[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN107610194A - MRI super resolution ratio reconstruction method based on Multiscale Fusion CNN - Google Patents

MRI super resolution ratio reconstruction method based on Multiscale Fusion CNN Download PDF

Info

Publication number
CN107610194A
CN107610194A CN201710689598.3A CN201710689598A CN107610194A CN 107610194 A CN107610194 A CN 107610194A CN 201710689598 A CN201710689598 A CN 201710689598A CN 107610194 A CN107610194 A CN 107610194A
Authority
CN
China
Prior art keywords
mrow
msup
magnetic resonance
resolution
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710689598.3A
Other languages
Chinese (zh)
Other versions
CN107610194B (en
Inventor
刘昶
吴锡
周激流
郎方年
于曦
赵卫东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu University
Original Assignee
Chengdu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu University filed Critical Chengdu University
Priority to CN201710689598.3A priority Critical patent/CN107610194B/en
Publication of CN107610194A publication Critical patent/CN107610194A/en
Application granted granted Critical
Publication of CN107610194B publication Critical patent/CN107610194B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Image Analysis (AREA)

Abstract

The present invention relates to a kind of MRI super resolution ratio reconstruction method based on Multiscale Fusion CNN, low-resolution image and corresponding high-definition picture are pre-processed first, and build training dataset and label data collection, then the structure fusion full convolutional neural networks of multi-scale information, training dataset is input in the fusion multi-scale information convolutional neural networks of structure and be trained, convolutional neural networks model after being learnt, it will test in the convolutional neural networks after low-resolution image is input to study, obtain rebuilding high-definition picture.The present invention passes through Multiscale Fusion unit, the Feature Mapping of different convolutional layers is merged, overcome the flat layered structures that the multilayer convolutional layer of traditional convolutional neural networks stacks, the convergence rate of network can be accelerated, quickly reconstruct the image detail of low-resolution image loss, reconstruction time is reduced, improves and rebuilds efficiency, avoid the wasting of resources.

Description

基于多尺度融合CNN的磁共振图像超分辨率重建方法Super-resolution reconstruction method of magnetic resonance images based on multi-scale fusion CNN

技术领域technical field

本发明属于图像处理领域,尤其涉及一种基于多尺度融合CNN的磁共振图像超分辨率重建方法。The invention belongs to the field of image processing, in particular to a method for super-resolution reconstruction of magnetic resonance images based on multi-scale fusion CNN.

背景技术Background technique

较高空间分辨率结构磁共振图像具有较少的伪影,直接影响后续图像处理和医疗诊断的精度,如配准,分割等。但是,由于物理设备,采集技术以及经济等方面的限制,现有磁共振图像的空间分辨率受到一定的影响。Structural magnetic resonance images with higher spatial resolution have fewer artifacts, which directly affect the accuracy of subsequent image processing and medical diagnosis, such as registration and segmentation. However, due to limitations in physical equipment, acquisition technology, and economy, the spatial resolution of existing magnetic resonance images is affected to a certain extent.

在图像处理领域,传统超分辨率重建方法主要采用插值方法,如双线性插值,B样条插值等方法。这些方法假设局部区域具有平滑的性质,根据邻近体素估计新插值的体素值。但插值方法不适用于非均匀区域,容易导致图像模糊。In the field of image processing, traditional super-resolution reconstruction methods mainly use interpolation methods, such as bilinear interpolation, B-spline interpolation and other methods. These methods assume the smooth nature of local regions and estimate newly interpolated voxel values from neighboring voxels. However, the interpolation method is not suitable for non-uniform areas, and it is easy to cause blurred images.

对于磁共振图像,根据不同的重建阶段,超分辨率重建方法主要分为两种:第一种重建在采集过程中,直接对K空间数据进行重建;第二种重建是在后处理阶段,通常采用传统重建方法应用于结构磁共振图像数据。最常用的方法是非局部均值方法和稀疏编码方法。由于非局部均值方法重建的先验知识仍然来自局部图像块,无法获得理想的重建效果。稀疏编码方法采用机器学习方法,分别从低分辨率图像块和对应的高分辨率图像块中学习低分辨率和高分辨率字典;然后认为低分辨率图像稀疏表示低分辨率字典空间中的线性组合,求解其稀疏系数。并将稀疏系数投影到高分辨率字典空间,从而获得重建后的高分辨率图像。但是基于图像块的稀疏表达无法保证整体图像的最优重构。For magnetic resonance images, according to different reconstruction stages, super-resolution reconstruction methods are mainly divided into two types: the first reconstruction directly reconstructs the K-space data during the acquisition process; the second reconstruction is in the post-processing stage, usually Traditional reconstruction methods were applied to structural magnetic resonance image data. The most commonly used methods are non-local mean methods and sparse coding methods. Since the prior knowledge reconstructed by the non-local mean method still comes from local image blocks, the ideal reconstruction effect cannot be obtained. Sparse coding methods use machine learning methods to learn low-resolution and high-resolution dictionaries from low-resolution image patches and corresponding high-resolution image patches; the low-resolution images are then considered to sparsely represent linear Combination, solve its sparse coefficient. And project the sparse coefficients to the high-resolution dictionary space to obtain the reconstructed high-resolution image. But patch-based sparse representation cannot guarantee the optimal reconstruction of the overall image.

传统的卷积神经网络的训练需要大量样本才能保证最终较好的效果。在医学领域,很难获得大量的磁共振图像数据,因此直接采用传统卷积神经网络很难保证网络的收敛和重建精度。The training of traditional convolutional neural networks requires a large number of samples to ensure a better final effect. In the medical field, it is difficult to obtain a large amount of magnetic resonance image data, so it is difficult to guarantee the convergence and reconstruction accuracy of the network directly using the traditional convolutional neural network.

发明内容Contents of the invention

针对现有技术之不足,本发明提出一种基于多尺度融合CNN的磁共振图像超分辨率重建方法,所述方法包括:Aiming at the deficiencies in the prior art, the present invention proposes a method for super-resolution reconstruction of magnetic resonance images based on multi-scale fusion CNN, the method comprising:

步骤1:对低分辨率结构磁共振图像和与其对应的高分辨率结构磁共振图像进行预处理操作,并构建训练数据集和标签数据集;Step 1: Perform preprocessing operations on the low-resolution structural magnetic resonance image and its corresponding high-resolution structural magnetic resonance image, and construct a training data set and a label data set;

步骤11:输入标准格式的低分辨率结构磁共振图像和高分辨率结构磁共振图像,进行格式转换;Step 11: Input the low-resolution structural magnetic resonance image and the high-resolution structural magnetic resonance image in the standard format, and perform format conversion;

步骤12:将步骤11中转换后的所述低分辨率结构磁共振图像和所述高分辨率结构磁共振图像移除头骨部分,只保留脑区部分;Step 12: removing the skull part from the low-resolution structural magnetic resonance image and the high-resolution structural magnetic resonance image converted in step 11, and only retaining the brain region;

步骤13:对步骤12中移除头骨后的所述低分辨率结构磁共振图像和所述高分辨率结构磁共振图像进行归一化处理,将其归一化到[0-1]区间;Step 13: Perform normalization processing on the low-resolution structural magnetic resonance image and the high-resolution structural magnetic resonance image after the skull is removed in step 12, and normalize them to the [0-1] interval;

步骤14:对步骤13中归一化处理后的分辨率结构磁共振图像和所述高分辨率结构磁共振图像采用滑动窗口方式在每层上依次分别提取多个二维图像块,其中由低分辨率图像块构成训练数据集,高分辨率图像块构成标签数据集;Step 14: Sliding window method is used to extract a plurality of two-dimensional image blocks sequentially on each layer from the normalized resolution structural magnetic resonance image and the high-resolution structural magnetic resonance image in step 13, wherein the low The high-resolution image patches constitute the training dataset, and the high-resolution image patches constitute the label dataset;

步骤2:构建融合多尺度信息卷积神经网络,所述卷积神经网络包括一个输入层、至少三个堆叠的多尺度融合单元和一个重构层;Step 2: Constructing a fusion multi-scale information convolutional neural network, the convolutional neural network includes an input layer, at least three stacked multi-scale fusion units and a reconstruction layer;

步骤21:所述输入层用于接收所述训练数据集;Step 21: the input layer is used to receive the training data set;

步骤22:构建至少三个多尺度融合单元;Step 22: Construct at least three multi-scale fusion units;

步骤23:构建重构层,所述重构层为一个卷积核构成的卷积层;Step 23: Constructing a reconstruction layer, the reconstruction layer is a convolution layer composed of a convolution kernel;

步骤3:将所述训练数据集输入到步骤2构建的卷积神经网络中进行训练,获得学习后的卷积神经网络模型;Step 3: input the training data set into the convolutional neural network constructed in step 2 for training, and obtain the learned convolutional neural network model;

步骤31:将所述训练数据集分成多批训练数据,并初始化步骤2构建的所述多尺度信息卷积神经网络中所有卷积层中的卷积核权重和偏置对损失函数倒数为0,即:Step 31: Divide the training data set into multiple batches of training data, and initialize the convolution kernel weights and biases in all convolutional layers in the multi-scale information convolutional neural network constructed in step 2 to be 0 inversely to the loss function ,which is:

△W(l)=0△W (l) =0

△b(l)=0Δb (l) = 0

其中,W表示卷积核权重,b表示偏置对损失函数,l表示第l层;Among them, W represents the weight of the convolution kernel, b represents the bias pair loss function, and l represents the lth layer;

步骤32:每次输入一批训练数据与所述多尺度融合单元中各个节点参数进行计算,实现神经网络训练的前向传播,最后通过重构层,获得输出高分辨率数据;Step 32: Input a batch of training data each time and calculate the parameters of each node in the multi-scale fusion unit to realize the forward propagation of neural network training, and finally obtain the output high-resolution data through the reconstruction layer;

步骤33:利用欧式距离,将步骤32中获得的输出高分辨率数据与所述标签数据集的误差:Step 33: Using the Euclidean distance, the error between the output high-resolution data obtained in step 32 and the label dataset:

其中,I,J表示图像块的尺寸;Wherein, I, J represent the size of the image block;

步骤34:基于所述误差,采用梯度下降法,反向计算卷积核权重和偏置对损失函数的导数并将其累加到△W(l)和△b(l),即:Step 34: Based on the error, use the gradient descent method to reversely calculate the derivative of the convolution kernel weight and bias to the loss function with and add it to △W (l) and △b (l) , that is:

步骤35:重复步骤32至步骤34,直到所有训练数据处理完毕,完成一次迭代,根据上述△W(l)和△b(l),采用批量梯度下降算法,得到更新后网络参数:Step 35: Repeat steps 32 to 34 until all the training data are processed and an iteration is completed. According to the above △W (l) and △b (l) , use the batch gradient descent algorithm to obtain the updated network parameters:

其中m表示训练数据的批数,α为学习率,λ为动能;Where m represents the number of batches of training data, α is the learning rate, and λ is the kinetic energy;

步骤36:重复步骤32至步骤35,直到达到预设的迭代次数;Step 36: Repeat steps 32 to 35 until the preset number of iterations is reached;

步骤4:将测试低分辨率结构磁共振图像输入到步骤3训练好的卷积神经网络中,输出重建高分辨率结构磁共振图像;Step 4: Input the test low-resolution structural magnetic resonance image into the convolutional neural network trained in step 3, and output the reconstructed high-resolution structural magnetic resonance image;

步骤41:将测试低分辨率结构磁共振图像的每一层直接输入步骤3训练好的卷积神经网络模型中的输入层;Step 41: directly input each layer of the test low-resolution structural magnetic resonance image into the input layer in the convolutional neural network model trained in step 3;

步骤42:将步骤41接收的测试低分辨率结构磁共振图像输入到学习好的卷积神经网络模型中,从前向后进行运算,最后在重构层输出重建高分辨率结构磁共振图像。Step 42: Input the test low-resolution structural magnetic resonance image received in step 41 into the learned convolutional neural network model, perform operations from front to back, and finally output the reconstructed high-resolution structural magnetic resonance image in the reconstruction layer.

根据一种优选的实施方式,所述多尺度融合单元包括主路径、至少一条子路径和融合层,所述主路径由一个卷积层加一个ReLU激活函数构成,所述子路径由一个卷积层加一个ReLU激活函数依次交替构成,并且最后一层为卷积层,所述融合层将所述主路径和所述子路径的输出通过相加融合以输出到下一个多尺度融合单元。According to a preferred embodiment, the multi-scale fusion unit includes a main path, at least one sub-path and a fusion layer, the main path consists of a convolutional layer plus a ReLU activation function, and the sub-path consists of a convolution Layers plus a ReLU activation function are alternately formed, and the last layer is a convolutional layer. The fusion layer adds and fuses the output of the main path and the sub-path to output to the next multi-scale fusion unit.

与现有技术相比,本发明的有益效果在于:Compared with prior art, the beneficial effect of the present invention is:

1、本发明通过多尺度融合单元,将不同卷积层的特征映射进行融合,克服了传统卷积神经网络的多层卷积层堆叠的平层结构,能够加快网络的收敛速度,更快地重建低分辨率图像丢失的图像细节,减少重建需要的时间,减少了资源浪费。1. The present invention fuses the feature maps of different convolutional layers through a multi-scale fusion unit, which overcomes the stacked flat layer structure of the traditional convolutional neural network, and can accelerate the convergence speed of the network and achieve faster Reconstruct the image details lost in low-resolution images, reduce the time required for reconstruction, and reduce the waste of resources.

2、与现有的重建方法相比,本发明的重建方法获得的重建效果更好,恢复的细节信息和结构信息更接近真实高分辨率图像,获得的峰值信噪比也更高。2. Compared with the existing reconstruction method, the reconstruction method of the present invention obtains better reconstruction effect, the restored detail information and structural information are closer to the real high-resolution image, and the obtained peak signal-to-noise ratio is also higher.

附图说明Description of drawings

图1是本发明超分辨率重建方法的流程示意图;Fig. 1 is a schematic flow chart of the super-resolution reconstruction method of the present invention;

图2是本发明多尺度融合单元的结构示意图;Fig. 2 is a schematic structural diagram of a multi-scale fusion unit of the present invention;

图3是本发明融合多尺度信息卷积神经网络的结构示意图;Fig. 3 is a schematic structural diagram of the fusion multi-scale information convolutional neural network of the present invention;

图4是传统卷积神经网络的结构示意图;Fig. 4 is a schematic structural diagram of a traditional convolutional neural network;

图5是多尺度融合单元各个部分输出的特征映射;Figure 5 is the feature map output by each part of the multi-scale fusion unit;

图6是在仿真数据集Brainweb上各类方法的重建效果图;和Figure 6 is a reconstruction rendering of various methods on the simulation data set Brainweb; and

图7在真实数据集上各类方法的重建效果图。Figure 7 Reconstruction renderings of various methods on real datasets.

具体实施方式detailed description

为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是实例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in combination with specific embodiments and with reference to the accompanying drawings. It should be understood that these descriptions are exemplary only, and are not intended to limit the scope of the present invention. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concept of the present invention.

本发明的多尺度融合单元MFU:The Multi-scale Fusion Unit。The multi-scale fusion unit MFU of the present invention: The Multi-scale Fusion Unit.

图1是本发明超分辨率重建方法的流程示意图。如图1所示,本发明提出的一种多尺度融合CNN的磁共振图像超分辨率重建方法,方法包括:Fig. 1 is a schematic flowchart of the super-resolution reconstruction method of the present invention. As shown in Fig. 1, a kind of multi-scale fusion CNN proposed by the present invention super-resolution reconstruction method of magnetic resonance image, the method comprises:

步骤1:对低分辨率结构磁共振图像和与其对应的高分辨率结构磁共振图像进行预处理操作,并构建训练数据集和标签数据集。高分辨率图像来源于采用3T磁共振设备真实采集到的图像,低分辨率图像来源于对高分辨率图像进行下采样得到的。步骤1中的低分辨率结构磁共振图像作为训练样本来训练卷积神经网络。Step 1: Perform preprocessing operations on the low-resolution structural magnetic resonance image and its corresponding high-resolution structural magnetic resonance image, and construct a training data set and a label data set. The high-resolution images come from real images collected by 3T magnetic resonance equipment, and the low-resolution images come from downsampling the high-resolution images. The low-resolution structural MRI images in step 1 are used as training samples to train the convolutional neural network.

步骤11:输入标准格式的低分辨率结构磁共振图像和高分辨率结构磁共振图像,进行格式转换。原始磁共振图像数据格式为DCM格式,采用SPM将其转换为NII格式。原因在于原始DCM格式是一个人的磁共振数据由N个DCM文件构成,而转为NII格式后,一个人的磁共振数据由1个NII文件构成,方便于后面的数据处理。Step 11: Input low-resolution structural magnetic resonance images and high-resolution structural magnetic resonance images in standard formats, and perform format conversion. The original magnetic resonance image data format is DCM format, which is converted to NII format by SPM. The reason is that the original DCM format is that a person's magnetic resonance data is composed of N DCM files, and after being converted to NII format, a person's magnetic resonance data is composed of one NII file, which is convenient for subsequent data processing.

步骤12:将步骤11中转换后的低分辨率结构磁共振图像和高分辨率结构磁共振图像移除头骨部分,只保留脑区部分。Step 12: Remove the skull part from the low-resolution structural MRI image and the high-resolution structural MRI image converted in Step 11, and only keep the brain region.

步骤13:对步骤12中移除头骨后的低分辨率结构磁共振图像和高分辨率结构磁共振图像进行归一化处理,将其归一化到[0-1]区间。由于原始采集到的磁共振图像数据范围从0到上万不等,而图像处理通常要将其范围变换到[0-1],以便于把所有数据放到同一个范围。Step 13: Normalize the low-resolution structural MRI image and the high-resolution structural MRI image after removing the skull in step 12, and normalize them to the [0-1] interval. Since the original collected magnetic resonance image data ranges from 0 to tens of thousands, image processing usually transforms its range to [0-1] in order to put all the data in the same range.

步骤14:对步骤13中归一化处理后的低分辨率结构磁共振图像和高分辨率结构磁共振图像采用滑动窗口方式在每层上依次分别提取多个二维图像块,其中由低分辨率图像块构成训练数据集,高分辨率图像块构成标签数据集。二维图像块的个数通过图像大小和滑动窗口的大小来控制的,一般取到上万个。具体的,人脑的磁共振数据是三维数据M*N*S,磁共振机器扫描将人脑从上往下一层层扫描,S表示层数,M*N表示大脑该层的尺寸。Step 14: For the normalized low-resolution structural magnetic resonance image and high-resolution structural magnetic resonance image in step 13, a plurality of two-dimensional image blocks are sequentially extracted on each layer in a sliding window manner, among which the low-resolution The high-resolution image patches constitute the training dataset, and the high-resolution image patches constitute the label dataset. The number of two-dimensional image blocks is controlled by the size of the image and the size of the sliding window, and generally tens of thousands are taken. Specifically, the magnetic resonance data of the human brain is three-dimensional data M*N*S. The magnetic resonance machine scans the human brain layer by layer from top to bottom, S represents the number of layers, and M*N represents the size of the layer of the brain.

步骤2:构建融合多尺度信息的卷积神经网络。Step 2: Construct a convolutional neural network that fuses multi-scale information.

图3为本发明融合多尺度的信息卷积神经网络的结构示意图。图4为传统卷积神经网络的结构示意图。如图4所示,传统的卷积神经网络是多层卷积层堆叠的平层结构。如图3所示,多尺度信息卷积神经网络包括一个输入层、多个堆叠的多尺度融合单元和一个重构层。具体的,至少三个堆叠的多尺度融合单元。本发明的融合多尺度卷积神经网络克服了传统卷积神经网络的不足,能够加快神经网络的收敛速度,更快地重建低分辨率图像丢失的图像细节,减少重建需要的时间,效率更高,减少了资源浪费。Fig. 3 is a schematic structural diagram of a multi-scale information convolutional neural network of the present invention. Figure 4 is a schematic diagram of the structure of a traditional convolutional neural network. As shown in Figure 4, the traditional convolutional neural network is a flat layer structure with multiple convolutional layers stacked. As shown in Figure 3, the multi-scale information convolutional neural network includes an input layer, multiple stacked multi-scale fusion units and a reconstruction layer. Specifically, at least three stacked multi-scale fusion units. The fusion multi-scale convolutional neural network of the present invention overcomes the shortcomings of the traditional convolutional neural network, can accelerate the convergence speed of the neural network, reconstruct the image details lost in the low-resolution image faster, reduce the time required for reconstruction, and have higher efficiency , reducing waste of resources.

步骤21:输入层用于接收训练数据集。Step 21: The input layer is used to receive the training data set.

步骤22:构建至少三个多尺度融合单元。图2为多尺度融合单元的结构示意图。如图2所示,多尺度融合单元包括主路径、至少一条子路径和融合层。主路径由一个卷积层加一个ReLU激活函数构成,子路径由一个卷积层加一个ReLU激活函数依次交替构成,并且最后一层为卷积层。融合层将主路径和子路径的输出通过相加融合以输出到下一个多尺度融合单元。Step 22: Construct at least three multi-scale fusion units. Fig. 2 is a schematic diagram of the structure of a multi-scale fusion unit. As shown in Figure 2, a multi-scale fusion unit includes a main path, at least one sub-path and a fusion layer. The main path consists of a convolutional layer plus a ReLU activation function, the sub-paths alternately consist of a convolutional layer plus a ReLU activation function, and the last layer is a convolutional layer. The fusion layer adds and fuses the output of the main path and the sub-path to output to the next multi-scale fusion unit.

步骤23:构建重构层,重构层为一个卷积核构成的卷积层。Step 23: Construct a reconstruction layer, which is a convolution layer composed of a convolution kernel.

步骤3:将训练数据集输入到步骤2构建的卷积神经网络中进行训练,获得学习后的卷积神经网络模型。Step 3: Input the training data set into the convolutional neural network constructed in step 2 for training, and obtain the learned convolutional neural network model.

步骤31:将训练数据集分成多批训练数据。因为训练数据集的数据量较大,构造的神经网络无法一次性处理所有训练数据,因此需要将训练数据集分为多个批次进行处理。具体的批数根据训练样本的个数和每批样本个数而定,例如有1万个训练样本,每批100个,则分成100批训练数据。并初始化步骤2构建的多尺度信息卷积神经网络中所有卷积层中的卷积核权重和偏置对损失函数倒数为0,即:Step 31: Divide the training data set into multiple batches of training data. Because the data volume of the training data set is large, the constructed neural network cannot process all the training data at one time, so the training data set needs to be divided into multiple batches for processing. The specific number of batches depends on the number of training samples and the number of samples in each batch. For example, if there are 10,000 training samples and each batch is 100, then it is divided into 100 batches of training data. And initialize the convolution kernel weights and biases in all convolutional layers in the multi-scale information convolutional neural network built in step 2 to be 0 inverse to the loss function, namely:

△W(l)=0△W (l) =0

△b(l)=0Δb (l) = 0

其中,W表示卷积核权重,b表示偏置对损失函数,l表示第l层。所有卷积层包括多尺度融合单元中的卷积层和构成重构层的卷积层。Among them, W represents the weight of the convolution kernel, b represents the bias pair loss function, and l represents the lth layer. All convolutional layers include the convolutional layers in the multi-scale fusion unit and the convolutional layers that constitute the reconstruction layer.

步骤32:每次输入一批训练数据与多尺度融合单元中各个节点参数进行计算,实现神经网络训练的前向传播,最后通过重构层,获得输出高分辨率数据;Step 32: Input a batch of training data each time and calculate the parameters of each node in the multi-scale fusion unit to realize the forward propagation of neural network training, and finally obtain the output high-resolution data through the reconstruction layer;

步骤33:利用欧式距离,计算输出高分辨率数据与标签数据集的误差:Step 33: Using the Euclidean distance, calculate the error between the output high-resolution data and the label dataset:

其中,I,J表示图像块的尺寸。Among them, I, J represent the size of the image block.

步骤34:基于步骤33计算的误差,采用梯度下降法,反向计算卷积核权重和偏置对损失函数的导数并对其累加到△W(l)和△b(l),即:Step 34: Based on the error calculated in step 33, use the gradient descent method to reversely calculate the derivative of the convolution kernel weight and bias to the loss function with And add it to △W (l) and △b (l) , namely:

步骤35:重复步骤S32-S34,直到所有训练样本处理完毕,完成一次迭代。根据上述△W(l)和△b(l),采用批量梯度下降算法,得到更新后网络参数。Step 35: Steps S32-S34 are repeated until all training samples are processed, and one iteration is completed. According to the above △W (l) and △b (l) , the batch gradient descent algorithm is used to obtain the updated network parameters.

其中,m表示训练样本的批数,α为学习率,λ为动能,决定了参数更新过程中,上一次迭代参数的影响大小。Among them, m represents the batch number of training samples, α is the learning rate, and λ is the kinetic energy, which determines the influence of the parameters of the last iteration during the parameter update process.

步骤36:重复步骤32至步骤35,直到达到预设的迭代次数。一般迭代次数取为10的5次方,或者损失小于0.02左右,可由损失函数来决定。迭代停止后,即得到训练好的卷积神经网络模型。Step 36: Repeat steps 32 to 35 until the preset number of iterations is reached. Generally, the number of iterations is taken to the 5th power of 10, or the loss is less than about 0.02, which can be determined by the loss function. After the iteration stops, the trained convolutional neural network model is obtained.

步骤4:将测试低分辨率结构磁共振图像输入到步骤3训练好的卷积神经网络模型中,输出重建高分辨率结构磁共振图像。测试低分辨率结构磁共振图像作为测试样本。Step 4: Input the test low-resolution structural magnetic resonance image into the convolutional neural network model trained in step 3, and output the reconstructed high-resolution structural magnetic resonance image. Test low-resolution structural magnetic resonance images as test samples.

步骤41:将测试低分辨率结构磁共振图像的每一层直接输入步骤3训练好的卷积神经网络模型中的输入层。Step 41: Input each layer of the test low-resolution structural magnetic resonance image directly into the input layer in the convolutional neural network model trained in step 3.

步骤42:步骤41接收的测试低分辨率结构磁共振图像输入到训练好的卷积神经网络中,从前向后进行运算,最后在重构层输出重建高分辨率结构磁共振图像。重建高分辨率结构磁共振图像为通过多尺度融合CNN学习到的高分辨率结构磁共振图像。Step 42: The test low-resolution structural magnetic resonance image received in step 41 is input into the trained convolutional neural network, the operation is performed from front to back, and finally the reconstructed high-resolution structural magnetic resonance image is output in the reconstruction layer. The reconstructed high-resolution structural magnetic resonance image is a high-resolution structural magnetic resonance image learned by multi-scale fusion CNN.

图5是多尺度融合单元各个部分输出的特征映射图。Fig. 5 is a feature map output by each part of the multi-scale fusion unit.

图5中第一行图像是低分辨率结构磁共振图像,第二行图像是多尺度融合单元主路径输出的特征映射图,第三行图像是多尺度融合单元子路径输出的特征映射图,第四行图像是多尺度融合层输出的特征映射图。The first row of images in Figure 5 is a low-resolution structural magnetic resonance image, the second row of images is the feature map output by the main path of the multi-scale fusion unit, and the third row of images is the feature map output by the sub-path of the multi-scale fusion unit. The fourth row of images is the feature map output by the multi-scale fusion layer.

图6是在仿真数据集Brainweb上各类方法的重建效果图。图7在真实数据集上各类方法的重建效果图。图7中HR Real Data表示真实高分辨率图像,LR Real Data表示真实低分辨率图像,根据真实低分辨率图像重建高分辨图像。图6和图7的第二行图像为重建图像的局部放大图,从图6和图7中可直观的看出,采用本发明的方法MFCN(Multi-scale FusionConvolution Network)的重建效果最好,重建的高分辨率边缘细节信息和结构与真实高分辨率图像更接近,尤其是图6和图7中椭圆圈标出的部分。进一步的,用峰值信噪比PSNR来客观对重建效果进行评价,峰值信噪比越高,表示重建效果越好。从图6和图7中可以看出,本发明的方法获得的峰值信噪比相比现有的几种方法来说更高。Figure 6 is a reconstruction rendering of various methods on the simulation data set Brainweb. Figure 7 Reconstruction renderings of various methods on real datasets. In Figure 7, HR Real Data represents real high-resolution images, LR Real Data represents real low-resolution images, and high-resolution images are reconstructed from real low-resolution images. The second row of images in Fig. 6 and Fig. 7 is a partially enlarged image of the reconstructed image. It can be seen intuitively from Fig. 6 and Fig. 7 that the reconstruction effect of the method MFCN (Multi-scale FusionConvolution Network) of the present invention is the best. The reconstructed high-resolution edge detail information and structure are closer to the real high-resolution image, especially the parts marked by ellipses in Figures 6 and 7. Further, PSNR is used to objectively evaluate the reconstruction effect, and the higher the peak signal-to-noise ratio, the better the reconstruction effect. It can be seen from Fig. 6 and Fig. 7 that the peak signal-to-noise ratio obtained by the method of the present invention is higher than that of several existing methods.

本发明的超分辨率重建方法,不仅适用于磁共振图像的重建,同时适用于其他领域的图像重建,如天气雷达回波重建、CT图像、PET-CT图像重建等。The super-resolution reconstruction method of the present invention is not only applicable to the reconstruction of magnetic resonance images, but also applicable to image reconstruction in other fields, such as reconstruction of weather radar echoes, CT images, PET-CT images, etc.

本发明基于多尺度融合CNN的超分辨率重建方法,克服了传统卷积神经网络难以保证神经网络的收敛和重建精度的不足,无需获得大量的磁共振图像数据,将不同卷积层的特征映射进行融合,克服了传统卷积神经网络的多层卷积层堆叠的平层结构,能够加快网络的收敛速度,更快地重建低分辨率图像丢失的图像细节,减少重建需要的时间,减少了资源浪费。进一步的,从直观上和客观指标上可看出,本发明方法获得比现有重建技术更高的重建精度。The present invention is based on the super-resolution reconstruction method of multi-scale fusion CNN, which overcomes the shortcomings of the traditional convolutional neural network that it is difficult to ensure the convergence and reconstruction accuracy of the neural network, and does not need to obtain a large amount of magnetic resonance image data, and maps the features of different convolutional layers Fusion overcomes the stacked flat layer structure of the traditional convolutional neural network, which can speed up the convergence speed of the network, reconstruct the image details lost in low-resolution images faster, reduce the time required for reconstruction, and reduce the Waste of resources. Furthermore, it can be seen from the intuitive and objective indicators that the method of the present invention obtains higher reconstruction accuracy than the existing reconstruction technology.

需要注意的是,上述具体实施例是示例性的,本领域技术人员可以在本发明公开内容的启发下想出各种解决方案,而这些解决方案也都属于本发明的公开范围并落入本发明的保护范围之内。本领域技术人员应该明白,本发明说明书及其附图均为说明性而并非构成对权利要求的限制。本发明的保护范围由权利要求及其等同物限定。It should be noted that the above specific embodiments are exemplary, and those skilled in the art can come up with various solutions inspired by the disclosure of the present invention, and these solutions also belong to the scope of the disclosure of the present invention and fall within the scope of this disclosure. within the scope of protection of the invention. Those skilled in the art should understand that the description and drawings of the present invention are illustrative rather than limiting to the claims. The protection scope of the present invention is defined by the claims and their equivalents.

Claims (2)

1.一种基于多尺度融合CNN的磁共振图像超分辨率重建方法,其特征在于,所述方法包括:1. A magnetic resonance image super-resolution reconstruction method based on multi-scale fusion CNN, is characterized in that, described method comprises: 步骤1:对低分辨率结构磁共振图像和与其对应的高分辨率结构磁共振图像进行预处理操作,并构建训练数据集和标签数据集;Step 1: Perform preprocessing operations on the low-resolution structural magnetic resonance image and its corresponding high-resolution structural magnetic resonance image, and construct a training data set and a label data set; 步骤11:输入标准格式的低分辨率结构磁共振图像和高分辨率结构磁共振图像,进行格式转换;Step 11: Input the low-resolution structural magnetic resonance image and the high-resolution structural magnetic resonance image in the standard format, and perform format conversion; 步骤12:将步骤11中转换后的所述低分辨率结构磁共振图像和所述高分辨率结构磁共振图像移除头骨部分,只保留脑区部分;Step 12: removing the skull part from the low-resolution structural magnetic resonance image and the high-resolution structural magnetic resonance image converted in step 11, and only retaining the brain region; 步骤13:对步骤12中移除头骨后的所述低分辨率结构磁共振图像和所述高分辨率结构磁共振图像进行归一化处理,将其归一化到[0-1]区间;Step 13: Perform normalization processing on the low-resolution structural magnetic resonance image and the high-resolution structural magnetic resonance image after the skull is removed in step 12, and normalize them to the [0-1] interval; 步骤14:对步骤13中归一化处理后的低分辨率结构磁共振图像和所述高分辨率结构磁共振图像采用滑动窗口方式在每层上依次分别提取多个二维图像块,其中由低分辨率图像块构成训练数据集,高分辨率图像块构成标签数据集;Step 14: Sliding windows are used to sequentially extract a plurality of two-dimensional image blocks on each layer from the normalized low-resolution structural magnetic resonance image and the high-resolution structural magnetic resonance image in step 13, wherein The low-resolution image patches constitute the training dataset, and the high-resolution image patches constitute the label dataset; 步骤2:构建融合多尺度信息卷积神经网络,所述卷积神经网络包括一个输入层、至少三个堆叠的多尺度融合单元和一个重构层;Step 2: Constructing a fusion multi-scale information convolutional neural network, the convolutional neural network includes an input layer, at least three stacked multi-scale fusion units and a reconstruction layer; 步骤21:所述输入层用于接收所述训练数据集;Step 21: the input layer is used to receive the training data set; 步骤22:构建至少三个多尺度融合单元;Step 22: Construct at least three multi-scale fusion units; 步骤23:构建重构层,所述重构层为一个卷积核构成的卷积层;Step 23: Constructing a reconstruction layer, the reconstruction layer is a convolution layer composed of a convolution kernel; 步骤3:将所述训练数据集输入到步骤2构建的卷积神经网络中进行训练,获得学习后的卷积神经网络模型;Step 3: input the training data set into the convolutional neural network constructed in step 2 for training, and obtain the learned convolutional neural network model; 步骤31:将所述训练数据集分成多批训练数据,并初始化步骤2构建的所述多尺度信息卷积神经网络中所有卷积层中的卷积核权重和偏置对损失函数倒数为0,即:Step 31: Divide the training data set into multiple batches of training data, and initialize the convolution kernel weights and biases in all convolutional layers in the multi-scale information convolutional neural network constructed in step 2 to be 0 inversely to the loss function ,which is: △W(l)=0△W (l) =0 △b(l)=0Δb (l) = 0 其中,W表示卷积核权重,b表示偏置对损失函数,l表示第l层;Among them, W represents the weight of the convolution kernel, b represents the bias pair loss function, and l represents the lth layer; 步骤32:每次输入一批训练数据与所述多尺度融合单元中各个节点参数进行计算,实现神经网络训练的前向传播,最后通过重构层,获得输出高分辨率数据;Step 32: Input a batch of training data each time and calculate the parameters of each node in the multi-scale fusion unit to realize the forward propagation of neural network training, and finally obtain the output high-resolution data through the reconstruction layer; 步骤33:利用欧式距离,将步骤32中获得的输出高分辨率数据与所述标签数据集的误差:Step 33: Using the Euclidean distance, the error between the output high-resolution data obtained in step 32 and the label dataset: <mrow> <mi>E</mi> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>I</mi> <mo>,</mo> <mi>J</mi> </mrow> </munderover> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow><mi>E</mi><mo>=</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>I</mi><mo>,</mo><mi>J</mi></mrow></munderover><mo>|</mo><mo>|</mo><msub><mi>X</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>-</mo><msub><mover><mi>X</mi><mo>&amp;OverBar;</mi>mo></mover><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>|</mo><msup><mo>|</mo><mn>2</mn></msup></mrow> 其中,I,J表示图像块的尺寸;Wherein, I, J represent the size of the image block; 步骤34:基于所述误差,采用梯度下降法,反向计算卷积核权重和偏置对损失函数的导数并将其累加到△W(l)和△b(l),即:Step 34: Based on the error, use the gradient descent method to reversely calculate the derivative of the convolution kernel weight and bias to the loss function with and add it to △W (l) and △b (l) , that is: <mrow> <msup> <mi>&amp;Delta;W</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>&amp;Delta;W</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msup> <mo>+</mo> <msub> <mo>&amp;dtri;</mo> <msup> <mi>W</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msup> </msub> <mi>J</mi> <mrow> <mo>(</mo> <mi>W</mi> <mo>,</mo> <mi>b</mi> <mo>;</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> <mrow><msup><mi>&amp;Delta;W</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msup><mo>=</mo><msup><mi>&amp;Delta;W</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msup><mo>+</mo><msub><mo>&amp;dtri;</mo><msup><mi>W</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msup></msub><mi>J</mi><mrow><mo>(</mo><mi>W</mi><mo>,</mo><mi>b</mi><mo>;</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow> <mrow> <msup> <mi>&amp;Delta;b</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>&amp;Delta;b</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msup> <mo>+</mo> <msub> <mo>&amp;dtri;</mo> <msup> <mi>b</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msup> </msub> <mi>J</mi> <mrow> <mo>(</mo> <mi>W</mi> <mo>,</mo> <mi>b</mi> <mo>;</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> <mrow><msup><mi>&amp;Delta;b</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msup><mo>=</mo><msup><mi>&amp;Delta;b</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msup><mo>+</mo><msub><mo>&amp;dtri;</mo><msup><mi>b</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msup></msub><mi>J</mi><mrow><mo>(</mo><mi>W</mi><mo>,</mo><mi>b</mi><mo>;</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow> 步骤35:重复步骤32至步骤34,直到所有训练数据处理完毕,完成一次迭代,根据上述△W(l)和△b(l),采用批量梯度下降算法,得到更新后网络参数,数学表示如下:Step 35: Repeat steps 32 to 34 until all the training data are processed and an iteration is completed. According to the above △W (l) and △b (l) , use the batch gradient descent algorithm to obtain the updated network parameters. The mathematical expression is as follows : <mrow> <msup> <mi>W</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>W</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msup> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <msup> <mi>&amp;Delta;W</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msup> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>&amp;lambda;W</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow><msup><mi>W</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msup><mo>=</mo><msup><mi>W</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msup><mo>-</mo><mi>&amp;alpha;</mi><mo>&amp;lsqb;</mo><mrow><mo>(</mo><mfrac><mn>1</mn><mi>m</mi></mfrac><msup><mi>&amp;Delta;W</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msup><mo>)</mo></mrow><mo>+</mo><msup><mi>&amp;lambda;W</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msup><mo>&amp;rsqb;</mo></mrow> <mrow> <msup> <mi>b</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>b</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msup> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <msup> <mi>&amp;Delta;b</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow><msup><mi>b</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msup><mo>=</mo><msup><mi>b</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msup><mo>-</mo><mi>&amp;alpha;</mi><mo>&amp;lsqb;</mo><mfrac><mn>1</mn><mi>m</mi></mfrac><msup><mi>&amp;Delta;b</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msup><mo>&amp;rsqb;</mo></mrow> 其中,m表示训练数据的批数,α为学习率,λ为动能;Among them, m represents the number of batches of training data, α is the learning rate, and λ is the kinetic energy; 步骤36:重复步骤32至步骤35,直到达到预设的迭代次数;Step 36: Repeat steps 32 to 35 until the preset number of iterations is reached; 步骤4:将测试低分辨率结构磁共振图像输入到步骤3训练好的卷积神经网络中,输出重建高分辨率结构磁共振图像;Step 4: Input the test low-resolution structural magnetic resonance image into the convolutional neural network trained in step 3, and output the reconstructed high-resolution structural magnetic resonance image; 步骤41:将测试低分辨率结构磁共振图像的每一层直接输入步骤3训练好的卷积神经网络模型中的输入层;Step 41: directly input each layer of the test low-resolution structural magnetic resonance image into the input layer in the convolutional neural network model trained in step 3; 步骤42:将步骤41接收的测试低分辨率结构磁共振图像输入到学习好的卷积神经网络模型中,从前向后进行运算,最后在重构层输出重建高分辨率结构磁共振图像。Step 42: Input the test low-resolution structural magnetic resonance image received in step 41 into the learned convolutional neural network model, perform operations from front to back, and finally output the reconstructed high-resolution structural magnetic resonance image in the reconstruction layer. 2.如权利要求1所述的超分辨率重建方法,其特征在于,所述多尺度融合单元包括主路径、至少一条子路径和融合层,所述主路径由一个卷积层加一个ReLU激活函数构成,所述子路径由一个卷积层加一个ReLU激活函数依次交替构成,并且最后一层为卷积层,所述融合层将所述主路径和所述子路径的输出通过相加融合以输出到下一个多尺度融合单元。2. The super-resolution reconstruction method according to claim 1, wherein the multi-scale fusion unit comprises a main path, at least one sub-path and a fusion layer, and the main path is activated by a convolutional layer plus a ReLU function, the sub-path is composed of a convolutional layer plus a ReLU activation function alternately in turn, and the last layer is a convolutional layer, and the fusion layer fuses the output of the main path and the sub-path by adding to output to the next multi-scale fusion unit.
CN201710689598.3A 2017-08-14 2017-08-14 Magnetic resonance image super-resolution reconstruction method based on multi-scale fusion CNN Active CN107610194B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710689598.3A CN107610194B (en) 2017-08-14 2017-08-14 Magnetic resonance image super-resolution reconstruction method based on multi-scale fusion CNN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710689598.3A CN107610194B (en) 2017-08-14 2017-08-14 Magnetic resonance image super-resolution reconstruction method based on multi-scale fusion CNN

Publications (2)

Publication Number Publication Date
CN107610194A true CN107610194A (en) 2018-01-19
CN107610194B CN107610194B (en) 2020-08-04

Family

ID=61063987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710689598.3A Active CN107610194B (en) 2017-08-14 2017-08-14 Magnetic resonance image super-resolution reconstruction method based on multi-scale fusion CNN

Country Status (1)

Country Link
CN (1) CN107610194B (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108335303A (en) * 2018-01-28 2018-07-27 浙江大学 A kind of multiple dimensioned palm bone segmentation method applied to palm X-ray
CN108416821A (en) * 2018-03-08 2018-08-17 山东财经大学 A CT image super-resolution reconstruction method based on deep neural network
CN108447062A (en) * 2018-02-01 2018-08-24 浙江大学 A kind of dividing method of the unconventional cell of pathological section based on multiple dimensioned mixing parted pattern
CN108492271A (en) * 2018-03-26 2018-09-04 中国电子科技集团公司第三十八研究所 A kind of automated graphics enhancing system and method for fusion multi-scale information
CN108596994A (en) * 2018-04-24 2018-09-28 朱高杰 A kind of Diffusion-weighted imaging method being in harmony certainly based on deep learning and data
CN108594146A (en) * 2018-04-24 2018-09-28 朱高杰 A kind of Diffusion-weighted imaging method based on deep learning and convex set projection
CN108828481A (en) * 2018-04-24 2018-11-16 朱高杰 A kind of magnetic resonance reconstruction method based on deep learning and data consistency
CN108898222A (en) * 2018-06-26 2018-11-27 郑州云海信息技术有限公司 A kind of method and apparatus automatically adjusting network model hyper parameter
CN109003229A (en) * 2018-08-09 2018-12-14 成都大学 Magnetic resonance super resolution ratio reconstruction method based on three-dimensional enhancing depth residual error network
CN109035356A (en) * 2018-07-05 2018-12-18 四川大学 A kind of system and method based on PET pattern imaging
CN109087273A (en) * 2018-07-20 2018-12-25 哈尔滨工业大学(深圳) Image recovery method, storage medium and the system of neural network based on enhancing
CN109146784A (en) * 2018-07-27 2019-01-04 徐州工程学院 A kind of image super-resolution rebuilding method based on multiple dimensioned generation confrontation network
CN109272443A (en) * 2018-09-30 2019-01-25 东北大学 PET and CT image registration method based on full convolutional neural network
CN109345449A (en) * 2018-07-17 2019-02-15 西安交通大学 An image super-resolution and non-uniform blurring method based on fusion network
CN109410240A (en) * 2018-10-09 2019-03-01 电子科技大学中山学院 Method and device for positioning volume characteristic points and storage medium thereof
CN109447238A (en) * 2018-09-21 2019-03-08 广东石油化工学院 Multi-output regression depth network establishing method, structure, equipment and storage medium
CN109544488A (en) * 2018-10-08 2019-03-29 西北大学 A kind of image composition method based on convolutional neural networks
CN109685717A (en) * 2018-12-14 2019-04-26 厦门理工学院 Image super-resolution rebuilding method, device and electronic equipment
CN109741416A (en) * 2019-01-04 2019-05-10 北京大学深圳医院 Nuclear magnetic resonance image reconstruction method, device, computer equipment and storage medium thereof
CN109859106A (en) * 2019-01-28 2019-06-07 桂林电子科技大学 A kind of image super-resolution rebuilding method based on the high-order converged network from attention
CN109903229A (en) * 2019-03-04 2019-06-18 科新(杭州)能源环境科技有限公司 A kind of μ-CT image reconstructing method based on convolutional neural networks
CN109919840A (en) * 2019-01-21 2019-06-21 南京航空航天大学 Image super-resolution reconstruction method based on dense feature fusion network
CN110276736A (en) * 2019-04-01 2019-09-24 厦门大学 A Method of Magnetic Resonance Image Fusion Based on Weight Prediction Network
CN110333076A (en) * 2019-06-19 2019-10-15 电子科技大学 Bearing Fault Diagnosis Method Based on CNN-Stacking
CN110598724A (en) * 2019-01-17 2019-12-20 西安理工大学 Cell low-resolution image fusion method based on convolutional neural network
CN110929521A (en) * 2019-12-06 2020-03-27 北京知道智慧信息技术有限公司 Model generation method, entity identification method, device and storage medium
CN110940944A (en) * 2019-12-04 2020-03-31 厦门大学 J coupling removing method for magnetic resonance signals based on deep learning
CN111127581A (en) * 2019-12-31 2020-05-08 东软医疗系统股份有限公司 Image reconstruction method and device, CT (computed tomography) equipment and CT system
CN111160413A (en) * 2019-12-12 2020-05-15 天津大学 A thyroid nodule classification method based on multi-scale feature fusion
CN111161182A (en) * 2019-12-27 2020-05-15 南方医科大学 A non-local mean-guided partial volume correction method for PET images constrained by MR structure information
CN111274865A (en) * 2019-12-14 2020-06-12 深圳先进技术研究院 Remote sensing image cloud detection method and device based on full convolution neural network
CN111275618A (en) * 2020-01-12 2020-06-12 杭州电子科技大学 Depth map super-resolution reconstruction network construction method based on double-branch perception
CN111292240A (en) * 2020-01-23 2020-06-16 上海交通大学 A magnetic resonance super-resolution imaging method based on imaging model and machine learning
CN111353944A (en) * 2018-12-20 2020-06-30 深圳市中兴微电子技术有限公司 Image reconstruction method and device and computer readable storage medium
WO2020135630A1 (en) * 2018-12-26 2020-07-02 Shanghai United Imaging Intelligence Co., Ltd. Systems and methods for image reconstruction
CN111798377A (en) * 2020-07-08 2020-10-20 广东工业大学 Magnetic resonance image super-resolution reconstruction method based on multi-resolution learning strategy
CN111956180A (en) * 2019-05-20 2020-11-20 华北电力大学(保定) Method for reconstructing photoacoustic endoscopic tomography image
CN112102388A (en) * 2020-09-18 2020-12-18 中国矿业大学 Method and device for acquiring depth image based on monocular image of inspection robot
CN112419437A (en) * 2019-11-29 2021-02-26 上海联影智能医疗科技有限公司 System and method for reconstructing magnetic resonance images
CN112767374A (en) * 2021-01-27 2021-05-07 天津理工大学 Alzheimer disease focus region semantic segmentation algorithm based on MRI
CN112789659A (en) * 2018-10-02 2021-05-11 皇家飞利浦有限公司 Generation of pseudo-radiographic image from optical image
CN112949636A (en) * 2021-03-31 2021-06-11 上海电机学院 License plate super-resolution identification method and system and computer readable medium
WO2021135474A1 (en) * 2020-01-02 2021-07-08 平安科技(深圳)有限公司 Method and apparatus for fusing data from multiple data sources, electronic device, and storage medium
CN113534031A (en) * 2020-04-21 2021-10-22 上海联影医疗科技股份有限公司 Image domain data generating method, computer device and readable storage medium
CN113935928A (en) * 2020-07-13 2022-01-14 四川大学 Super-resolution reconstruction of core images based on Raw format
CN114445273A (en) * 2020-11-03 2022-05-06 中国科学院深圳先进技术研究院 Magnetic resonance image processing method, computer device, and storage medium
WO2022206021A1 (en) * 2021-03-30 2022-10-06 中国科学院深圳先进技术研究院 Image reconstruction model generation method and apparatus, image reconstruction method and apparatus, and device and medium
CN116152052A (en) * 2021-11-20 2023-05-23 华能澜沧江水电股份有限公司 A submillimeter super-resolution reconstruction method for UAV images based on AI technology
CN116805284A (en) * 2023-08-28 2023-09-26 之江实验室 Three-dimensional magnetic resonance inter-plane super-resolution reconstruction method and system based on feature transfer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106204449A (en) * 2016-07-06 2016-12-07 安徽工业大学 A kind of single image super resolution ratio reconstruction method based on symmetrical degree of depth network
CN106683067A (en) * 2017-01-20 2017-05-17 福建帝视信息科技有限公司 Deep learning super-resolution reconstruction method based on residual sub-images
US20170200067A1 (en) * 2016-01-08 2017-07-13 Siemens Healthcare Gmbh Deep Image-to-Image Network Learning for Medical Image Analysis
CN106952229A (en) * 2017-03-15 2017-07-14 桂林电子科技大学 Image super-resolution reconstruction method based on improved convolutional network with data augmentation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170200067A1 (en) * 2016-01-08 2017-07-13 Siemens Healthcare Gmbh Deep Image-to-Image Network Learning for Medical Image Analysis
CN106204449A (en) * 2016-07-06 2016-12-07 安徽工业大学 A kind of single image super resolution ratio reconstruction method based on symmetrical degree of depth network
CN106683067A (en) * 2017-01-20 2017-05-17 福建帝视信息科技有限公司 Deep learning super-resolution reconstruction method based on residual sub-images
CN106952229A (en) * 2017-03-15 2017-07-14 桂林电子科技大学 Image super-resolution reconstruction method based on improved convolutional network with data augmentation

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108335303A (en) * 2018-01-28 2018-07-27 浙江大学 A kind of multiple dimensioned palm bone segmentation method applied to palm X-ray
CN108447062B (en) * 2018-02-01 2021-04-20 浙江大学 A segmentation method for unconventional cells in pathological slices based on a multi-scale hybrid segmentation model
CN108447062A (en) * 2018-02-01 2018-08-24 浙江大学 A kind of dividing method of the unconventional cell of pathological section based on multiple dimensioned mixing parted pattern
CN108416821A (en) * 2018-03-08 2018-08-17 山东财经大学 A CT image super-resolution reconstruction method based on deep neural network
CN108492271A (en) * 2018-03-26 2018-09-04 中国电子科技集团公司第三十八研究所 A kind of automated graphics enhancing system and method for fusion multi-scale information
CN108492271B (en) * 2018-03-26 2021-08-24 中国电子科技集团公司第三十八研究所 Automatic image enhancement system and method fusing multi-scale information
CN108828481A (en) * 2018-04-24 2018-11-16 朱高杰 A kind of magnetic resonance reconstruction method based on deep learning and data consistency
CN108596994B (en) * 2018-04-24 2022-05-03 朱高杰 Magnetic resonance diffusion weighted imaging method based on deep learning and data self-consistency
CN108596994A (en) * 2018-04-24 2018-09-28 朱高杰 A kind of Diffusion-weighted imaging method being in harmony certainly based on deep learning and data
CN108594146A (en) * 2018-04-24 2018-09-28 朱高杰 A kind of Diffusion-weighted imaging method based on deep learning and convex set projection
CN108594146B (en) * 2018-04-24 2020-07-28 朱高杰 Magnetic resonance diffusion weighted imaging method based on deep learning and convex set projection
CN108828481B (en) * 2018-04-24 2021-01-22 朱高杰 Magnetic resonance reconstruction method based on deep learning and data consistency
CN108898222A (en) * 2018-06-26 2018-11-27 郑州云海信息技术有限公司 A kind of method and apparatus automatically adjusting network model hyper parameter
CN109035356B (en) * 2018-07-05 2020-07-10 四川大学 A system and method based on PET graphic imaging
CN109035356A (en) * 2018-07-05 2018-12-18 四川大学 A kind of system and method based on PET pattern imaging
CN109345449A (en) * 2018-07-17 2019-02-15 西安交通大学 An image super-resolution and non-uniform blurring method based on fusion network
US11928792B2 (en) 2018-07-17 2024-03-12 Xi'an Jiaotong University Fusion network-based method for image super-resolution and non-uniform motion deblurring
CN109345449B (en) * 2018-07-17 2020-11-10 西安交通大学 An image super-resolution and non-uniform blurring method based on fusion network
CN109087273B (en) * 2018-07-20 2021-09-14 哈尔滨工业大学(深圳) Image restoration method, storage medium and system based on enhanced neural network
CN109087273A (en) * 2018-07-20 2018-12-25 哈尔滨工业大学(深圳) Image recovery method, storage medium and the system of neural network based on enhancing
CN109146784A (en) * 2018-07-27 2019-01-04 徐州工程学院 A kind of image super-resolution rebuilding method based on multiple dimensioned generation confrontation network
CN109146784B (en) * 2018-07-27 2020-11-20 徐州工程学院 An Image Super-Resolution Reconstruction Method Based on Multi-scale Generative Adversarial Networks
CN109003229A (en) * 2018-08-09 2018-12-14 成都大学 Magnetic resonance super resolution ratio reconstruction method based on three-dimensional enhancing depth residual error network
CN109003229B (en) * 2018-08-09 2022-12-13 成都大学 Magnetic Resonance Super-resolution Reconstruction Method Based on 3D Enhanced Deep Residual Network
CN109447238A (en) * 2018-09-21 2019-03-08 广东石油化工学院 Multi-output regression depth network establishing method, structure, equipment and storage medium
CN109272443A (en) * 2018-09-30 2019-01-25 东北大学 PET and CT image registration method based on full convolutional neural network
CN112789659A (en) * 2018-10-02 2021-05-11 皇家飞利浦有限公司 Generation of pseudo-radiographic image from optical image
CN109544488B (en) * 2018-10-08 2021-06-01 西北大学 An Image Synthesis Method Based on Convolutional Neural Network
CN109544488A (en) * 2018-10-08 2019-03-29 西北大学 A kind of image composition method based on convolutional neural networks
CN109410240A (en) * 2018-10-09 2019-03-01 电子科技大学中山学院 Method and device for positioning volume characteristic points and storage medium thereof
CN109685717A (en) * 2018-12-14 2019-04-26 厦门理工学院 Image super-resolution rebuilding method, device and electronic equipment
CN111353944B (en) * 2018-12-20 2024-05-28 深圳市中兴微电子技术有限公司 Image reconstruction method, device and computer readable storage medium
CN111353944A (en) * 2018-12-20 2020-06-30 深圳市中兴微电子技术有限公司 Image reconstruction method and device and computer readable storage medium
US11494877B2 (en) 2018-12-26 2022-11-08 Shanghai United Imaging Intelligence Co., Ltd. Systems and methods for image reconstruction
WO2020135630A1 (en) * 2018-12-26 2020-07-02 Shanghai United Imaging Intelligence Co., Ltd. Systems and methods for image reconstruction
CN109741416A (en) * 2019-01-04 2019-05-10 北京大学深圳医院 Nuclear magnetic resonance image reconstruction method, device, computer equipment and storage medium thereof
CN110598724B (en) * 2019-01-17 2022-09-23 西安理工大学 A Cellular Low-Resolution Image Fusion Method Based on Convolutional Neural Networks
CN110598724A (en) * 2019-01-17 2019-12-20 西安理工大学 Cell low-resolution image fusion method based on convolutional neural network
CN109919840A (en) * 2019-01-21 2019-06-21 南京航空航天大学 Image super-resolution reconstruction method based on dense feature fusion network
CN109859106A (en) * 2019-01-28 2019-06-07 桂林电子科技大学 A kind of image super-resolution rebuilding method based on the high-order converged network from attention
CN109903229A (en) * 2019-03-04 2019-06-18 科新(杭州)能源环境科技有限公司 A kind of μ-CT image reconstructing method based on convolutional neural networks
CN110276736B (en) * 2019-04-01 2021-01-19 厦门大学 A method of magnetic resonance image fusion based on weight prediction network
CN110276736A (en) * 2019-04-01 2019-09-24 厦门大学 A Method of Magnetic Resonance Image Fusion Based on Weight Prediction Network
CN111956180A (en) * 2019-05-20 2020-11-20 华北电力大学(保定) Method for reconstructing photoacoustic endoscopic tomography image
CN111956180B (en) * 2019-05-20 2023-06-27 华北电力大学(保定) A method for reconstructing photoacoustic endoscopic tomographic images
CN110333076A (en) * 2019-06-19 2019-10-15 电子科技大学 Bearing Fault Diagnosis Method Based on CNN-Stacking
CN110333076B (en) * 2019-06-19 2021-01-26 电子科技大学 Bearing fault diagnosis method based on CNN-Stacking
CN112419437A (en) * 2019-11-29 2021-02-26 上海联影智能医疗科技有限公司 System and method for reconstructing magnetic resonance images
CN110940944B (en) * 2019-12-04 2020-11-10 厦门大学 J coupling removing method for magnetic resonance signals based on deep learning
CN110940944A (en) * 2019-12-04 2020-03-31 厦门大学 J coupling removing method for magnetic resonance signals based on deep learning
CN110929521A (en) * 2019-12-06 2020-03-27 北京知道智慧信息技术有限公司 Model generation method, entity identification method, device and storage medium
CN110929521B (en) * 2019-12-06 2023-10-27 北京知道创宇信息技术股份有限公司 Model generation method, entity identification method, device and storage medium
CN111160413B (en) * 2019-12-12 2023-11-17 天津大学 Thyroid nodule classification method based on multi-scale feature fusion
CN111160413A (en) * 2019-12-12 2020-05-15 天津大学 A thyroid nodule classification method based on multi-scale feature fusion
CN111274865A (en) * 2019-12-14 2020-06-12 深圳先进技术研究院 Remote sensing image cloud detection method and device based on full convolution neural network
CN111274865B (en) * 2019-12-14 2023-09-19 深圳先进技术研究院 A remote sensing image cloud detection method and device based on fully convolutional neural network
CN111161182A (en) * 2019-12-27 2020-05-15 南方医科大学 A non-local mean-guided partial volume correction method for PET images constrained by MR structure information
CN111161182B (en) * 2019-12-27 2021-03-09 南方医科大学 A non-local mean-guided partial volume correction method for PET images constrained by MR structure information
CN111127581A (en) * 2019-12-31 2020-05-08 东软医疗系统股份有限公司 Image reconstruction method and device, CT (computed tomography) equipment and CT system
WO2021135474A1 (en) * 2020-01-02 2021-07-08 平安科技(深圳)有限公司 Method and apparatus for fusing data from multiple data sources, electronic device, and storage medium
CN111275618B (en) * 2020-01-12 2023-09-29 杭州电子科技大学 Depth map super-resolution reconstruction network construction method based on double-branch perception
CN111275618A (en) * 2020-01-12 2020-06-12 杭州电子科技大学 Depth map super-resolution reconstruction network construction method based on double-branch perception
CN111292240B (en) * 2020-01-23 2022-01-07 上海交通大学 Magnetic resonance super-resolution imaging method based on imaging model and machine learning
CN111292240A (en) * 2020-01-23 2020-06-16 上海交通大学 A magnetic resonance super-resolution imaging method based on imaging model and machine learning
CN113534031A (en) * 2020-04-21 2021-10-22 上海联影医疗科技股份有限公司 Image domain data generating method, computer device and readable storage medium
CN111798377B (en) * 2020-07-08 2023-07-28 广东工业大学 Super-resolution reconstruction method of magnetic resonance images based on multi-resolution learning strategy
CN111798377A (en) * 2020-07-08 2020-10-20 广东工业大学 Magnetic resonance image super-resolution reconstruction method based on multi-resolution learning strategy
CN113935928B (en) * 2020-07-13 2023-04-11 四川大学 Rock core image super-resolution reconstruction based on Raw format
CN113935928A (en) * 2020-07-13 2022-01-14 四川大学 Super-resolution reconstruction of core images based on Raw format
CN112102388B (en) * 2020-09-18 2024-03-26 中国矿业大学 Method and device for obtaining depth image based on inspection robot monocular image
CN112102388A (en) * 2020-09-18 2020-12-18 中国矿业大学 Method and device for acquiring depth image based on monocular image of inspection robot
CN114445273A (en) * 2020-11-03 2022-05-06 中国科学院深圳先进技术研究院 Magnetic resonance image processing method, computer device, and storage medium
CN112767374A (en) * 2021-01-27 2021-05-07 天津理工大学 Alzheimer disease focus region semantic segmentation algorithm based on MRI
WO2022206021A1 (en) * 2021-03-30 2022-10-06 中国科学院深圳先进技术研究院 Image reconstruction model generation method and apparatus, image reconstruction method and apparatus, and device and medium
CN112949636A (en) * 2021-03-31 2021-06-11 上海电机学院 License plate super-resolution identification method and system and computer readable medium
CN112949636B (en) * 2021-03-31 2023-05-30 上海电机学院 License plate super-resolution recognition method, system and computer readable medium
CN116152052A (en) * 2021-11-20 2023-05-23 华能澜沧江水电股份有限公司 A submillimeter super-resolution reconstruction method for UAV images based on AI technology
CN116805284B (en) * 2023-08-28 2023-12-19 之江实验室 Three-dimensional magnetic resonance inter-plane super-resolution reconstruction method and system based on feature transfer
CN116805284A (en) * 2023-08-28 2023-09-26 之江实验室 Three-dimensional magnetic resonance inter-plane super-resolution reconstruction method and system based on feature transfer

Also Published As

Publication number Publication date
CN107610194B (en) 2020-08-04

Similar Documents

Publication Publication Date Title
CN107610194B (en) Magnetic resonance image super-resolution reconstruction method based on multi-scale fusion CNN
CN108460726B (en) A method for super-resolution reconstruction of magnetic resonance images based on enhanced recurrent residual network
WO2022047625A1 (en) Image processing method and system, and computer storage medium
CN107633486A (en) Structure Magnetic Resonance Image Denoising based on three-dimensional full convolutional neural networks
CN111028306A (en) Fast Magnetic Resonance Imaging Method Based on AR2 U-Net Neural Network
CN112085677A (en) An image processing method, system and computer storage medium
CN111445390A (en) Wide residual attention-based three-dimensional medical image super-resolution reconstruction method
CN104063886B (en) Nuclear magnetic resonance image reconstruction method based on sparse representation and non-local similarity
CN108447020A (en) A kind of face super-resolution reconstruction method based on profound convolutional neural networks
CN110047138A (en) A kind of magnetic resonance thin layer image rebuilding method
CN108717717A (en) The method rebuild based on the sparse MRI that convolutional neural networks and alternative manner are combined
CN109003229B (en) Magnetic Resonance Super-resolution Reconstruction Method Based on 3D Enhanced Deep Residual Network
CN109214989A (en) Single image super resolution ratio reconstruction method based on Orientation Features prediction priori
CN112669209B (en) Three-dimensional medical image super-resolution reconstruction method and system
CN110322402A (en) Medical image super resolution ratio reconstruction method based on dense mixing attention network
CN107784628A (en) A kind of super-resolution implementation method based on reconstruction optimization and deep neural network
CN107845065A (en) Super-resolution image reconstruction method and device
CN113506222A (en) Multi-mode image super-resolution method based on convolutional neural network
CN104899906A (en) Magnetic resonance image reconstruction method based on adaptive orthogonal basis
CN106618571A (en) Nuclear magnetic resonance imaging method and system
CN117333750A (en) Spatial registration and local-global multi-scale multi-modal medical image fusion method
CN112700508A (en) Multi-contrast MRI image reconstruction method based on deep learning
CN114913262A (en) Magnetic Resonance Imaging Method and System Optimized by Sampling Mode and Reconstruction Algorithm
CN106023116A (en) Compressed sensing image reconstruction method based on block weighting constraint and compressed sensing image reconstruction device
CN115294225A (en) Progressive back projection network super-resolution reconstruction method for new coronary pneumonia chest CT

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant