * | 2020-12-18 | 2021-04-20 | 海南电网有限责任公司电力科学研究院 | 基于多试验方法异步检测数据的配网设备综合评估方法 |
CN115994936A (zh) * | 2023-03-23 | 2023-04-21 | 季华实验室 | 点云融合模型获取方法、装置、电子设备及存储介质 |
CN117219124A (zh) * | 2023-10-08 | 2023-12-12 | 国网湖北省电力有限公司超高压公司 | 一种基于深度神经网络的开关柜声纹故障检测方法 |
WO2024098373A1 (en) * | 2022-11-11 | 2024-05-16 | Nvidia Corporation | Techniques for compressing neural networks |
US12013958B2 (en) | 2022-02-22 | 2024-06-18 | Bank Of America Corporation | System and method for validating a response based on context information |
US12050875B2 (en) | 2022-02-22 | 2024-07-30 | Bank Of America Corporation | System and method for determining context changes in text |
Families Citing this family (234)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10643126B2 (en) * | 2016-07-14 | 2020-05-05 | Huawei Technologies Co., Ltd. | Systems, methods and devices for data quantization |
US10802992B2 (en) | 2016-08-12 | 2020-10-13 | Xilinx Technology Beijing Limited | Combining CPU and special accelerator for implementing an artificial neural network |
US10643124B2 (en) * | 2016-08-12 | 2020-05-05 | Beijing Deephi Intelligent Technology Co., Ltd. | Method and device for quantizing complex artificial neural network |
JP2018060268A (ja) * | 2016-10-03 | 2018-04-12 | 株式会社日立製作所 | 認識装置および学習システム |
EP4220630A1 (en) | 2016-11-03 | 2023-08-02 | Samsung Electronics Co., Ltd. | Electronic device and controlling method thereof |
US11003985B2 (en) * | 2016-11-07 | 2021-05-11 | Electronics And Telecommunications Research Institute | Convolutional neural network system and operation method thereof |
US20180181864A1 (en) | 2016-12-27 | 2018-06-28 | Texas Instruments Incorporated | Sparsified Training of Convolutional Neural Networks |
US10726583B2 (en) * | 2016-12-30 | 2020-07-28 | Intel Corporation | System and method of encoding and decoding feature maps and weights for a convolutional neural network |
JP6540725B2 (ja) * | 2017-01-30 | 2019-07-10 | 富士通株式会社 | 演算処理装置、方法、およびプログラム |
US10491239B1 (en) * | 2017-02-02 | 2019-11-26 | Habana Labs Ltd. | Large-scale computations using an adaptive numerical format |
TWI607389B (zh) * | 2017-02-10 | 2017-12-01 | 耐能股份有限公司 | 卷積神經網路的池化運算裝置及方法 |
US10963783B2 (en) * | 2017-02-19 | 2021-03-30 | Intel Corporation | Technologies for optimized machine learning training |
US11934945B2 (en) | 2017-02-23 | 2024-03-19 | Cerebras Systems Inc. | Accelerated deep learning |
CN107086910B (zh) * | 2017-03-24 | 2018-08-10 | 中国科学院计算技术研究所 | 一种针对神经网络处理的权重加解密方法和系统 |
KR102415508B1 (ko) * | 2017-03-28 | 2022-07-01 | 삼성전자주식회사 | 컨볼루션 신경망 처리 방법 및 장치 |
US11615297B2 (en) * | 2017-04-04 | 2023-03-28 | Hailo Technologies Ltd. | Structured weight based sparsity in an artificial neural network compiler |
US10387298B2 (en) * | 2017-04-04 | 2019-08-20 | Hailo Technologies Ltd | Artificial neural network incorporating emphasis and focus techniques |
US11544545B2 (en) | 2017-04-04 | 2023-01-03 | Hailo Technologies Ltd. | Structured activation based sparsity in an artificial neural network |
US11551028B2 (en) | 2017-04-04 | 2023-01-10 | Hailo Technologies Ltd. | Structured weight based sparsity in an artificial neural network |
US20180293486A1 (en) * | 2017-04-07 | 2018-10-11 | Tenstorrent Inc. | Conditional graph execution based on prior simplified graph execution |
US10657438B2 (en) | 2017-04-17 | 2020-05-19 | Cerebras Systems Inc. | Backpressure for accelerated deep learning |
US11934934B2 (en) * | 2017-04-17 | 2024-03-19 | Intel Corporation | Convolutional neural network optimization mechanism |
US11488004B2 (en) | 2017-04-17 | 2022-11-01 | Cerebras Systems Inc. | Neuron smearing for accelerated deep learning |
US11164071B2 (en) * | 2017-04-18 | 2021-11-02 | Samsung Electronics Co., Ltd. | Method and apparatus for reducing computational complexity of convolutional neural networks |
US11017291B2 (en) * | 2017-04-28 | 2021-05-25 | Intel Corporation | Training with adaptive runtime and precision profiling |
US10552663B2 (en) * | 2017-05-02 | 2020-02-04 | Techcyte, Inc. | Machine learning classification and training for digital microscopy cytology images |
US10878273B2 (en) | 2017-07-06 | 2020-12-29 | Texas Instruments Incorporated | Dynamic quantization for deep neural network inference system and method |
JP6929734B2 (ja) * | 2017-08-08 | 2021-09-01 | キヤノン株式会社 | 判別演算装置、判別演算方法及びプログラム |
US11222256B2 (en) * | 2017-10-17 | 2022-01-11 | Xilinx, Inc. | Neural network processing system having multiple processors and a neural network accelerator |
US11694066B2 (en) | 2017-10-17 | 2023-07-04 | Xilinx, Inc. | Machine learning runtime library for neural network acceleration |
CN107729895A (zh) * | 2017-10-18 | 2018-02-23 | 吉林大学 | 一种智能车adas系统目标检测方法及装置 |
DE102017218889A1 (de) * | 2017-10-23 | 2019-04-25 | Robert Bosch Gmbh | Unscharf parametriertes KI-Modul sowie Verfahren zum Betreiben |
US11195096B2 (en) * | 2017-10-24 | 2021-12-07 | International Business Machines Corporation | Facilitating neural network efficiency |
US11263525B2 (en) | 2017-10-26 | 2022-03-01 | Nvidia Corporation | Progressive modification of neural networks |
US11250329B2 (en) * | 2017-10-26 | 2022-02-15 | Nvidia Corporation | Progressive modification of generative adversarial neural networks |
CN108009393B (zh) * | 2017-10-31 | 2020-12-08 | 深圳市易成自动驾驶技术有限公司 | 数据处理方法、装置及计算机可读存储介质 |
CN109726709A (zh) * | 2017-10-31 | 2019-05-07 | 优酷网络技术(北京)有限公司 | 基于卷积神经网络的图标识别方法和装置 |
GB2568083B (en) | 2017-11-03 | 2021-06-02 | Imagination Tech Ltd | Histogram-based per-layer data format selection for hardware implementation of deep neutral network |
GB2568081B (en) * | 2017-11-03 | 2022-01-19 | Imagination Tech Ltd | End-to-end data format selection for hardware implementation of deep neural network |
US11461628B2 (en) * | 2017-11-03 | 2022-10-04 | Samsung Electronics Co., Ltd. | Method for optimizing neural networks |
CN107766939A (zh) * | 2017-11-07 | 2018-03-06 | 维沃移动通信有限公司 | 一种数据处理方法、装置及移动终端 |
CN107909583B (zh) * | 2017-11-08 | 2020-01-10 | 维沃移动通信有限公司 | 一种图像处理方法、装置及终端 |
KR20190054454A (ko) | 2017-11-13 | 2019-05-22 | 삼성전자주식회사 | 인공 신경망의 양자화 방법 및 장치 |
CN109784129A (zh) * | 2017-11-14 | 2019-05-21 | 北京京东尚科信息技术有限公司 | 信息输出方法和装置 |
CN107958285A (zh) * | 2017-11-21 | 2018-04-24 | 深圳普思英察科技有限公司 | 面向嵌入式系统的神经网络的映射方法及装置 |
CN108304923B (zh) | 2017-12-06 | 2022-01-18 | 腾讯科技(深圳)有限公司 | 卷积运算处理方法及相关产品 |
WO2019109336A1 (en) * | 2017-12-08 | 2019-06-13 | Baidu.Com Times Technology (Beijing) Co., Ltd. | Stereo camera depth determination using hardware accelerator |
CN111105024B (zh) * | 2017-12-14 | 2024-03-01 | 中科寒武纪科技股份有限公司 | 神经网络处理器板卡及相关产品 |
CN109960673B (zh) * | 2017-12-14 | 2020-02-18 | 中科寒武纪科技股份有限公司 | 集成电路芯片装置及相关产品 |
WO2019114842A1 (zh) * | 2017-12-14 | 2019-06-20 | 北京中科寒武纪科技有限公司 | 一种集成电路芯片装置 |
CN109961137B (zh) * | 2017-12-14 | 2020-10-09 | 中科寒武纪科技股份有限公司 | 集成电路芯片装置及相关产品 |
CN109961136B (zh) * | 2017-12-14 | 2020-05-19 | 中科寒武纪科技股份有限公司 | 集成电路芯片装置及相关产品 |
CN108053028B (zh) * | 2017-12-21 | 2021-09-14 | 深圳励飞科技有限公司 | 数据定点化处理方法、装置、电子设备及计算机存储介质 |
US11080611B2 (en) * | 2017-12-22 | 2021-08-03 | Intel Corporation | Compression for deep learning in case of sparse values mapped to non-zero value |
CN109871949A (zh) * | 2017-12-22 | 2019-06-11 | 泓图睿语(北京)科技有限公司 | 卷积神经网络加速器及加速方法 |
CN109978147A (zh) * | 2017-12-27 | 2019-07-05 | 北京中科寒武纪科技有限公司 | 集成电路芯片装置及相关产品 |
CN109977071A (zh) * | 2017-12-27 | 2019-07-05 | 北京中科寒武纪科技有限公司 | 神经网络处理器板卡及相关产品 |
CN109978154A (zh) * | 2017-12-28 | 2019-07-05 | 北京中科寒武纪科技有限公司 | 集成电路芯片装置及相关产品 |
CN109978157B (zh) * | 2017-12-28 | 2020-06-02 | 中科寒武纪科技股份有限公司 | 集成电路芯片装置及相关产品 |
CN109978155A (zh) * | 2017-12-28 | 2019-07-05 | 北京中科寒武纪科技有限公司 | 集成电路芯片装置及相关产品 |
CN109978129B (zh) * | 2017-12-28 | 2020-08-25 | 中科寒武纪科技股份有限公司 | 调度方法及相关装置 |
CN109978149B (zh) * | 2017-12-28 | 2020-10-09 | 中科寒武纪科技股份有限公司 | 调度方法及相关装置 |
CN109993290B (zh) | 2017-12-30 | 2021-08-06 | 中科寒武纪科技股份有限公司 | 集成电路芯片装置及相关产品 |
EP3624019A4 (en) * | 2017-12-30 | 2021-03-24 | Cambricon Technologies Corporation Limited | CHIP DEVICE WITH INTEGRATED CIRCUIT AND ASSOCIATED PRODUCT |
CN113807510B (zh) * | 2017-12-30 | 2024-05-10 | 中科寒武纪科技股份有限公司 | 集成电路芯片装置及相关产品 |
CN109993292B (zh) | 2017-12-30 | 2020-08-04 | 中科寒武纪科技股份有限公司 | 集成电路芯片装置及相关产品 |
WO2019136754A1 (zh) * | 2018-01-15 | 2019-07-18 | 深圳鲲云信息科技有限公司 | 人工智能处理装置的编译方法及系统、存储介质及终端 |
WO2019136755A1 (zh) * | 2018-01-15 | 2019-07-18 | 深圳鲲云信息科技有限公司 | 人工智能处理装置设计模型优化方法、系统、存储介质、终端 |
US10452955B2 (en) * | 2018-01-15 | 2019-10-22 | Gyrfalcon Technology Inc. | System and method for encoding data in an image/video recognition integrated circuit solution |
CN110045960B (zh) * | 2018-01-16 | 2022-02-18 | 腾讯科技(深圳)有限公司 | 基于芯片的指令集处理方法、装置及存储介质 |
WO2019141559A1 (en) * | 2018-01-17 | 2019-07-25 | Signify Holding B.V. | System and method for object recognition using neural networks |
US11586924B2 (en) * | 2018-01-23 | 2023-02-21 | Qualcomm Incorporated | Determining layer ranks for compression of deep networks |
US11568232B2 (en) | 2018-02-08 | 2023-01-31 | Quanta Computer Inc. | Deep learning FPGA converter |
CN110197262B (zh) * | 2018-02-24 | 2021-07-30 | 赛灵思电子科技(北京)有限公司 | 用于lstm网络的硬件加速器 |
JP7056225B2 (ja) * | 2018-02-26 | 2022-04-19 | 富士通株式会社 | 演算処理装置、情報処理装置、情報処理方法、およびプログラム |
CN111767996B (zh) * | 2018-02-27 | 2024-03-05 | 上海寒武纪信息科技有限公司 | 集成电路芯片装置及相关产品 |
US20200402607A1 (en) * | 2018-03-02 | 2020-12-24 | The University Of Chicago | Covariant Neural Network Architecture for Determining Atomic Potentials |
CN108564165B (zh) * | 2018-03-13 | 2024-01-23 | 上海交通大学 | 卷积神经网络定点化优化的方法及系统 |
CN108416390B (zh) * | 2018-03-16 | 2019-11-01 | 西北工业大学 | 基于二维卷积降维的手写字体识别方法 |
CN110363291B (zh) * | 2018-03-26 | 2022-02-08 | 上海寒武纪信息科技有限公司 | 神经网络的运算方法、装置、计算机设备和存储介质 |
US10621489B2 (en) * | 2018-03-30 | 2020-04-14 | International Business Machines Corporation | Massively parallel neural inference computing elements |
CN108829610B (zh) * | 2018-04-02 | 2020-08-04 | 浙江大华技术股份有限公司 | 一种神经网络前向计算过程中的内存管理方法及设备 |
CN108509179B (zh) * | 2018-04-04 | 2021-11-30 | 百度在线网络技术(北京)有限公司 | 用于检测人脸的方法、用于生成模型的装置 |
CN108510067B (zh) * | 2018-04-11 | 2021-11-09 | 西安电子科技大学 | 基于工程化实现的卷积神经网络量化方法 |
US11144316B1 (en) | 2018-04-17 | 2021-10-12 | Ali Tasdighi Far | Current-mode mixed-signal SRAM based compute-in-memory for low power machine learning |
CN109716288A (zh) * | 2018-04-17 | 2019-05-03 | 深圳鲲云信息科技有限公司 | 网络模型编译器及相关产品 |
CN110399211B (zh) * | 2018-04-24 | 2021-06-08 | 中科寒武纪科技股份有限公司 | 机器学习的分配系统、方法及装置、计算机设备 |
CN110413255B (zh) * | 2018-04-28 | 2022-08-19 | 赛灵思电子科技(北京)有限公司 | 人工神经网络调整方法和装置 |
US11487846B2 (en) * | 2018-05-04 | 2022-11-01 | Apple Inc. | Performing multiply and accumulate operations in neural network processor |
CN108647184B (zh) * | 2018-05-10 | 2022-04-12 | 杭州雄迈集成电路技术股份有限公司 | 一种动态比特位卷积乘法实现方法 |
US11948074B2 (en) * | 2018-05-14 | 2024-04-02 | Samsung Electronics Co., Ltd. | Method and apparatus with neural network parameter quantization |
JP7046171B2 (ja) * | 2018-05-15 | 2022-04-01 | 三菱電機株式会社 | 演算装置 |
CN110147873B (zh) * | 2018-05-18 | 2020-02-18 | 中科寒武纪科技股份有限公司 | 卷积神经网络的处理器及训练方法 |
CN108710505A (zh) * | 2018-05-18 | 2018-10-26 | 南京大学 | 一种基于fpga的可扩展稀疏矩阵向量乘处理器 |
US11995556B2 (en) | 2018-05-18 | 2024-05-28 | Cambricon Technologies Corporation Limited | Video retrieval method, and method and apparatus for generating video retrieval mapping relationship |
CN108664474B (zh) * | 2018-05-21 | 2023-04-18 | 众安信息技术服务有限公司 | 一种基于深度学习的简历解析方法 |
KR102559581B1 (ko) | 2018-05-23 | 2023-07-25 | 삼성전자주식회사 | 재구성 가능 로직을 포함하는 스토리지 장치 및 상기 스토리지 장치의 동작 방법 |
US11244027B2 (en) | 2018-05-30 | 2022-02-08 | Samsung Electronics Co., Ltd. | Processor, electronics apparatus and control method thereof |
CN110555450B (zh) * | 2018-05-31 | 2022-06-28 | 赛灵思电子科技(北京)有限公司 | 人脸识别神经网络调整方法和装置 |
CN110555508B (zh) * | 2018-05-31 | 2022-07-12 | 赛灵思电子科技(北京)有限公司 | 人工神经网络调整方法和装置 |
DE102018209901A1 (de) | 2018-06-19 | 2019-12-19 | Robert Bosch Gmbh | Recheneinheit, Verfahren und Computerprogramm zum Multiplizieren zumindest zweier Multiplikanden |
CN110633785B (zh) * | 2018-06-21 | 2021-01-05 | 清华大学 | 一种卷积神经网络的计算方法及系统 |
US12099912B2 (en) | 2018-06-22 | 2024-09-24 | Samsung Electronics Co., Ltd. | Neural processor |
CN109146057B (zh) * | 2018-06-26 | 2020-12-08 | 杭州雄迈集成电路技术股份有限公司 | 一种基于查表计算的高精度的神经网络工程化方法 |
CN109002881A (zh) * | 2018-06-28 | 2018-12-14 | 郑州云海信息技术有限公司 | 基于fpga的深度神经网络的定点化计算方法及装置 |
CN110673824B (zh) * | 2018-07-03 | 2022-08-19 | 赛灵思公司 | 矩阵向量乘电路以及循环神经网络硬件加速器 |
CN108921291B (zh) * | 2018-07-05 | 2021-08-31 | 北京航空航天大学合肥创新研究院 | 面向脑电信号处理的低功耗计算架构 |
EP3756145A4 (en) | 2018-07-19 | 2021-05-26 | Samsung Electronics Co., Ltd. | ELECTRONIC DEVICE AND CONTROL METHOD FOR IT |
JP7119107B2 (ja) * | 2018-07-30 | 2022-08-16 | インテル コーポレイション | 8ビットウィノグラード畳み込みで統計推論確度を維持する方法及び装置 |
CN109063825B (zh) * | 2018-08-01 | 2020-12-29 | 清华大学 | 卷积神经网络加速装置 |
CN110826707B (zh) * | 2018-08-10 | 2023-10-31 | 北京百度网讯科技有限公司 | 应用于卷积神经网络的加速方法和硬件加速器 |
CN109189715B (zh) * | 2018-08-16 | 2022-03-15 | 北京算能科技有限公司 | 可编程人工智能加速器执行单元及人工智能加速方法 |
US10678509B1 (en) * | 2018-08-21 | 2020-06-09 | Xilinx, Inc. | Software-driven design optimization for mapping between floating-point and fixed-point multiply accumulators |
WO2020039493A1 (ja) * | 2018-08-21 | 2020-02-27 | 日本電気株式会社 | 演算最適化装置、方法およびプログラム |
CN109359728B (zh) * | 2018-08-29 | 2021-04-09 | 深思考人工智能机器人科技(北京)有限公司 | 计算神经网络压缩最佳定点位数的方法、存储介质和装置 |
CN109190754A (zh) * | 2018-08-30 | 2019-01-11 | 北京地平线机器人技术研发有限公司 | 量化模型生成方法、装置和电子设备 |
KR20200027085A (ko) | 2018-08-30 | 2020-03-12 | 삼성전자주식회사 | 전자 장치 및 그 제어 방법 |
CN109284817B (zh) * | 2018-08-31 | 2022-07-05 | 中国科学院上海高等研究院 | 深度可分离卷积神经网络处理架构/方法/系统及介质 |
CN109214506B (zh) * | 2018-09-13 | 2022-04-15 | 深思考人工智能机器人科技(北京)有限公司 | 一种基于像素的卷积神经网络建立装置及方法 |
EP3857464A1 (en) * | 2018-09-25 | 2021-08-04 | Nokia Technologies Oy | End-to-end learning in communication systems |
CN109358993A (zh) * | 2018-09-26 | 2019-02-19 | 中科物栖(北京)科技有限责任公司 | 深度神经网络加速器故障的处理方法及装置 |
US11442889B2 (en) * | 2018-09-28 | 2022-09-13 | Intel Corporation | Dynamic deep learning processor architecture |
CN109447241B (zh) * | 2018-09-29 | 2022-02-22 | 西安交通大学 | 一种面向物联网领域的动态可重构卷积神经网络加速器架构 |
CN109543815B (zh) * | 2018-10-17 | 2021-02-05 | 清华大学 | 神经网络的加速方法及装置 |
CN111105029B (zh) * | 2018-10-29 | 2024-04-16 | 北京地平线机器人技术研发有限公司 | 神经网络的生成方法、生成装置和电子设备 |
KR102621118B1 (ko) * | 2018-11-01 | 2024-01-04 | 삼성전자주식회사 | 영상 적응적 양자화 테이블을 이용한 영상의 부호화 장치 및 방법 |
CN109472355B (zh) * | 2018-11-06 | 2021-01-01 | 地平线(上海)人工智能技术有限公司 | 卷积处理引擎及控制方法和相应的卷积神经网络加速器 |
KR20200053886A (ko) | 2018-11-09 | 2020-05-19 | 삼성전자주식회사 | 뉴럴 프로세싱 유닛, 뉴럴 프로세싱 시스템, 및 어플리케이션 시스템 |
CN109472361B (zh) * | 2018-11-13 | 2020-08-28 | 钟祥博谦信息科技有限公司 | 神经网络优化方法 |
CN109146067B (zh) * | 2018-11-19 | 2021-11-05 | 东北大学 | 一种基于FPGA的Policy卷积神经网络加速器 |
US10846363B2 (en) * | 2018-11-19 | 2020-11-24 | Microsoft Technology Licensing, Llc | Compression-encoding scheduled inputs for matrix computations |
EP3884434A4 (en) * | 2018-11-19 | 2022-10-19 | Deeplite Inc. | SYSTEM AND METHOD FOR DETERMINING AUTOMATED DESIGN SPACE FOR DEEP NEURAL NETWORKS |
CN109359735B (zh) * | 2018-11-23 | 2020-12-04 | 浙江大学 | 深度神经网络硬件加速的数据输入装置与方法 |
CN109543820B (zh) * | 2018-11-23 | 2022-09-23 | 中山大学 | 基于架构短句约束向量和双重视觉关注机制的图像描述生成方法 |
KR102562320B1 (ko) | 2018-12-24 | 2023-08-01 | 삼성전자주식회사 | 비트 연산 기반의 뉴럴 네트워크 처리 방법 및 장치 |
CN109740619B (zh) * | 2018-12-27 | 2021-07-13 | 北京航天飞腾装备技术有限责任公司 | 用于目标识别的神经网络终端运行方法和装置 |
CN109740733B (zh) * | 2018-12-27 | 2021-07-06 | 深圳云天励飞技术有限公司 | 深度学习网络模型优化方法、装置及相关设备 |
CN111193916B (zh) * | 2018-12-29 | 2022-03-29 | 中科寒武纪科技股份有限公司 | 运算方法 |
WO2020144836A1 (ja) * | 2019-01-11 | 2020-07-16 | 三菱電機株式会社 | 推論装置及び推論方法 |
US11816563B2 (en) * | 2019-01-17 | 2023-11-14 | Samsung Electronics Co., Ltd. | Method of enabling sparse neural networks on memresistive accelerators |
US11507823B2 (en) * | 2019-01-22 | 2022-11-22 | Black Sesame Technologies Inc. | Adaptive quantization and mixed precision in a network |
US10592799B1 (en) * | 2019-01-23 | 2020-03-17 | StradVision, Inc. | Determining FL value by using weighted quantization loss values to thereby quantize CNN parameters and feature values to be used for optimizing hardware applicable to mobile devices or compact networks with high precision |
CN109919826B (zh) * | 2019-02-02 | 2023-02-17 | 西安邮电大学 | 一种用于图计算加速器的图数据压缩方法及图计算加速器 |
WO2020160653A1 (en) * | 2019-02-06 | 2020-08-13 | Lei Zhang | Method and system for convolution model hardware accelerator |
US11783200B2 (en) | 2019-02-08 | 2023-10-10 | International Business Machines Corporation | Artificial neural network implementation in field-programmable gate arrays |
CN109800877B (zh) * | 2019-02-20 | 2022-12-30 | 腾讯科技(深圳)有限公司 | 神经网络的参数调整方法、装置及设备 |
CN111598250A (zh) * | 2019-02-20 | 2020-08-28 | 北京奇虎科技有限公司 | 模型评估方法、装置、计算机设备及存储介质 |
US11556764B2 (en) | 2019-03-01 | 2023-01-17 | Microsoft Technology Licensing, Llc | Deriving a concordant software neural network layer from a quantized firmware neural network layer |
TWI711984B (zh) * | 2019-03-08 | 2020-12-01 | 鴻海精密工業股份有限公司 | 深度學習加速方法及用戶終端 |
CN110069284B (zh) * | 2019-03-14 | 2023-05-05 | 梁磊 | 一种基于opu指令集的编译方法及编译器 |
CN110009644B (zh) * | 2019-03-26 | 2021-02-23 | 深兰科技(上海)有限公司 | 一种特征图行像素分段的方法和装置 |
US11671111B2 (en) | 2019-04-17 | 2023-06-06 | Samsung Electronics Co., Ltd. | Hardware channel-parallel data compression/decompression |
US11211944B2 (en) | 2019-04-17 | 2021-12-28 | Samsung Electronics Co., Ltd. | Mixed-precision compression with random access |
CN110278570B (zh) * | 2019-04-30 | 2021-07-13 | 清华大学 | 一种基于人工智能的无线通信系统 |
US11880760B2 (en) | 2019-05-01 | 2024-01-23 | Samsung Electronics Co., Ltd. | Mixed-precision NPU tile with depth-wise convolution |
TWI714078B (zh) * | 2019-05-07 | 2020-12-21 | 國立高雄大學 | 基於深度學習之大數據分析平台排程系統及方法 |
CN111914867A (zh) * | 2019-05-08 | 2020-11-10 | 四川大学 | 一种基于fpga的卷积神经网络ip核设计 |
CN111915003B (zh) * | 2019-05-09 | 2024-03-22 | 深圳大普微电子科技有限公司 | 一种神经网络硬件加速器 |
CN110110852B (zh) * | 2019-05-15 | 2023-04-07 | 电科瑞达(成都)科技有限公司 | 一种深度学习网络移植到fpag平台的方法 |
CN110135086B (zh) * | 2019-05-20 | 2022-09-13 | 合肥工业大学 | 计算精度可变的softmax函数硬件电路及其实现方法 |
CN111985628B (zh) * | 2019-05-24 | 2024-04-30 | 澜起科技股份有限公司 | 计算装置及包括所述计算装置的神经网络处理器 |
CN110363799B (zh) * | 2019-05-27 | 2021-04-06 | 浙江工业大学 | 人机共存环境下基于视觉的多运动人体目标跟踪方法 |
US11861452B1 (en) * | 2019-06-17 | 2024-01-02 | Cadence Design Systems, Inc. | Quantized softmax layer for neural networks |
CN110390383B (zh) * | 2019-06-25 | 2021-04-06 | 东南大学 | 一种基于幂指数量化的深度神经网络硬件加速器 |
CN110363287B (zh) * | 2019-07-01 | 2021-07-13 | 西安交通大学 | 一种面向内存计算和室内是否有人的神经网络设计方法 |
CN114341888A (zh) * | 2019-07-03 | 2022-04-12 | 华夏芯(北京)通用处理器技术有限公司 | 用于操作加速器电路的指令 |
CN110348567B (zh) * | 2019-07-15 | 2022-10-25 | 北京大学深圳研究生院 | 一种基于自动寻址和递归信息整合的内存网络方法 |
TWI722491B (zh) * | 2019-07-16 | 2021-03-21 | 國立陽明交通大學 | 應用於神經網絡之四位元與八位元組合之分離式量化方法 |
CN110569713B (zh) * | 2019-07-22 | 2022-04-08 | 北京航天自动控制研究所 | 一种利用dma控制器实现数据串并行二维传输的目标探测系统及方法 |
CN112308199B (zh) * | 2019-07-26 | 2024-05-10 | 杭州海康威视数字技术股份有限公司 | 数据块的处理方法、装置及存储介质 |
CN112308197B (zh) * | 2019-07-26 | 2024-04-09 | 杭州海康威视数字技术股份有限公司 | 一种卷积神经网络的压缩方法、装置及电子设备 |
CN112308202A (zh) * | 2019-08-02 | 2021-02-02 | 华为技术有限公司 | 一种确定卷积神经网络的决策因素的方法及电子设备 |
US12061971B2 (en) | 2019-08-12 | 2024-08-13 | Micron Technology, Inc. | Predictive maintenance of automotive engines |
CN110516334B (zh) * | 2019-08-16 | 2021-12-03 | 浪潮电子信息产业股份有限公司 | 基于硬件环境的卷积计算仿真测试方法、装置及相关设备 |
US11327923B2 (en) * | 2019-09-04 | 2022-05-10 | SambaNova Systems, Inc. | Sigmoid function in hardware and a reconfigurable data processor including same |
CN110600019B (zh) * | 2019-09-12 | 2022-02-15 | 东南大学 | 基于实时场景下语音信噪比预分级的卷积神经网络计算电路 |
CN110766133B (zh) * | 2019-09-18 | 2020-12-25 | 开放智能机器(上海)有限公司 | 嵌入式设备中的数据处理方法、装置、设备和存储介质 |
CN110738308B (zh) * | 2019-09-23 | 2023-05-26 | 陈小柏 | 一种神经网络加速器 |
CN110718211B (zh) * | 2019-09-26 | 2021-12-21 | 东南大学 | 一种基于混合压缩卷积神经网络的关键词识别系统 |
CN110852434B (zh) * | 2019-09-30 | 2022-09-23 | 梁磊 | 基于低精度浮点数的cnn量化方法、前向计算方法及硬件装置 |
CN110852416B (zh) * | 2019-09-30 | 2022-10-04 | 梁磊 | 基于低精度浮点数数据表现形式的cnn硬件加速计算方法及系统 |
US10915298B1 (en) | 2019-10-08 | 2021-02-09 | Ali Tasdighi Far | Current mode multiply-accumulate for compute in memory binarized neural networks |
CN110826710B (zh) * | 2019-10-18 | 2021-04-23 | 南京大学 | 基于横向脉动阵列的rnn前向传播模型的硬件加速实现方法 |
CN110736970B (zh) * | 2019-10-24 | 2023-03-24 | 西安电子科技大学 | 基于asic机器学习处理器的雷达目标快速识别方法 |
CN110880038B (zh) * | 2019-11-29 | 2022-07-01 | 中国科学院自动化研究所 | 基于fpga的加速卷积计算的系统、卷积神经网络 |
KR20210072524A (ko) | 2019-12-09 | 2021-06-17 | 삼성전자주식회사 | 뉴럴 네트워크 장치 및 그 동작 방법 |
US12112141B2 (en) | 2019-12-12 | 2024-10-08 | Samsung Electronics Co., Ltd. | Accelerating 2D convolutional layer mapping on a dot product architecture |
CN111178518A (zh) * | 2019-12-24 | 2020-05-19 | 杭州电子科技大学 | 一种基于fpga的软硬件协同的加速方法 |
CN113052292B (zh) * | 2019-12-27 | 2024-06-04 | 北京硅升科技有限公司 | 卷积神经网络技术方法、装置及计算机可读存储介质 |
US11615256B1 (en) | 2019-12-30 | 2023-03-28 | Ali Tasdighi Far | Hybrid accumulation method in multiply-accumulate for machine learning |
US11610104B1 (en) | 2019-12-30 | 2023-03-21 | Ali Tasdighi Far | Asynchronous analog accelerator for fully connected artificial neural networks |
CN111126589B (zh) * | 2019-12-31 | 2022-05-20 | 昆仑芯(北京)科技有限公司 | 神经网络数据处理装置、方法和电子设备 |
CN111160544B (zh) * | 2019-12-31 | 2021-04-23 | 上海安路信息科技股份有限公司 | 数据激活方法及fpga数据激活系统 |
CN113128659B (zh) * | 2020-01-14 | 2024-06-28 | 杭州海康威视数字技术股份有限公司 | 神经网络定点化方法、装置、电子设备及可读存储介质 |
US11599367B2 (en) * | 2020-01-24 | 2023-03-07 | Cornami, Inc. | Method and system for compressing application data for operations on multi-core systems |
CN113269323B (zh) * | 2020-02-17 | 2024-03-12 | 北京达佳互联信息技术有限公司 | 一种数据处理方法、处理装置、电子设备及存储介质 |
CN111340206A (zh) * | 2020-02-20 | 2020-06-26 | 云南大学 | 一种基于FPGA的Alexnet前向网络加速器 |
KR102428033B1 (ko) * | 2020-02-28 | 2022-08-02 | 오픈엣지테크놀로지 주식회사 | 트랜스포즈드 콘볼루션 하드웨어 가속장치 |
EP4100887A4 (en) * | 2020-03-05 | 2023-07-05 | Huawei Cloud Computing Technologies Co., Ltd. | METHOD AND SYSTEM FOR SHARING AND BITWIDTH ALLOCATION OF DEEP LEARNING MODELS FOR INFERENCE ON DISTRIBUTED SYSTEMS |
CN111340226B (zh) * | 2020-03-06 | 2022-01-25 | 北京市商汤科技开发有限公司 | 一种量化神经网络模型的训练及测试方法、装置及设备 |
US11468305B2 (en) * | 2020-03-18 | 2022-10-11 | Arm Limited | Hybrid memory artificial neural network hardware accelerator |
US11544191B2 (en) * | 2020-03-26 | 2023-01-03 | Intel Corporation | Efficient hardware architecture for accelerating grouped convolutions |
CN111459877B (zh) * | 2020-04-02 | 2023-03-24 | 北京工商大学 | 基于FPGA加速的Winograd YOLOv2目标检测模型方法 |
KR20210136706A (ko) * | 2020-05-08 | 2021-11-17 | 삼성전자주식회사 | 전자 장치 및 이의 제어 방법 |
CN113778655A (zh) * | 2020-06-09 | 2021-12-10 | 北京灵汐科技有限公司 | 一种网络精度的量化方法及系统 |
CN111796796B (zh) * | 2020-06-12 | 2022-11-11 | 杭州云象网络技术有限公司 | 基于稀疏矩阵乘法的fpga存储方法、计算方法、模块和fpga板 |
WO2022034542A1 (en) * | 2020-08-14 | 2022-02-17 | Cerebras Systems Inc. | Weight sparsity techniques for accelerated deep learning |
CN112580774B (zh) * | 2020-09-01 | 2022-10-21 | 浙江大学 | 一种面向可重构神经网络处理器的神经网络布局方法 |
US11915126B2 (en) | 2020-09-04 | 2024-02-27 | Recogni Inc. | Low power hardware architecture for a convolutional neural network |
CN112115550B (zh) * | 2020-09-13 | 2022-04-19 | 西北工业大学 | 基于Mogrifier-BiGRU的飞行器机动轨迹预测方法 |
CN112215349B (zh) * | 2020-09-16 | 2024-01-12 | 中国科学院计算技术研究所 | 基于数据流架构的稀疏卷积神经网络加速方法及装置 |
CN111985626B (zh) | 2020-09-25 | 2022-06-07 | 苏州浪潮智能科技有限公司 | 一种加速rnn网络的系统、方法及存储介质 |
US11811421B2 (en) | 2020-09-29 | 2023-11-07 | Hailo Technologies Ltd. | Weights safety mechanism in an artificial neural network processor |
US11874900B2 (en) | 2020-09-29 | 2024-01-16 | Hailo Technologies Ltd. | Cluster interlayer safety mechanism in an artificial neural network processor |
EP4222654A1 (en) * | 2020-10-03 | 2023-08-09 | Telefonaktiebolaget LM Ericsson (publ) | Methods and apparatuses for training a neural network |
CN111931921B (zh) * | 2020-10-13 | 2021-01-26 | 南京风兴科技有限公司 | 一种用于稀疏神经网络的乒乓存储方法及装置 |
US20220147812A1 (en) * | 2020-11-06 | 2022-05-12 | Micron Technology, Inc. | Compiler with an artificial neural network to optimize instructions generated for execution on a deep learning accelerator of artificial neural networks |
CN112396178B (zh) * | 2020-11-12 | 2024-08-02 | 无锡禹空间智能科技有限公司 | 一种提高cnn网络压缩效率的方法 |
CN112416393B (zh) * | 2020-11-18 | 2022-07-05 | 国网福建省电力有限公司 | 一种基于容器技术的人工智能模型远程升级方法及系统 |
CN112990454B (zh) * | 2021-02-01 | 2024-04-16 | 国网安徽省电力有限公司超高压分公司 | 基于集成dpu多核异构的神经网络计算加速方法及装置 |
CN112819140B (zh) * | 2021-02-02 | 2022-06-24 | 电子科技大学 | 基于OpenCL的FPGA一维信号识别神经网络加速方法 |
CN112801285B (zh) * | 2021-02-04 | 2024-01-26 | 南京微毫科技有限公司 | 一种基于fpga的高资源利用率cnn加速器及其加速方法 |
CN112906887B (zh) * | 2021-02-20 | 2023-03-24 | 上海大学 | 稀疏gru神经网络加速的实现方法和装置 |
WO2022178791A1 (en) * | 2021-02-25 | 2022-09-01 | Alibaba Group Holding Limited | Zero skipping sparsity techniques for reducing data movement |
US20230004786A1 (en) * | 2021-06-30 | 2023-01-05 | Micron Technology, Inc. | Artificial neural networks on a deep learning accelerator |
CN114003196B (zh) * | 2021-09-02 | 2024-04-09 | 上海壁仞智能科技有限公司 | 矩阵运算装置与矩阵运算方法 |
CN114819127B (zh) * | 2022-05-05 | 2024-03-29 | 中山大学 | 一种基于fpga的背压索引式组合计算单元 |
CN114912596A (zh) * | 2022-05-13 | 2022-08-16 | 上海交通大学 | 面向稀疏卷积神经网络的多chiplet系统及其方法 |
US11886973B2 (en) | 2022-05-30 | 2024-01-30 | Deepx Co., Ltd. | Neural processing unit including variable internal memory |
CN115165363B (zh) * | 2022-06-27 | 2024-07-19 | 西南交通大学 | 一种基于cnn的轻型轴承故障诊断方法及系统 |
WO2024168514A1 (zh) * | 2023-02-14 | 2024-08-22 | 北京大学 | 应用于存内计算芯片的数据处理方法、装置及设备 |
CN116187408B (zh) * | 2023-04-23 | 2023-07-21 | 成都甄识科技有限公司 | 稀疏加速单元、计算方法及稀疏神经网络硬件加速系统 |
CN116776945A (zh) * | 2023-06-26 | 2023-09-19 | 中国科学院长春光学精密机械与物理研究所 | 一种基于zynq平台的vgg16网络加速器设计实现方法 |
CN117271434B (zh) * | 2023-11-15 | 2024-02-09 | 成都维德青云电子有限公司 | 现场可编程系统级芯片 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101310294A (zh) * | 2005-11-15 | 2008-11-19 | 伯纳黛特·加纳 | 神经网络的训练方法 |
US20090112606A1 (en) * | 2007-10-26 | 2009-04-30 | Microsoft Corporation | Channel extension coding for multi-channel source |
CN104616244A (zh) * | 2015-01-24 | 2015-05-13 | 河南师范大学 | 基于bp神经网络压缩域的图像水印嵌入与提取方法 |
US20160019454A1 (en) * | 2014-07-18 | 2016-01-21 | James LaRue | J Patrick's Ladder A Machine Learning Enhancement Tool |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69822591T2 (de) * | 1997-11-19 | 2005-03-24 | Imec Vzw | System und Verfahren zur Kontextumschaltung über vorbestimmte Unterbrechungspunkte |
CN101399553B (zh) * | 2008-11-12 | 2012-03-14 | 清华大学 | 一种可在线编程的准循环ldpc码编码器装置 |
US8442927B2 (en) * | 2009-07-30 | 2013-05-14 | Nec Laboratories America, Inc. | Dynamically configurable, multi-ported co-processor for convolutional neural networks |
CN102129397A (zh) | 2010-12-29 | 2011-07-20 | 深圳市永达电子股份有限公司 | 一种自适应磁盘阵列故障预测方法及系统 |
US9317482B2 (en) | 2012-10-14 | 2016-04-19 | Microsoft Technology Licensing, Llc | Universal FPGA/ASIC matrix-vector multiplication architecture |
US9766866B2 (en) * | 2013-04-22 | 2017-09-19 | Nvidia Corporation | Techniques for determining instruction dependencies |
US20160328644A1 (en) * | 2015-05-08 | 2016-11-10 | Qualcomm Incorporated | Adaptive selection of artificial neural networks |
CN104915322B (zh) | 2015-06-09 | 2018-05-01 | 中国人民解放军国防科学技术大学 | 一种卷积神经网络硬件加速方法 |
CN205139973U (zh) | 2015-10-26 | 2016-04-06 | 中国人民解放军军械工程学院 | 基于fpga器件构建的bp神经网络 |
CN105488565A (zh) | 2015-11-17 | 2016-04-13 | 中国科学院计算技术研究所 | 加速深度神经网络算法的加速芯片的运算装置及方法 |
CN105681628B (zh) | 2016-01-05 | 2018-12-07 | 西安交通大学 | 一种卷积网络运算单元及可重构卷积神经网络处理器和实现图像去噪处理的方法 |
WO2017139342A1 (en) * | 2016-02-08 | 2017-08-17 | Spero Devices, Inc. | Analog co-processor |
CN105760933A (zh) | 2016-02-18 | 2016-07-13 | 清华大学 | 卷积神经网络的逐层变精度定点化方法及装置 |
US10311342B1 (en) * | 2016-04-14 | 2019-06-04 | XNOR.ai, Inc. | System and methods for efficiently implementing a convolutional neural network incorporating binarized filter and convolution operation for performing image classification |
-
2016
- 2016-08-22 US US15/242,622 patent/US10621486B2/en active Active
- 2016-12-05 CN CN201611107809.XA patent/CN107704916B/zh active Active
- 2016-12-23 CN CN201611205336.7A patent/CN107729999B/zh active Active
-
2017
- 2017-04-17 CN CN201710249355.8A patent/CN107239829B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101310294A (zh) * | 2005-11-15 | 2008-11-19 | 伯纳黛特·加纳 | 神经网络的训练方法 |
US20090112606A1 (en) * | 2007-10-26 | 2009-04-30 | Microsoft Corporation | Channel extension coding for multi-channel source |
US20160019454A1 (en) * | 2014-07-18 | 2016-01-21 | James LaRue | J Patrick's Ladder A Machine Learning Enhancement Tool |
CN104616244A (zh) * | 2015-01-24 | 2015-05-13 | 河南师范大学 | 基于bp神经网络压缩域的图像水印嵌入与提取方法 |
Non-Patent Citations (3)
Title |
---|
JIANTAO QIU 等: "Going Deeper with Embedded FPGA Platform for Convolutional Neural Network", 《FPGA "16: PROCEEDINGS OF THE 2016 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS》 * |
MURUGAN SANKARADAS 等: "A Massively Parallel Coprocessor for Convolutional Neural Networks", 《2009 20TH IEEE INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS》 * |
SONG HAN 等: "EIE: Efficient Inference Engine on Compressed Deep Neural Network", 《ARXIV》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108665067A (zh) * | 2018-05-29 | 2018-10-16 | 北京大学 | 用于深度神经网络频繁传输的压缩方法及系统 |
US11403528B2 (en) | 2018-05-31 | 2022-08-02 | Kneron (Taiwan) Co., Ltd. | Self-tuning incremental model compression solution in deep neural network with guaranteed accuracy performance |
TWI722434B (zh) * | 2018-05-31 | 2021-03-21 | 耐能智慧股份有限公司 | 深度神經網絡自我調整增量模型壓縮的方法 |
CN109212960A (zh) * | 2018-08-30 | 2019-01-15 | 周军 | 基于权值敏感度的二值神经网络硬件压缩方法 |
CN109212960B (zh) * | 2018-08-30 | 2020-08-14 | 周军 | 基于权值敏感度的二值神经网络硬件压缩方法 |
CN110399972A (zh) * | 2019-07-22 | 2019-11-01 | 上海商汤智能科技有限公司 | 数据处理方法、装置及电子设备 |
CN111612144A (zh) * | 2020-05-22 | 2020-09-01 | 深圳金三立视频科技股份有限公司 | 一种应用于目标检测的剪枝方法及终端 |
CN111612144B (zh) * | 2020-05-22 | 2021-06-15 | 深圳金三立视频科技股份有限公司 | 一种应用于目标检测的剪枝方法及终端 |
CN112686506A (zh) * | 2020-12-18 | 2021-04-20 | 海南电网有限责任公司电力科学研究院 | 基于多试验方法异步检测数据的配网设备综合评估方法 |
US12013958B2 (en) | 2022-02-22 | 2024-06-18 | Bank Of America Corporation | System and method for validating a response based on context information |
US12050875B2 (en) | 2022-02-22 | 2024-07-30 | Bank Of America Corporation | System and method for determining context changes in text |
WO2024098373A1 (en) * | 2022-11-11 | 2024-05-16 | Nvidia Corporation | Techniques for compressing neural networks |
CN115994936A (zh) * | 2023-03-23 | 2023-04-21 | 季华实验室 | 点云融合模型获取方法、装置、电子设备及存储介质 |
CN117219124A (zh) * | 2023-10-08 | 2023-12-12 | 国网湖北省电力有限公司超高压公司 | 一种基于深度神经网络的开关柜声纹故障检测方法 |
CN117219124B (zh) * | 2023-10-08 | 2024-10-18 | 国网湖北省电力有限公司超高压公司 | 一种基于深度神经网络的开关柜声纹故障检测方法 |
Also Published As
Publication number | Publication date |
---|---|
US20180046894A1 (en) | 2018-02-15 |
US10621486B2 (en) | 2020-04-14 |
CN107239829A (zh) | 2017-10-10 |
CN107704916B (zh) | 2020-07-03 |
CN107239829B (zh) | 2020-12-11 |
CN107729999B (zh) | 2021-02-02 |
CN107704916A (zh) | 2018-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107729999A (zh) | 考虑矩阵相关性的深度神经网络压缩方法 | |
CN107679617A (zh) | 多次迭代的深度神经网络压缩方法 | |
US10762426B2 (en) | Multi-iteration compression for deep neural networks | |
US10832123B2 (en) | Compression of deep neural networks with proper use of mask | |
US10984308B2 (en) | Compression method for deep neural networks with load balance | |
US11941523B2 (en) | Stochastic gradient boosting for deep neural networks | |
CN107688850B (zh) | 一种深度神经网络压缩方法 | |
CN109389207A (zh) | 一种自适应神经网络学习方法及神经网络系统 | |
CN111542843A (zh) | 利用协作生成器积极开发 | |
CN104751842B (zh) | 深度神经网络的优化方法及系统 | |
CN107688849A (zh) | 一种动态策略定点化训练方法及装置 | |
CN112465120A (zh) | 一种基于进化方法的快速注意力神经网络架构搜索方法 | |
CN107506590A (zh) | 一种基于改进深度信念网络的心血管疾病预测模型 | |
CN109740734B (zh) | 一种利用优化神经元空间排布的卷积神经网络的图像分类方法 | |
CN110929798A (zh) | 基于结构优化稀疏卷积神经网络的图像分类方法及介质 | |
CN110427965A (zh) | 基于进化策略的卷积神经网络结构简约及图像分类方法 | |
CN107392919A (zh) | 基于自适应遗传算法的灰度阈值获取方法、图像分割方法 | |
CN109740695A (zh) | 基于自适应全卷积注意力网络的图像识别方法 | |
Pietron et al. | Retrain or not retrain?-efficient pruning methods of deep cnn networks | |
CN115511069A (zh) | 神经网络的训练方法、数据处理方法、设备及存储介质 | |
CN113591988B (zh) | 知识认知结构分析方法、系统、计算机设备、介质、终端 | |
CN115422369B (zh) | 基于改进TextRank的知识图谱补全方法和装置 | |
CN108090564A (zh) | 基于网络权重初始和最终状态差异的冗余权重去除方法 | |
CN112949599B (zh) | 基于大数据的候选内容推送方法 | |
CN115906959A (zh) | 基于de-bp算法的神经网络模型的参数训练方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20180606 Address after: 100083, 17 floor, 4 Building 4, 1 Wang Zhuang Road, Haidian District, Beijing. Applicant after: Beijing deep Intelligent Technology Co., Ltd. Address before: 100083, 8 floor, 4 Building 4, 1 Wang Zhuang Road, Haidian District, Beijing. Applicant before: Beijing insight Technology Co., Ltd. |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200903 Address after: Unit 01-19, 10 / F, 101, 6 / F, building 5, yard 5, Anding Road, Chaoyang District, Beijing 100029 Applicant after: Xilinx Electronic Technology (Beijing) Co., Ltd Address before: 100083, 17 floor, 4 Building 4, 1 Wang Zhuang Road, Haidian District, Beijing. Applicant before: BEIJING DEEPHI TECHNOLOGY Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |