[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN107533843B - 用于捕获、编码、分布和解码沉浸式音频的系统和方法 - Google Patents

用于捕获、编码、分布和解码沉浸式音频的系统和方法 Download PDF

Info

Publication number
CN107533843B
CN107533843B CN201680012816.3A CN201680012816A CN107533843B CN 107533843 B CN107533843 B CN 107533843B CN 201680012816 A CN201680012816 A CN 201680012816A CN 107533843 B CN107533843 B CN 107533843B
Authority
CN
China
Prior art keywords
microphone
capture
signal
spatial
audio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680012816.3A
Other languages
English (en)
Other versions
CN107533843A (zh
Inventor
M·M·古德文
J-M·卓特
M·沃尔什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DTS Inc
Original Assignee
DTS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DTS Inc filed Critical DTS Inc
Publication of CN107533843A publication Critical patent/CN107533843A/zh
Application granted granted Critical
Publication of CN107533843B publication Critical patent/CN107533843B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/07Mechanical or electrical reduction of wind noise generated by wind passing a microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/007Two-channel systems in which the audio signals are in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/11Positioning of individual sound objects, e.g. moving airplane, within a sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/15Aspects of sound capture and related signal processing for recording or reproduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/01Enhancing the perception of the sound image or of the spatial distribution using head related transfer functions [HRTF's] or equivalents thereof, e.g. interaural time difference [ITD] or interaural level difference [ILD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/03Application of parametric coding in stereophonic audio systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/11Application of ambisonics in stereophonic audio systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/008Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • H04S7/304For headphones

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Computational Linguistics (AREA)
  • Human Computer Interaction (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Mathematical Physics (AREA)
  • Otolaryngology (AREA)
  • Stereophonic System (AREA)
  • General Health & Medical Sciences (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

一种提供用与标准的两声道或多声道再现系统兼容的通用数字音频格式编码的沉浸式音频录制的灵活捕获、分布和再现的声场编码系统和方法。该端到端系统和方法缓解了对消费者移动设备(诸如智能电话或相机)中的标准的多声道麦克风阵列配置的任何不切实际的需要。该系统和方法从灵活的多声道麦克风阵列配置捕获与传统回放系统兼容的两声道或多声道沉浸式音频信号,并且对这些音频信号进行空间编码。

Description

用于捕获、编码、分布和解码沉浸式音频的系统和方法
相关申请的交叉引用
本申请要求2015年1月30日提交的、标题为“System and Method for Capturingand Encoding a 3-D Audio Soundfield”的美国临时专利申请第62/110,211号的权益,这两篇申请的全部内容通过引用并入本文。
背景技术
随着专用的录制设备变得更加便携和更加实惠,并且随着录制能力在日常设备(诸如智能电话)中变得更加普及,音频内容的捕获(经常与视频结合)已经变得越来越普遍。视频捕获的质量已经持续提高,并且已经超过了音频捕获的质量。现代移动设备上的视频捕获通常是高分辨率的而且DSP处理密集的,但是伴随的音频内容一般是以低保真度和很少的额外处理用单声道捕获的。
为了捕获空间线索,许多现有的音频录制技术采用至少两个麦克风。作为一般规则,录制360度水平环绕音频场景需要至少3个音频声道,而录制三维音频场景需要至少4个音频声道。虽然多声道音频捕获被用于沉浸式音频录制,但是目前可用的更普及的消费者音频递送技术和分布框架限于传输两声道音频。在标准的两声道立体声再现中,存储的或传输的左音频声道和右音频声道意图分别在左和右扩音器或耳机上直接回放。
为了回放沉浸式音频录制,可能需要在各种回放配置中渲染录制的空间音频信息。这些回放配置包括耳机、前置条形音箱(sound-bar)扩音器、前置分立扩音器对、5.1水平环绕扩音器阵列以及包括高度声道的三维扩音器阵列。不论回放配置如何,期望的是为收听者再现空间音频场景,该空间音频场景是捕获的音频场景的基本精确的表示。另外,有利的是提供对于特定回放配置不敏感(agnostic)的音频存储或传输格式。
一种这样的配置不敏感格式是B格式。B格式包括以下信号:(1)W——与全向麦克风的输出相对应的压力信号;(2)X——与前指(forward-pointing)“8字形”麦克风的输出对应的前后(front-to-back)方向信息;(3)Y——与左指“8字形”麦克风的输出相对应的左右(side-to-side)方向信息;以及(4)Z——与上指“8字形”麦克风的输出相对应的上下(up-to down)方向信息。
B格式音频信号可以被空间解码以用于在耳机或灵活的扩音器配置上进行沉浸式音频回放。B格式信号可以直接获得,或者从包括全向和/或双向麦克风或单向麦克风的、标准的接近重合(coincident)麦克风布置导出。特别地,4声道A格式从心形麦克风的四面体布置获得,并且可以经由4×4线性矩阵被转换为B格式。另外,4声道B格式可以被转换为与标准的2声道立体声再现兼容的两声道高保真立体声(ambisonic)UHJ格式。但是,两声道高保真立体声UHJ格式不足以使得能够进行忠实的三维沉浸式音频或水平环绕再现。
其他方法已经被提出以用于将表示环绕或沉浸式声音场景的多个音频声道编码为用于存储和/或分布的简化数据(reduced-data)格式,该简化数据格式随后可以被解码以使得能够忠实地再现原始音频场景。一种这样的方法是时域相位振幅矩阵编码/解码。该方法中的编码器将具有特定的振幅和相位关系的输入声道线性地组合为较小的一组编码声道。解码器组合具有特定的振幅和相位的编码声道来试图恢复原始声道。但是,由于中间声道计数减少,与原始音频场景相比,再现的音频场景的空间局部化保真度可能有损失。
用于改进再现的音频场景的空间局部化保真度的方法是频域相位振幅矩阵解码,该频域相位振幅矩阵解码将矩阵编码的两声道音频信号分解为时间-频率表示。该方法然后分别使各时间-频率分量空间化(spatialize)。时间-频率分解提供输入音频信号的高分辨率表示,在该表示中,与时域中相比,各个源被更离散地表示。结果,当与时域矩阵解码相比时,该方法可以改进随后解码的信号的空间保真度。
对多声道音频表示进行数据简化的另一方法是空间音频编码。在该方法中,输入声道被组合为简化声道(reduced-channel)格式(可能甚至单声道),并且关于音频场景的空间特性的一些辅助信息(side information)也被包括。辅助信息中的参数可以用于将简化声道格式在空间上解码为忠实地近似原始音频场景的多声道信号。
上述相位振幅矩阵编码和空间音频编码方法常常涉及对在录制工作室中创建的多声道音轨进行编码。而且,它们有时涉及简化声道编码的音频信号是完全解码版本的可行的收听替代者的要求。这是为了使得直接回放是一个选项并且不需要定做的解码器。
声场编码是空间音频编码的类似尝试,其集中于捕获并编码“即时”音频场景并且通过回放系统精确地再现该音频场景。声场编码的现有方法依赖于特定的麦克风配置以精确地捕获方向源。而且,它们依靠各种分析技术以适当地处理方向源和扩散源。但是,声场编码所需的麦克风配置对于消费者设备常常是不切实际的。现代的消费者设备通常具有施加于麦克风的数量和位置上的显著的设计约束,这些设计约束可以导致与对于目前的声场编码方法的要求不匹配的配置。声场分析方法常常也是计算密集型的,缺乏支持较低复杂度实现的可扩展性。
发明内容
提供本发明内容是为了以简化的形式介绍下面在具体实施方式中进一步描述的概念的选择。本发明内容并非意图认定要求保护的主题的关键特征或必要特征,也非意图用来限制要求保护的主题的范围。
声场编码系统和方法的实施例涉及音频信号的处理,更具体地涉及三维(3-D)音频声场的捕获、编码和再现。该系统和方法的实施例用于捕获表示沉浸式音频场景的3-D声场。该捕获是使用任意的麦克风阵列配置来执行的。为了高效地存储和分布,捕获的音频被编码为通用空间编码信号(SES)格式。在一些实施例中,用于对该SES格式进行空间解码以用于再现的方法对于用于捕获3-D声场中的音频的麦克风阵列配置是不敏感的。
目前没有使得能够灵活地捕获、分布和再现用与标准的两声道和多声道再现系统兼容的通用数字音频格式编码的沉浸式音频录制的端到端系统。特别地,因为采用标准的多声道麦克风阵列配置在消费者移动设备(诸如智能电话或相机)中是不切实际的,所以需要用于对来自灵活的多声道麦克风阵列配置的与传统回放系统兼容的两声道或多声道沉浸式音频信号进行空间编码的方法。
系统和方法的实施例包括通过选择用于捕获3-D声场的、具有多个麦克风的麦克风配置来对多个麦克风信号进行处理。麦克风用于从至少一个音频源捕获声音。麦克风配置对在音频捕获中使用的多个麦克风中的每个限定麦克风方向性。麦克风方向性是相对于参考方向限定的。
系统和方法的实施例还包括选择包含多个麦克风的虚拟麦克风配置。虚拟麦克风配置用于对关于音频源相对于参考方向的位置的空间信息进行编码。系统和方法还包括基于麦克风配置和虚拟麦克风配置来计算空间编码系数。空间编码系数用于将麦克风信号转换为空间编码信号(SES)。SES包括虚拟麦克风信号,其中虚拟麦克风信号是通过使用空间编码系数组合麦克风信号而获得的。
应注意,替代实施例是可能的,并且本文所讨论的步骤和元件可以依赖于特定实施例改变、添加或消除。在不脱离本发明的范围的情况下,这些替代实施例包括可以使用的替代步骤和替代元件以及可以做出的结构改变。
附图说明
现在参照附图,在附图中,同样的附图标记始终表示对应的部分:
图1是根据本发明的声场编码系统的实施例的概述框图。
图2A是示出图1中所示的声场编码系统的实施例的捕获组件、编码组件和分布组件的细节的框图。
图2B是示出具有按非标准配置布置的麦克风的便携式捕获设备的实施例的框图。
图3是示出图1中所示的声场编码系统的实施例的解码和回放组件的细节的框图。
图4示出根据本发明的声场编码系统的实施例的一般框图。
图5是更详细地描绘与图4中描述的系统类似的系统的实施例的框图,其中T=2。
图6是更详细地示出图5中所示的空间解码器和渲染器的框图。
图7是示出在具有T=2个传输信号并且没有辅助信息的情况下的空间编码器的框图。
图8是示出图7中所示的空间编码器的替代实施例的框图。
图9A示出空间编码器的特定示例实施例,在该空间编码器中,A格式信号被捕获并且被转换为B格式,2声道空间编码信号从B格式导出。
图9B示出B格式W分量、X分量和Y分量在水平面中的方向性图案。
图9C示出通过组合B格式W分量、X分量和Y分量而导出的3个超心形虚拟麦克风的方向性图案。
图10示出图9A中所示的系统的替代实施例,其中B格式信号被转换为5声道环绕声信号。
图11示出图9A中所示的系统的替代实施例,其中B格式信号被转换为定向音频编码(DirAC)表示。
图12是更详细地描绘与图11中所描述的系统类似的系统的实施例的框图。
图13是示出空间编码器的又一实施例的框图,该空间编码器将B格式信号变换到频域中,并且将它编码为2声道立体声信号。
图14是示出空间编码器的实施例的框图,在该空间编码器中,输入麦克风信号首先被分解为直接分量和扩散分量。
图15是示出包括风噪声检测器的空间编码系统和方法的实施例的框图。
图16示出用于捕获N个麦克风信号并且在空间编码之前将它们转换为适合于编辑的M声道格式的系统。
图17示出系统和方法的实施例,作为空间解码过程的一部分,捕获的音频场景通过该系统和方法而被修改。
图18是示出根据本发明的声场编码系统的捕获组件的实施例的一般操作的流程图。
具体实施方式
在以下对声场编码系统和方法的实施例的描述中,参照附图。这些附图以例证的方式示出系统和方法的实施例可以怎样实施的特定示例。理解的是,在不脱离要求保护的主题的范围的情况下,可以利用其他实施例,并且可以做出结构改变。
I.系统概述
本文所描述的声场编码系统和方法的实施例用于使用任意的麦克风阵列配置来捕获表示沉浸式音频场景的声场。为了高效地存储和分布,捕获的音频被编码为通用空间编码信号(SES)格式。在本发明的优选实施例中,用于对该SES格式进行空间解码以用于再现的方法对于所使用的麦克风阵列配置是不敏感的。存储和分布可以使用现有的用于两声道音频的方法(例如,普遍使用的数字媒体分布或流传输网络)来实现。SES格式可以在标准的两声道立体声再现系统上回放,或者可替代地,在灵活的回放配置上以高空间保真度再现(如果适当的SES解码器可用)。SES编码格式使得能够进行如下的空间解码:该空间解码被配置为在各种回放配置(例如耳机或环绕声系统)中实现原始沉浸式音频场景的忠实再现。
声场编码系统和方法的实施例提供用于用任意的麦克风配置捕获三维声场并且对该三维声场进行编码的灵活的且可扩展的技术。这不同于现有方法,因为不需要特定的麦克风配置。此外,本文所描述的SES编码格式对于不需要空间解码器的高质量两声道回放是可行的。这不同于其他三维声场编码方法(诸如高保真立体声B格式或DirAC),因为它们通常不涉及直接从编码的音频信号提供忠实的沉浸式3-D音频回放。而且,这些编码方法可能不能在不将辅助信息包括在编码信号中的情况下提供高质量回放。就本文所描述的系统和方法的实施例而言,辅助信息是可选的。
捕获、编码和分布系统
图1是声场编码系统100的实施例的概述框图。系统100包括捕获组件110、分布组件120以及回放组件130。在捕获组件中,输入麦克风或优选地麦克风阵列接收音频信号。捕获组件110从各种麦克风配置接受麦克风信号135。以示例的方式,这些配置包括单声道、立体声、3麦克风环绕、4麦克风全向声(periphonic)(诸如高保真立体声B格式)或任意的麦克风配置。第一符号138示出麦克风信号格式中的任何一个可以被选择为输入。麦克风信号135被输入到音频捕获组件140。在系统100的一些实施例中,音频捕获组件140对麦克风信号135进行处理以移除不期望的环境噪声(诸如静止的背景噪声或风噪声)。
捕获的音频信号被输入到空间编码器145。这些音频信号被空间编码为适合于随后存储和分布的空间编码信号(SES)格式。随后的SES被传递到分布组件120的存储/传输组件150。在一些实施例中,存储/传输组件150用音频波形编码器(诸如MP3或AAC)对SES进行编码以便在不修改SES中编码的空间线索的情况下降低存储要求或传输数据速率。在分布组件120中,音频被存储或通过分布网络提供到回放设备。
在回放组件130中,描绘了各种回放设备。如第二符号152所描绘的,回放设备中的任何一个可以被选择。图1中示出了第一回放设备155、第二回放设备160以及第三回放设备165。对于第一回放设备155,SES被空间解码以用于通过耳机最佳地回放。对于第二回放设备160,SES被空间解码以用于通过立体声系统最佳地回放。对于第三回放设备165,SES信号被空间解码以用于通过多声道扩音器系统最佳地回放。在普遍的使用情景中,如本领域技术人员将理解的并且如以下图中所示出的,音频捕获、分布和回放可以结合视频发生。
图2A是示出图1中所示的声场编码系统100的捕获组件110的细节的框图。在捕获组件110中,录制设备支持连接到第一音频捕获子组件200的四麦克风阵列和连接到第二音频捕获子组件210的两麦克风阵列两者。第一音频捕获子组件200和第二音频捕获子组件210的输出分别被提供给第一空间编码器子组件220和第二空间编码器子组件230,在第一空间编码器子组件220和第二空间编码器子组件230中,它们被编码为空间编码信号(SES)格式。应注意,系统100的实施例不限于两麦克风或四麦克风阵列。在其他情况下,其他麦克风配置将用适当的空间编码器被类似地支持。在一些实施例中,音频位流编码器240对由第一空间编码器子组件220或由第二空间编码器子组件230生成的SES进行编码。从编码器240输出的编码信号被打包(packed)到音频位流250中。
在一些实施例中,视频被包括在捕获组件110中。如图2A中所示,视频捕获组件260捕获视频信号,并且视频编码器270对视频信号进行编码以产生视频位流。A/V复用器280复用音频位流250与相关联的视频位流。复用的音频和视频位流在分布组件120的存储/传输组件150中被存储或传输。位流数据可以作为数据文件被临时存储在捕获设备上、本地媒体服务器上、或计算机网络中,并且使得可用于传输或分布。
在一些实施例中,第一音频捕获子组件200捕获高保真立体声B格式信号,并且由第一空间编码器子组件220进行的SES编码执行常规的B格式到UHJ两声道立体声编码,如例如在1985年11月JAES第33卷、第11期、第859–871页上的、Michael Gerzon的“Ambisonicsin multichannel broadcasting and video(多声道广播和视频中的高保真立体声)”中所描述的那样。在替代实施例中,第一空间编码器子组件220执行B格式信号到两声道SES的频域空间编码,不像两声道UHJ格式,两声道SES可以保留三维空间音频线索。在又一实施例中,连接到第一音频捕获子组件200的麦克风按非标准配置布置。
图2B是示出具有按非标准配置布置的麦克风的便携式捕获设备201的实施例的示图。图2B中的便携式捕获设备201包括用于音频捕获的麦克风202、203、204和205以及用于视频捕获的相机206。在便携式设备(诸如智能电话)中,麦克风在设备201上的定位可以受到工业设计考虑或其他因素的约束。由于这样的约束,麦克风202、203、204和205可以被以不是标准的麦克风配置(诸如本领域技术人员所认识的录制麦克风配置)的方式配置。实际上,配置可以是特定于特别的捕获设备的。图2B仅提供了这样的设备特定配置的示例。应注意,各种其他的实施例是可能的,并不限于该特定麦克风配置。另外,本发明的实施例适用于任意的麦克风配置。
在替代实施例中,只有两个麦克风信号被(第二音频捕获子组件210)捕获,并且被(第二空间编码器子组件230)空间编码。到两个麦克风声道的这个限制可以例如在存在最小化设备制造成本的产品设计决策时发生。在这种情况下,在SES中编码的空间信息的保真度可能相应地受损。例如,SES可能缺乏上对下或前对后区别线索。但是,在本发明的有利实施例中,对于相同的原始捕获声场,在从第二空间编码器子组件230产生的SES中编码的左对右区别线索基本上等同于在从第一空间编码器子组件220产生的SES中编码的左对右区别线索(如收听者在标准的两声道立体声回放配置中感知到的)。因此,不论捕获麦克风阵列配置如何,SES格式都保持与标准的两声道立体声再现兼容。
在一些实施例中,第一空间编码器子组件220还产生被包括在SES中的空间音频辅助信息或元数据。该辅助信息在一些实施例中是根据对捕获的麦克风信号之间的声道间关系进行频域分析而导出的。这样的空间音频辅助信息被音频位流编码器240合并到音频位流中,并且随后被存储或传输,使得它可以可选地在回放组件中被检索并且被利用以优化空间音频再现保真度。
更一般地,在一些实施例中,由音频位流编码器240产生的数字音频位流被格式化以包括两声道或多声道向后兼容的音频下混信号以及可选的扩展(在本文中被称为“辅助信息”),这些扩展可以包括元数据和附加音频声道。标题为“Encoding and reproductionof three dimensional audio soundtracks(三维音频声轨的编码和再现)”的美国专利申请US2014-0350944 A1中描述了这样的音频编码格式的示例,该申请全文通过引用并入本文。
虽然如图2A中所描绘的那样在复用音频和视频之前执行空间编码(出于传统和兼容性的目的)常常是有用的,但是在其他实施例中,原始捕获的多声道音频信号可以被“照原样”与视频复用,并且SES编码可以在递送链中的某个后一级发生。例如,空间编码(包括可选的辅助信息提取)可以在基于网络的计算机上离线地执行。该方法可以允许比当在原始录制设备处理器上实现空间编码计算时可以实现的信号分析计算更先进的信号分析计算。
在一些实施例中,由音频位流编码器240编码的两声道SES包含在原始声场中捕获的空间音频线索。在一些实施例中,音频线索是声道间振幅和相位关系(在由麦克风阵列的几何结构和麦克风数量施加的保真度限制内)的形式,该声道间振幅和相位关系对于捕获设备上所采用的特别的麦克风阵列配置是基本上不敏感的。两声道SES可以后来通过提取编码的空间音频线索并且渲染对于通过可用的回放设备再现表示原始音频场景的空间线索最佳的音频信号来进行解码。
图3是示出图1中所示的声场编码系统100的回放组件130的细节的框图。回放组件130从分布组件120的存储/传输组件150接收媒体位流。在接收的位流包括音频位流和视频位流两者的实施例中,由A/V解复用器(demuxer)300对这些位流进行解复用。视频位流被提供给视频解码器310以用于解码和在监视器320上回放。音频位流被提供给音频位流解码器330,音频位流解码器330准确地或以保留在SES中编码的空间线索的形式恢复原始的编码的SES。例如,在一些实施例中,音频位流解码器330包括与可选地被包括在音频位流编码器240中的音频波形编码器互反(reciprocal)的音频波形解码器。
在一些实施例中,从解码器330输出的解码的SES包括与标准的两声道立体声再现兼容的两声道立体声信号。该信号可以被直接提供给传统回放系统340(诸如一对扩音器)而不需要进一步的解码或处理(除了各个左音频信号和右音频信号的数模转换和放大之外)。如前所述,在SES中包括的向后兼容的立体声信号使得它在传统回放系统340上提供原始捕获音频场景的可行的再现。在替代实施例中,传统回放系统340可以是多声道回放系统(诸如5.1或7.1环绕声再现系统)并且由音频位流解码器330提供的解码的SES可以包括与传统回放系统340直接兼容的多声道信号。
在解码的SES被直接提供给两声道或多声道传统回放系统340的实施例中,音频位流中所包括的任何辅助信息(诸如附加元数据或音频波形声道)可以简单地被音频位流解码器330忽略。因此,整个回放组件130可以是传统音频或A/V回放设备,诸如任何现有的移动电话或计算机。在一些实施例中,捕获组件110和分布组件120与任何传统音频或视频媒体回放设备向后兼容。
在一些实施例中,可选的空间音频解码器被应用于从音频位流解码器330输出的SES。如图3中所示,SES耳机解码器350执行SES解码以用于由耳机355进行耳机输出和回放。SES立体声解码器360执行SES解码以生成到立体声扩音器回放系统365的立体声扩音器输出。SES多声道解码器370执行SES解码以生成到多声道扩音器回放系统375的多声道扩音器输出。这些SES解码器中的每个执行针对对应的回放配置专门定制的解码算法。回放组件30的实施例包括用于任意回放配置的上述SES解码器中的一个或多个。不论回放配置如何,这些SES解码器都不需要关于原始捕获或录制配置的信息。例如,在一些实施例中,SES解码器包括高保真立体声UHJ到B格式解码器,之后接着是针对特定回放配置定制的B格式空间解码器,如例如1985年11月JAES第33卷、第11期、第859–871页上的、Michael Gerzon的“Ambisonics in multichannel broadcasting and video(多声道广播和视频中的高保真立体声)”中所描述的那样。
以示例的方式,在支持耳机回放的实施例中,由SES耳机解码器350对SES进行解码以输出再现编码的音频场景的双耳信号。这是通过对嵌入的空间音频线索进行解码并且应用适当的方向滤波(诸如头部相关传递函数(HRTF))来实现的。在一些实施例中,这可以涉及UHJ到B格式解码器,之后接着是双耳转码器。解码器还可以支持头部跟踪,使得再现的音频场景的方位在耳机回放期间可以被自动地调整以连续地补偿收听者的头部方位上的改变,因而增强收听者沉浸在原始捕获的声场中的错觉。
作为连接到两声道扩音器系统(诸如独立的扩音器或被构建到膝上型或平板计算机、电视机或长条音箱外壳中的扩音器)的回放组件130的实施例的示例,SES首先被SES立体声解码器360空间解码。在一些实施例中,解码器360包括等同于SES耳机解码器350的SES解码器,该SES解码器的双耳输出信号可以被适当的串音消除(crosstalk cancellation)电路进一步处理以提供在SES中编码的空间线索的忠实再现(针对特定的两声道扩音器回放配置定制)。
作为连接到多声道扩音器系统的回放组件130的实施例的示例,SES首先被SES多声道解码器370空间解码。多声道扩音器回放系统375的配置可以是标准的5.1或7.1环绕声系统配置或包括例如高度声道的任何任意的环绕声或沉浸式三维配置(诸如22.2系统配置)。
由SES多声道解码器370执行的操作可以包括重新格式化在SES中包括的两声道或多声道信号。该重新格式化是为了根据扩音器输出布局以及在SES中所包括的可选的附加元数据或辅助信息而忠实地再现在SES中编码的空间音频场景而做出的。在一些实施例中,SES包括两声道或多声道UHJ或B格式信号,并且SES多声道解码器370包括针对特定回放配置而优化的空间解码器。
在SES包括对于标准的两声道立体声回放可行的向后兼容的两声道立体声信号的其他实施例中,可以采用替代的两种声道编码/解码方案以便克服UHJ编码/解码方法的已知的就空间音频保真度而言的限制。例如,为了实现改进的空间线索分辨率并且保留三维信息,SES编码器还可以利用可以在多个频带中执行空间编码的两声道频域相位振幅编码方法。另外,SES编码器中的可选的元数据提取以及这样的空间编码方法的组合使得能够进一步提高再现的音频场景相对于原始捕获的声场的保真度和精确度。
在一些实施例中,SES解码器驻留在具有最适合于假定的收听情景的默认回放配置的回放设备上。例如,耳机再现可以是用于移动设备或相机的假定收听情景,使得SES解码器可以被配置为以耳机为默认解码格式。作为另一示例,7.1多声道环绕系统可以是用于家庭影院收听情景的假定回放配置,所以驻留在家庭影院设备上的SES解码器可以被配置为以7.1多声道环绕为默认回放配置。
II.系统细节和替代实施例
现在将讨论声场编码系统100和方法的各种实施例的系统细节。应注意,下面仅对可以实现组件、系统和编解码器(codec)的数种方式中的几个进行详细描述。本文所示和所描述的那些的许多变型是可能的。
灵活的沉浸式音频捕获和空间编码实施例
图4示出声场编码系统100中的空间编码器和解码器的实施例的一般框图。参照图4,N个音频信号分别被N个麦克风捕获以获得N个麦克风信号。N个麦克风中的每个具有方向性图案,该方向性图案将其响应表征为频率和相对于参考方向的方向的函数。在空间编码器410中,N个信号被组合为T个信号以使得T个信号中的每个具有与该信号相关联的规定的方向性图案。
在一些实施例中,空间编码器410还产生由图4中的虚线所表示的辅助信息S,在一些实施例中,辅助信息S包括空间音频元数据和/或附加的音频波形信号。T个信号以及可选的辅助信息S形成空间编码信号(SES)。SES被传输或存储以用于随后使用或分布。在优选实施例中,T小于N,使得N个麦克风信号到T个传输信号的编码实现表示由N个麦克风捕获的音频场景所需要的数据量减少。
在一些优选实施例中,辅助信息S由以比T个音频传输信号的数据速率低的数据速率存储的空间线索组成。这意味着包括辅助信息S一般不大幅地提高总SES数据速率。空间解码器和渲染器420将SES转换为针对目标回放系统(未示出)优化的Q个回放信号。目标回放系统可以是耳机、两声道扩音器系统、五声道扩音器系统或一些其他的回放配置。
应注意,在图4中,不失一般性地,传输信号的数量T被描绘为2。对于传输声道的数量的其他设计选择被包括在本发明的范围内。例如,在一些实施例中,T可以被选择为1。在这些实施例中,传输信号可以是N个捕获信号的单音(monophonic)下混,并且一些空间辅助信息S可以被包括在SES中以便对表示所捕获的声场的空间线索进行编码。在其他实施例中,T可以被选择为大于2。当T大于1时,将空间线索包括在辅助信息S中不是必需的,因为可以对T个音频信号本身中的空间线索进行编码。以示例的方式,空间线索可以被映射到T个传输信号之间的声道间振幅和相位差。
图5是更详细地描绘与图4中所描述的系统类似的系统100的实施例的框图,其中T=2。在这些实施例中,N个麦克风信号被输入到空间编码器410中。空间线索被空间编码器410编码到T个传输信号中并且辅助信息S可以被一起省略。在一些实施例中,如前面结合图1和图2所描述的,两声道SES使用标准波形编码器(诸如MP3或AAC)被感知编码,通过可用的数字分布媒体或网络和广播基础设施被容易地分布,并且在标准的两声道立体声配置中被直接回放(使用耳机或扩音器)。在这样的实施例中,重要的优点是,编码和传输系统支持通过普遍可用的2声道立体声系统的回放而不需要空间解码和渲染过程。
系统100的一些实施例包含单个麦克风(N=1)。应注意,在这些实施例中,空间信息将不被捕获,因为在麦克风信号中没有空间多样性(spatial diversity)。在这些情形下,伪立体声技术(诸如例如JAES 18(2)(1970年)上的、Orban的“A Rational Techniquefor Synthesizing Pseudo-Stereo From Monophonic Sources(用于从单音源合成伪立体声的合理技术)”中所描述的技术)可以在空间编码器410中被采用以从单音捕获音频信号生成2声道SES,该2声道SES适合于当通过标准的立体声再现系统直接回放时产生人造的空间印象。
系统100的一些实施例包括空间解码器和渲染器420。在一些优选实施例中,空间解码器和渲染器420的功能是针对使用中的特定回放配置而对再现的音频场景的空间保真度进行优化。例如,空间解码器和渲染器420提供以下中的一个或多个:(a)(例如使用基于HRTF的虚拟化技术)针对耳机回放中的沉浸式3-D音频再现而被优化的2个输出声道;(b)(例如使用虚拟化和串音消除技术)针对通过2个扩音器的回放中的沉浸式3-D音频再现而被优化的2个输出声道;以及(c)针对通过5个扩音器的回放中的沉浸式3-D音频或环绕声再现而被优化的5个输出声道。这些是再现格式的代表性示例。在一些实施例中,如下面更详细地解释的,空间解码器和渲染器420被配置为提供针对通过任何任意的再现系统的再现而被优化的回放信号。
图6是更详细地示出图4和图5中所示的空间解码器和渲染器420的实施例的框图。如图6中所示,空间解码器和渲染器420包括空间解码器600和渲染器610。不失一般性地示出的SES包括T=2个声道以及可选的辅助信息S。解码器600首先将SES解码为P个音频信号。在示例实施例中,解码器600输出5声道矩阵解码(matrix decoded)信号。P个音频信号然后被处理以形成针对再现系统的回放配置而被优化的Q个回放信号。在一个示例实施例中,SES是2声道UHJ编码信号,解码器600是常规的高保真立体声UHJ到B格式转换器,并且渲染器610进一步针对Q声道回放配置而对B格式信号进行解码。
图7是示出在具有T=2个传输信号并且没有辅助信息的情况下的SES捕获和编码的框图。在这些实施例中,空间编码器410被设计为将N个麦克风信号编码为立体声信号。如上面所解释的,T=2的选择与普遍的感知音频波形编码器(诸如AAC或MP3)、音频分布媒体和再现系统是兼容的。这N个麦克风可以是重合的麦克风、接近重合的麦克风或不重合的麦克风。麦克风可以被构建到单个设备(诸如相机、智能电话、现场录制机或用于这样的设备的附件)中。另外,这N个麦克风信号可以跨多个同类(homogeneous)或不同类(heterogeneous)的设备或设备附件而同步。
在一些实施例中,T=2个传输声道被编码以模拟重合的虚拟麦克风信号,因为重合(信号的时间对齐)对于促进高质量空间解码是有利的。在使用不重合麦克风的实施例中,基于对到达方向进行分析并且应用对应补偿的时间对齐的提供可以被合并在SES编码器中。在替代实施例中,可以依赖于与预期解码器相关联的空间音频再现使用情景和应用来将立体声信号导出为对应于双耳或不重合麦克风录制信号。
图8是示出图4至图7中所示的空间编码器410的实施例的框图。如图8中所示,N个麦克风信号被输入到空间分析器和转换器800,在空间分析器和转换器800中,N个麦克风信号首先被转换为由M个信号组成的中间格式。这M个信号随后被渲染器810编码为2个声道以用于传输。当中间M声道格式比N个麦克风信号更适合于由渲染器810处理时,图8中所示的实施例是有利的。在一些实施例中,到M个中间声道的转换可以合并N个麦克风信号的分析。而且,在一些实施例中,空间转换过程800可以包括多个转换步骤和中间格式。
特定实施例的细节
图9A示出图7中所示的空间编码器410和方法的特定示例实施例,在该实施例中使用A格式麦克风信号捕获。初始4声道A格式麦克风信号可以被A格式到B格式转换器900容易地转换为高保真立体声B格式信号(W、X、Y、Z)。可替代地,可以使用直接提供B格式信号的麦克风,在这种情况下,A格式到B格式转换器900是不必需的。
各种虚拟麦克风方向性图案可以从B格式信号形成。在本实施例中,B格式到超心形转换器块910将B格式信号转换为使用这些等式形成的一组三个超心形麦克风信号:
Figure BDA0001392903550000171
Figure BDA0001392903550000172
Figure BDA0001392903550000173
其中例如设计参数被设置为:
Figure BDA0001392903550000174
θS=π以及p=0.33。W是B格式中的全向压力信号,X是B格式中的前后8字形信号,并且Y是B格式中的左右8字形信号。B格式中的Z信号(上下8字形)没有用于该转换中。VL是水平面中与具有转向到-60度(根据
Figure BDA0001392903550000175
弧度角)的方向性图案的超心形对应的虚拟左麦克风信号,VR是水平面中与具有转向到+60度(根据
Figure BDA0001392903550000176
弧度角)的方向性图案的超心形对应的虚拟右麦克风信号,并且VS是水平面中与具有转向到+180度(根据θS=π弧度角)的方向性图案的超心形对应的虚拟环绕麦克风信号。参数p=0.33是根据虚拟麦克风信号的期望方向性选择的。
图9B示出线性标度(scale)上的B格式分量的方向性图案。绘图920示出了全向W分量的方向性图案。绘图930示出了前后X分量的方向性图案,其中0度是向前方向。绘图940示出了左右Y分量的方向性图案。
图9C示出本实施例中的超心形虚拟麦克风在dB标度上的方向性图案。绘图950示出了VL的方向性图案,虚拟麦克风被转向到-60度。绘图960示出了VR的方向性图案,虚拟麦克风被转向到+60度。绘图970示出了VS的方向性图案,虚拟麦克风被转向到+180度。
空间编码器410将由转换器910产生的所得的3声道超心形信号(VL、VR、VS)转换为两声道SES。这是通过使用以下相位振幅矩阵编码等式来实现的:
LT=aVL+jbVS
RT=aVR-jbVS
其中LT标示编码的左声道信号,RT标示编码的右声道信号,j标示90度相移,a和b是3:2矩阵编码权重,并且VR、VL和VS分别是左声道虚拟麦克风信号、右声道虚拟麦克风信号以及环绕声道虚拟麦克风信号。在一些实施例中,3:2矩阵编码权重可以被选择为a=1且
Figure BDA0001392903550000181
这保持了编码的SES中的3声道信号(VL、VR、VS)的总功率。如本领域的技术人员在阅读时将清楚的,上面的矩阵编码等式具有以下效果:将图9C中所示的与3声道信号(VL、VR、VS)相关联的一组三个虚拟麦克风方向性图案转换为与两声道SES(LT、RT)相关联的一对复值虚拟麦克风方向性图案。
图9A中所描绘的并且在上面描述的实施例实现可以适合于低功率设备和应用的低复杂度空间编码器。注意,在本发明的范围内,用于中间3声道表示的替代方向性图案可以从B格式信号形成。所得的两声道SES适合用于使用相位振幅矩阵解码器(诸如图6中所示的空间解码器600)进行空间解码。
图10示出图7中所示的空间编码器410和方法的特定示例实施例,在该示例实施例中,B格式信号被转换为5声道环绕声信号(L、R、C、LS、RS)。应注意,L标示前左声道,R标示前右声道,C标示前中央声道,LS标示左环绕声道,并且RS标示右环绕声道。类似于图9A,A格式麦克风信号被输入到A格式到B格式转换器1000并且被转换为B格式信号。该4声道B格式信号被B格式到多声道格式转换器1010处理,B格式到多声道格式转换器1010在一些实施例中是多声道B格式解码器。接着,空间编码器通过在实施例中使用以下相位振幅矩阵编码等式来将由转换器1010产生的5声道环绕声信号转换为两声道SES:
LT=a1L+a2R+a3C+ja4Ls-ja5Rs
RT=a2L+a1R+a3C-ja5Ls+ja4Rs
其中LT和RT分别标示由空间编码器输出的左SES信号和右SES信号。在一些实施例中,矩阵编码系数可以被选择为a1=1、a2=0、
Figure BDA0001392903550000191
Figure BDA0001392903550000192
Figure BDA0001392903550000193
依赖于两声道编码信号中的前声道和环绕声道的期望空间分布,可以使用替代的一组矩阵编码系数。如图9A中的空间编码器实施例中那样,所得的两声道SES适合于由相位振幅矩阵解码器(诸如图6中所示的空间解码器600)进行空间解码。
在图10中所示的实施例中,B格式信号被转换为5声道中间环绕声格式。但是,将清楚的是,在本发明的范围内,可以使用任意的水平环绕或三维中间多声道格式。在这些情况下,转换器1010和空间编码器410的操作可以根据分配给各个中间声道的假定的一组方向来容易地配置。
图11示出图7中所示的空间编码器410和方法的特定示例实施例,在该实施例中,B格式信号被转换为定向音频编码(DirAC)表示。具体地,如图11中所示,A格式麦克风信号被输入到A格式到B格式转换器1100。所得的B格式信号被B格式到DirAC格式转换器1110转换为DirAC编码信号,如例如2007年6月JAES第55卷、第6期、第503-516页上的、Pulkki的“Spatial Sound Reproduction with Directional Audio Coding(利用定向音频编码的空间声音再现)”中所描述的那样。空间编码器410然后将DirAC编码信号转换为两声道SES。在一个实施例中,该转换通过将频域DirAC波形数据转换为两声道表示来实现,该两声道表示例如是通过2008年10月第125届AES大会上呈现的、Jot的“Two-Channel MatrixSurround Encoding for Flexible Interactive 3-D Audio Reproduction(用于灵活交互式3D音频再现的两声道矩阵环绕编码)”中所描述的方法获得的。所得的SES适合于由相位振幅矩阵解码器(诸如图6中所示的空间解码器600)进行空间解码。
DirAC编码包括区分声场的直接分量和扩散分量的频域分析。在根据本发明的空间编码器(诸如空间编码器410)中,在频域表示内实施两声道编码以便充分利用DirAC分析。这导致空间保真度的程度高于使用常规的时域相位振幅矩阵编码技术(诸如结合图9A和图10描述的空间编码器实施例中使用的那些)的空间保真度的程度。
图12是更详细地示出A格式麦克风信号到SES的转换的实施例的框图。如图12中所示,A格式麦克风信号被使用A格式到B格式转换器1200而转换为B格式信号。B格式信号通过使用时间-频率变换1210被转换到频域。变换1210是短时傅立叶变换、小波变换、子带滤波器组或将时域信号变换为时间-频率表示的一些其他操作中的至少一个。接着,B格式到DirAC格式转换器1220将B格式信号转换为DirAC格式信号。DirAC信号被输入到空间编码器410并且被空间编码为两声道SES,该两声道SES仍然是在频域中表示的。信号使用频率-时间变换1240被转换回时域,频率-时间变换1240是时间-频率变换1210的逆变换,或者在完美逆变换是不可能的或不可行的情况下,是该逆变换的近似。应注意,为了改进空间编码的保真度,可以将直接时间到频率变换和逆时间到频率变换两者合并在根据本发明的编码器实施例中的任何一个中。
图13是示出空间编码器410的又一实施例的框图,该空间编码器410在空间编码之前将B格式信号变换到频域中。参照图13,A格式麦克风信号被输入到A格式到B格式转换器1300。所得的信号使用时间-频率变换器1310从时域被转换到频域中。该信号使用基于B格式主导的编码器1320被编码。在一个实施例中,SES是根据以下等式编码的两声道立体声信号:
LT=aLW+bLX+cLY+dLZ
RT=aRW+bRX+cRY+dRZ
其中系数(aL、bL、cL、dL)是从频域3-D主导方向
Figure BDA0001392903550000201
确定的时间依赖系数和频率依赖系数,频域3-D主导方向
Figure BDA0001392903550000202
是从B格式信号(W、X、Y、Z)计算的,使得如果声场由3-D位置
Figure BDA0001392903550000211
处的单个声源S组成,则所得的编码信号由以下等式给出:
Figure BDA0001392903550000212
Figure BDA0001392903550000213
其中kL和kR是使得左/右声道间振幅和相位差与3-D位置
Figure BDA0001392903550000214
唯一地映射的复因子。例如在2008年10月第125届AES大会上呈现的、Jot的“Two-Channel Matrix SurroundEncoding for Flexible Interactive 3-D Audio Reproduction(用于灵活交互式3D音频再现的两声道矩阵环绕编码)”中提出了用于这个目的的示例映射公式。这样的3-D编码也可以对其他声道格式执行。编码信号使用频率-时间变换器1330从频域被变换到时域中。
音频场景可以由离散声源(诸如说话者或乐器)或扩散声音(诸如雨、掌声或混响)组成。一些声音可以是部分扩散的,例如大型引擎的隆隆声。在空间编码器中,可能有益的是以不同于扩散声音的方式对离散声音(这些声音从不同的方向到达麦克风)进行处理。
图14是示出空间编码器410的实施例的框图,在空间编码器410中,输入的麦克分信号首先被分解为直接分量和扩散分量。直接分量和扩散分量然后被分别编码以便保持直接分量和扩散分量的不同空间特性。例如在第133届AES大会(2012年10月)上呈现的、Thompson等人的“Direct-Diffuse Decomposition of Multichannel Signals Using aSystem of Pairwise Correlations(使用成对相关系统的多声道信号的直接-扩散分解)”中描述了用于多声道音频信号的直接/扩散分解的示例方法。应理解,直接/扩散分解可以与早前描绘的各种空间编码系统结合使用。
在户外设置中由麦克风捕获的音频信号可能被风噪声破坏。在一些情况下,风噪声可能严重地影响一个或多个麦克风上的信号质量。在这些及其他情形下,有益的是包括风噪声检测模块。图15是示出包括风噪声检测器的系统100和方法的实施例的框图。如图15中所示,N个麦克风信号被输入到自适应空间编码器1500。风噪声检测器1510提供每个麦克风中的风噪声能量或能量比的估计。被严重破坏的麦克风信号可以从编码器中使用的声道组合自适应地排除。另一方面,被部分破坏的麦克风可以在编码组合中被减小权重以控制在编码信号中风噪声的量。在一些情况下(诸如当捕获快速移动的户外动作场景时),基于风噪声检测的自适应编码可以被配置为在编码音频信号中传达风噪声的至少某个部分。
自适应编码对于考虑对一个或多个麦克风的、来自于声学环境的阻挡(例如,被设备的用户的手指或设备上的累积的灰尘阻挡)也可以是有用的。在阻挡的情况下,麦克风提供不良的信号捕获,并且从麦克风信号导出的空间信息可能由于低信号电平而误导。阻挡状况(condition)的检测可以用于把被阻挡的麦克风从编码过程排除。
在一些实施例中,可能期望的是在对信号进行编码以用于存储或分布之前对音频场景实施编辑操作。这样的编辑操作可以包括相对于某个声源放大或缩小、移除不想要的声音分量(诸如背景噪声)以及将声音对象添加到场景中。图16示出用于捕获N个麦克风信号并且将它们转换为适合于编辑的M声道格式的系统。
特别地,N个麦克风信号被输入到空间分析器和转换器1600。由转换器1600输出的所得的M声道信号被提供给音频场景编辑器1610,音频场景编辑器1610由用户控制以实行对场景的期望修改。在修改被做出之后,场景被空间编码器1620空间编码。为了例证的目的,图1620示出两声道SES格式。可替代地,N个麦克风信号可以被直接提供给编辑工具。
在捕获设备被配置为仅提供两声道SES格式的实施例中,SES可以被解码为适合于编辑的多声道格式并且然后被重新编码以用于存储或分布。因为额外的解码/编码过程可能引入空间保真度上的一些劣化,所以优选的是使得能够在两声道空间编码之前对多声道格式进行编辑操作。在一些实施例中,设备可以被配置为与意图用于编辑的M声道格式或N个麦克风信号同时地输出两声道SES。
在一些实施例中,SES可以被导入到非线性视频编辑套件中,并且被关于传统的立体声电影捕获而操控。在没有空间上有害的音频处理效果被应用于该内容的前提下,所得内容的空间完整性将保持完好的后编辑。SES解码和重新格式化也可以被作为视频编辑套件的一部分而被应用。例如,如果内容正在被烧录到DVD或蓝光盘,则可以应用多声道扬声器解码和重新格式化并且将结果编码在多声道格式中以用于随后的多声道回放。可替代地,音频内容可以被“照原样”创作以用于在任何兼容的回放硬件上进行传统立体声回放。在这种情况下,如果适当的重新格式化算法存在于设备上,则可以在回放设备上应用SES解码。
图17示出系统和方法的实施例,作为解码过程的一部分,捕获的音频场景通过该系统和方法被修改。更具体地,N个麦克风信号被空间编码器1700编码为SES,在一些实施例中,SES包括辅助信息S。SES被存储,被传输,或者既被存储又被传输。空间解码器1710用于对编码的SES进行解码,并且渲染器1720提供Q个回放信号。由解码器1710使用场景修改参数来对音频场景进行修改。
在一些优选实施例中,场景修改在解码过程中修改可以被高效地实施的点处发生。例如,在使用耳机进行音频渲染的虚拟现实应用中,关键的是根据用户的头部的运动来实时地更新声音场景的空间线索,使得声音对象的感知局部化与它们的视觉对应物的感知局部化匹配。为了实现这一点,使用头部跟踪设备来检测用户的头部的方位。然后基于这些估计来连续地更新虚拟音频渲染使得再现的声音场景表现得独立于收听者的头部运动。
头部方位的估计可以被合并在空间解码器1710的解码过程中,使得渲染器1720再现稳定的音频场景。这等同于在解码之前旋转场景或者在虚拟化之前渲染到旋转的中间格式(由空间解码器输出的P个声道)。在辅助信息被包括在SES中的实施例中,这样的场景旋转可以包括辅助信息中所包括的空间元数据的操控。
在空间解码过程中可以被支持的其他感兴趣修改包括使音频场景的宽度扭曲(warp)以及音频变焦。在一些实施例中,可以对解码的音频信号进行空间扭曲以与原始视频录制的视场匹配。例如,如果原始视频使用广角透镜,则音频场景可以跨类似的角弧(angular arc)被拉伸以便更好地匹配音频线索和视觉线索。在一些实施例中,可以将音频修改为放大到感兴趣空间区域中或者从区域缩小;音频变焦可以与视频变焦修改结合。
在一些实施例中,解码器可以修改解码信号的空间特性以便引导或强调在特定空间定位上的解码信号。这可以允许提高或降低某些听觉事件(诸如例如对话)的突显性。在一些实施例中,这可以通过使用语音检测算法来促进。
III.操作概述
声场编码系统100和方法的实施例使用任意的麦克风阵列配置来捕获表示沉浸式音频场景的声场。捕获的音频被用通用的SES格式编码,该SES格式对于所使用的麦克风阵列配置是不敏感的。
图18是示出图1-17中所示的声场编码系统100的捕获组件110的实施例的一般操作的流程图。该操作从选择包括多个麦克风的麦克风配置开始(方框1800)。这些麦克风用于从至少一个音频源捕获声音。麦克风配置限定每个麦克风相对于参考方向的麦克风方向性图案。另外,包括多个虚拟麦克风的虚拟麦克风配置被选择(方框1810)。
该方法基于麦克风配置和虚拟麦克风配置来计算空间编码系数(方框1820)。使用空间编码系数来将来自多个麦克风的麦克风信号转换为空间编码信号(方框1830)。系统100的输出是空间编码信号(方框1840)。该信号包含关于音频源相对于参考方向的位置的编码空间信息。
如上所述,本文公开了系统100和方法的各种其他的实施例。以示例的方式,而非限制,再次参照图7,空间编码器410可以从N:2空间编码器推广到N:T空间编码器。而且,在本发明的范围内,对于产生与被配置为在灵活的回放配置中进行沉浸式音频再现的相位振幅矩阵解码器以及直接两声道立体声回放兼容的两声道SES(LT、RT)的编码器,可以实现各种其他的实施例。在使用标准的麦克风配置(诸如高保真立体声A或B格式)的实施例中,可以基于麦克风格式的制定的方向性图案来指定两声道编码等式。
更一般地,在麦克风由于设备设计约束或设备的网络的自组性(adhoc nature)而可以被置于非标准配置中的实施例中,可以通过基于相对麦克风定位以及测量的或估计的麦克风的方向性组合麦克风信号来形成空间编码信号的导出。这些组合可以被形成以最佳地实现适合于两声道SES编码的规定方向性图案。给定安装在相应录制设备或附件上的N个麦克风的方向性图案
Figure BDA0001392903550000251
(其中方向性图案是表征随着频率f和3-D位置
Figure BDA0001392903550000252
而变化的麦克风的响应的复振幅因子),可以对每个麦克风、在每个频率处对一组系数kLn(f)和kRn(f)进行优化以形成用于左SES声道和右SES声道的虚拟麦克风方向性图案:
Figure BDA0001392903550000253
Figure BDA0001392903550000254
其中实施系数优化以最小化所得的左虚拟麦克风方向性图案和右虚拟麦克风方向性图案与每个编码声道的规定的左方向性图案和右方向性图案之间的误差准则。
在一些实施例中,可以组合麦克风响应以准确地形成规定的虚拟麦克风方向性图案,在这种情况下,等式可以在上面的表达式中保持。例如,在结合图9B和图9C描述的实施例中,组合B格式麦克风响应以精确地实现规定的虚拟麦克风响应。在一些实施例中,可以使用优化方法(诸如最小二乘近似)来实施系数优化。
其后通过以下等式给出两声道SES编码等式:
Figure BDA0001392903550000255
Figure BDA0001392903550000256
其中LT(f,t)和RT(f,t)分别标示左SES声道和右SES声道的频域表示,并且Sn(f,t)标示第n麦克风信号的频域表示。
类似地,在根据图4的一些实施例中,可以形成与T个编码信号对应的用于T个虚拟麦克风的最佳方向性图案,其中T不等于2。在根据图8的实施例中,可以对应于中间格式中的M个声道而形成用于M个虚拟麦克风的最佳方向性图案,其中中间格式中的每个声道具有规定的方向性图案;中间格式中的M个声道随后被编码为两个声道。在其他实施例中,M个中间声道可以被编码为T个声道,其中T不等于2。
从上面的各种实施例的描述,应理解,本发明可以用于对任何麦克风格式进行编码;并且此外,如果麦克风格式提供方向选择性响应,则空间编码/解码可以保留方向选择性。可以被合并在捕获和编码系统中的其他麦克风格式包括但不限于XY立体声麦克风和不重合麦克风,这些麦克风可以基于频域空间分析而被时间对齐以支持矩阵编码和解码。
从合并在上面的各种实施例中的频域操作的描述,应理解,频域分析可以结合实施例中的任何一个而实施,以便提高编码过程的空间保真度;换句话说,频域处理将导致比纯时域方法更精确地匹配捕获场景的解码场景,代价是执行时间-频率变换、频域分析以及空间编码之后的逆变换的额外计算。
IV.示例性操作环境
根据本文件,除了本文所描述的那些变型之外的许多其他的变型将是清楚的。例如,依赖于实施例,本文所描述的方法和算法中的任何一个的某些动作、事件或功能可以按不同的顺序执行,可以被添加、被融合、或者被一起省去(以使得并非所有的所描述的动作或事件对于实践该方法和算法都是必需的)。而且,在某些实施例中,动作或事件可以同时执行(诸如通过多线程处理、中断处理或多个处理器或处理器核或者在其他并行架构上),而不是顺序地执行。另外,不同的任务或过程可以由可以一起运行的不同的机器和计算系统执行。
结合本文所公开的实施例描述的各种例证性逻辑块、模块、方法以及算法过程和顺序可以实现为电子硬件、计算机软件或这二者的组合。为了清楚地示出硬件和软件的这个可互换性,各种例证性组件、块、模块和过程动作已经在上面就它们的功能进行了一般性的描述。这样的功能是实现为硬件还是软件取决于特定应用和施加于整个系统的设计约束。所描述的功能可以对于每个特定应用以变化的方式实现,但是这样的实现决策不应被解释为使得脱离本文件的范围。
结合本文所公开的实施例描述的各种例证性逻辑块和模块可以由机器实现或执行,诸如通用处理器、处理设备、具有一个或多个处理设备的计算设备、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立门或晶体管逻辑、分立硬件组件、或它们的被设计为执行本文所描述的功能的任何组合。通用处理器和处理设备可以是微处理器,但是在替代方案中,处理器可以是控制器、微控制器或状态机、它们的组合等。处理器也可以实现为计算设备的组合,诸如DSP和微处理器的组合、多个微处理器、与DSP核结合的一个或多个微处理器、或任何其他这样的配置。
本文所描述的声场编码系统和方法的实施例在许多类型的通用或专用计算系统环境或配置内是可操作的。一般地,计算环境可以包括任何类型的计算机系统,包括但不限于基于一个或多个微处理器的计算机系统、大型计算机、数字信号处理器、便携式计算设备、个人记事本(personal organizer)、设备控制器、器械内的计算引擎、移动电话、台式计算机、移动计算机、平板计算机、智能电话、以及具有嵌入计算机的器械等。
这样的计算设备通常可以见于具有至少某个最小计算能力的设备中,这些设备包括但不限于个人计算机、服务器计算机、手持计算设备、膝上型或移动计算机、通信设备(诸如蜂窝电话和PDA)、多处理器系统、基于微处理器的系统、机顶盒、可编程消费者电子产品、网络PC、迷你计算机、大型计算机、音频或视频媒体播放器等。在一些实施例中,计算设备将包括一个或多个处理器。每个处理器可以是专门的微处理器,诸如数字信号处理器(DSP)、超长指令字(VLIW)、或其他微控制器,或者可以是具有一个或多个处理核(包括多核CPU中的基于专门的图形处理单元(GPU)的核)的常规中央处理单元(CPU)。
结合本文所公开的实施例描述的方法、过程或算法的过程动作可以直接用硬件实现,用由处理器执行的软件模块实现,或者用这二者的任何组合实现。软件模块可以被包含在可以被计算设备访问的计算机可读介质中。计算机可读介质包括可移除的、不可移除的或是它们的某个组合的易失性和非易失性介质两者。计算机可读介质用于存储信息,诸如计算机可读或计算机可执行指令、数据结构、程序模块或其他数据。以示例的方式,而非限制,计算机可读介质可以包括计算机存储介质和通信介质。
计算机存储介质包括但不限于计算机或机器可读介质或存储设备,诸如蓝光盘(BD)、数字多功能盘(DVD)、紧凑盘(CD)、软盘、磁带驱动器、硬盘驱动器、光学驱动器、固态存储器设备、RAM存储器、ROM存储器、EPROM存储器、EEPROM存储器、闪存或其他存储器技术、磁盒、磁带、磁盘储存器、或其他磁性存储设备、或可以用于存储期望的信息并且可以被一个或多个计算设备访问的任何其他的设备。
软件模块可以驻留在RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移除盘、CD-ROM、或任何其他形式的非暂时性计算机可读存储介质、介质或本领域中已知的物理计算机储存器。示例性存储介质可以耦合到处理器,使得处理器可以从存储介质读取信息并且将信息写到存储介质。在替代方案中,存储介质可以与处理器一体化。处理器和存储介质可以驻留在专用集成电路(ASIC)中。ASIC可以驻留在用户终端中。可替代地,处理器和存储介质可以作为分立的组件驻留在用户终端中。
如本文件中所使用的短语“非暂时性”意指“持久的或长期的”。短语“非暂时性计算机可读介质”包括任何和所有的计算机可读介质,唯一例外是暂时性的传播信号。以示例的方式,而非限制,这包括非暂时性计算机可读介质,诸如寄存器存储器、处理器高速缓存以及随机存取存储器(RAM)。
信息(诸如计算机可读或计算机可执行指令、数据结构、程序模块等)的保留也可以通过使用对一个或多个调制数据信号、电磁波(诸如载波)进行编码的各种通信介质或其他传输机制或通信协议来实现,并且包括任何有线或无线信息递送机制。一般来说,这些通信介质是指这样的信号,该信号的特性中的一个或多个被以对该信号中的信息或指令进行编码的这样的方式而被设置或改变。例如,通信介质包括有线介质(诸如传载(carry)一个或多个调制数据信号的直接有线连接或有线网络)和无线介质(诸如声学、射频(RF)、红外线、激光以及用于发送、接收或者既发送又接收一个或多个调制数据信号或电磁波的其他无线介质)。以上任何一个的组合也应包括在通信介质的范围内。
此外,实现本文所描述的声场编码系统和方法的各种实施例中的一些或全部的软件、程序、计算机程序产品中的一个或它们的任何组合或者其部分可以被存储、被接收、被发送、或者以计算机可执行指令或其他数据结构的形式被从计算机或机器可读介质或存储设备和通信介质的任何期望组合读取。
本文所描述的声场编码系统和方法的实施例可以在正在被计算机设备执行的计算机可执行指令(诸如程序模块)的一般上下文下被进一步描述。一般来说,程序模块包括执行特别的任务或实现特别的抽象数据类型的例程、程序、对象、组件、数据结构等。本文所描述的实施例也可以在分布式计算环境中实践,在分布式计算环境中,任务由一个或多个远程处理设备执行,或者在通过一个或多个通信网络链接的一个或多个设备的云内执行。在分布式计算环境中,程序模块可以被定位在本地计算机存储介质和远程计算机存储介质(包括介质存储设备)两者中。更进一步地,前述指令可以部分地或整个地实现为硬件逻辑电路,这些硬件逻辑电路可以包括或者可以不包括处理器。
本文所使用的条件语言(其中,诸如“能够”、“可能”、“可以”、“例如”等)除非另有明确陈述或者在所用上下文内另有理解,否则一般意图传达某些实施例包括而其他实施例不包括某些特征、元件和/或状态。因此,这样的条件语言一般并不意图暗示特征、元件和/或状态对于一个或多个实施例无论如何都是必需的、或者一个或多个实施例一定包括用于决定的逻辑、有或没有创作者输入或提示、这些特征、元件和/或状态是包括在任何特定实施例中、还是将在任何特定实施例中被执行。术语“包括”、“包含”、“具有”等是同义的,并且被以开放的方式包括性地使用,并且不排除附加的元件、特征、动作、操作等。此外,术语“或”是以其包括性的意义(而非其排他的意义)使用的,使得当被用于例如连接元素列表时,术语“或”意指该列表中的元素中的一个、一些或全部。
虽然上面详述的描述已经示出、描述和指出了应用于各种实施例的新颖特征,但是将理解,在不脱离本公开的范围的情况下,可以做出示出的设备或算法的形式和细节上的各种省略、替换和改变。如将认识到的,本文所描述的发明的某些实施例可以在没有提供本文所阐释的所有特征和益处的形式内实现,因为一些特征可以与其他特征分别使用或实践。
而且,尽管已经用特定于结构特征和方法动作的语言描述了主题,但是要理解,所附权利要求中限定的主题不一定限于上述特定特征或动作。相反,上述特定特征和动作是作为实现权利要求的示例形式而公开的。

Claims (11)

1.一种用于对多个捕获麦克风信号进行处理的方法,包括:
选择具有用于从至少一个音频源捕获声音的多个捕获麦克风的捕获麦克风配置,该捕获麦克风配置限定所述多个捕获麦克风中的每个相对于参考方向的捕获麦克风方向性;
选择具有多个虚拟麦克风的虚拟麦克风配置,虚拟麦克风配置用于对关于所述至少一个音频源相对于参考方向的位置的空间信息进行编码,该虚拟麦克风配置限定所述多个虚拟麦克风中的每个相对于参考方向的虚拟麦克风方向性;
基于捕获麦克风配置和虚拟麦克风配置来计算空间编码系数;以及
将所述多个捕获麦克风信号转换为包括虚拟麦克风信号的空间编码信号;
其中虚拟麦克风信号中的每个是通过使用空间编码系数组合捕获麦克风信号而获得的;
其中捕获麦克风方向性是复振幅因子,其表征随着至少一个音频源的频率和3D位置而变化的麦克风的响应。
2.根据权利要求1所述的方法,其中空间信息被以以下中的一个的形式编码:(a)声道间振幅;以及(b)相位差。
3.根据权利要求2所述的方法,进一步包括选择具有多个虚拟麦克风的虚拟麦克风配置,虚拟麦克风配置用于对关于音频源相对于参考方向的位置的空间信息进行编码。
4.根据权利要求1所述的方法,其中所述多个捕获麦克风信号是A格式麦克风信号,进一步包括将A格式麦克风信号转换为B格式麦克风信号。
5.根据权利要求4所述的方法,进一步包括从B格式麦克风信号形成虚拟麦克风方向性图案。
6.根据权利要求5所述的方法,进一步包括使用以下等式来形成虚拟麦克风方向性图案:
Figure FDA0002941839480000021
Figure FDA0002941839480000022
Figure FDA0002941839480000023
其中,θL、θR、θS和p是设计参数,W是B格式中的全向压力信号,X是B格式中的前后8字形信号,Y是B格式中的左右8字形信号,VL是水平面中的虚拟左麦克风信号,VR是水平面中的与超心形对应的虚拟右麦克风信号,且VS是水平面中的与超心形对应的虚拟环绕麦克风信号。
7.根据权利要求6所述的方法,进一步包括根据虚拟麦克风信号的期望方向性来选择设计参数p。
8.一种用于对包含多个捕获麦克风信号的音频信号进行处理的方法,包括:
选择具有用于从音频源捕获声音的多个捕获麦克风的捕获麦克风配置,该捕获麦克风配置限定所述多个捕获麦克风中的每个相对于参考方向的捕获麦克风方向性;
基于捕获麦克风配置来计算空间编码系数;以及
使用空间编码系数来将所述多个捕获麦克风信号转换为空间编码信号,其中该空间编码信号是传载关于音频源相对于参考方向的位置的编码空间信息的两声道空间编码信号;
其中捕获麦克风方向性是复振幅因子,其表征随着音频源的频率和3D位置而变化的麦克风的响应。
9.根据权利要求8所述的方法,其中空间编码信号是相位振幅空间编码信号。
10.一种用于对多个捕获麦克风信号进行处理的方法,包括:
选择具有用于从音频源捕获声音的多个捕获麦克风的捕获麦克风配置,该捕获麦克风配置限定所述多个捕获麦克风中的每个相对于参考方向的捕获麦克风方向性;
基于捕获麦克风配置来计算空间编码系数;以及
使用空间编码系数来将所述多个捕获麦克风信号转换为空间编码信号,其中所述空间编码信号是具有至少两个声道并且传载关于音频源相对于参考方向的位置的编码空间信息的空间编码信号;
其中捕获麦克风方向性是复振幅因子,其表征随着音频源的频率和3D位置而变化的麦克风的响应。
11.根据权利要求10所述的方法,其中空间信息部分地以位置音频元数据的形式被传载。
CN201680012816.3A 2015-01-30 2016-01-29 用于捕获、编码、分布和解码沉浸式音频的系统和方法 Active CN107533843B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562110211P 2015-01-30 2015-01-30
US62/110,211 2015-01-30
PCT/US2016/015818 WO2016123572A1 (en) 2015-01-30 2016-01-29 System and method for capturing, encoding, distributing, and decoding immersive audio

Publications (2)

Publication Number Publication Date
CN107533843A CN107533843A (zh) 2018-01-02
CN107533843B true CN107533843B (zh) 2021-06-11

Family

ID=56544439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680012816.3A Active CN107533843B (zh) 2015-01-30 2016-01-29 用于捕获、编码、分布和解码沉浸式音频的系统和方法

Country Status (5)

Country Link
US (2) US9794721B2 (zh)
EP (1) EP3251116A4 (zh)
KR (1) KR102516625B1 (zh)
CN (1) CN107533843B (zh)
WO (1) WO2016123572A1 (zh)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3139679A1 (en) * 2015-09-03 2017-03-08 Alcatel Lucent Method to operate a user equipment
CA3080981C (en) 2015-11-17 2023-07-11 Dolby Laboratories Licensing Corporation Headtracking for parametric binaural output system and method
KR102561371B1 (ko) * 2016-07-11 2023-08-01 삼성전자주식회사 디스플레이장치와, 기록매체
US9980078B2 (en) 2016-10-14 2018-05-22 Nokia Technologies Oy Audio object modification in free-viewpoint rendering
CN106774930A (zh) 2016-12-30 2017-05-31 中兴通讯股份有限公司 一种数据处理方法、装置及采集设备
US11096004B2 (en) 2017-01-23 2021-08-17 Nokia Technologies Oy Spatial audio rendering point extension
US10592199B2 (en) * 2017-01-24 2020-03-17 International Business Machines Corporation Perspective-based dynamic audio volume adjustment
US10123150B2 (en) * 2017-01-31 2018-11-06 Microsoft Technology Licensing, Llc Game streaming with spatial audio
US10531219B2 (en) 2017-03-20 2020-01-07 Nokia Technologies Oy Smooth rendering of overlapping audio-object interactions
US20180315437A1 (en) * 2017-04-28 2018-11-01 Microsoft Technology Licensing, Llc Progressive Streaming of Spatial Audio
US11074036B2 (en) 2017-05-05 2021-07-27 Nokia Technologies Oy Metadata-free audio-object interactions
US10165386B2 (en) 2017-05-16 2018-12-25 Nokia Technologies Oy VR audio superzoom
GB2563635A (en) * 2017-06-21 2018-12-26 Nokia Technologies Oy Recording and rendering audio signals
CN109218920B (zh) * 2017-06-30 2020-09-18 华为技术有限公司 一种信号处理方法、装置及终端
US10477310B2 (en) 2017-08-24 2019-11-12 Qualcomm Incorporated Ambisonic signal generation for microphone arrays
GB2566992A (en) 2017-09-29 2019-04-03 Nokia Technologies Oy Recording and rendering spatial audio signals
US11395087B2 (en) 2017-09-29 2022-07-19 Nokia Technologies Oy Level-based audio-object interactions
SG11202003125SA (en) * 2017-10-04 2020-05-28 Fraunhofer Ges Forschung Apparatus, method and computer program for encoding, decoding, scene processing and other procedures related to dirac based spatial audio coding
IL307592A (en) 2017-10-17 2023-12-01 Magic Leap Inc Spatial audio for mixed reality
US10504529B2 (en) 2017-11-09 2019-12-10 Cisco Technology, Inc. Binaural audio encoding/decoding and rendering for a headset
US10595146B2 (en) 2017-12-21 2020-03-17 Verizon Patent And Licensing Inc. Methods and systems for extracting location-diffused ambient sound from a real-world scene
WO2019161313A1 (en) 2018-02-15 2019-08-22 Magic Leap, Inc. Mixed reality virtual reverberation
GB201802850D0 (en) * 2018-02-22 2018-04-11 Sintef Tto As Positioning sound sources
US10542368B2 (en) 2018-03-27 2020-01-21 Nokia Technologies Oy Audio content modification for playback audio
GB2572368A (en) * 2018-03-27 2019-10-02 Nokia Technologies Oy Spatial audio capture
GB2572650A (en) * 2018-04-06 2019-10-09 Nokia Technologies Oy Spatial audio parameters and associated spatial audio playback
US10848894B2 (en) * 2018-04-09 2020-11-24 Nokia Technologies Oy Controlling audio in multi-viewpoint omnidirectional content
JP2021525980A (ja) 2018-05-30 2021-09-27 マジック リープ, インコーポレイテッドMagic Leap,Inc. フィルタパラメータに関するインデックススキーミング
GB201808897D0 (en) 2018-05-31 2018-07-18 Nokia Technologies Oy Spatial audio parameters
US11494158B2 (en) 2018-05-31 2022-11-08 Shure Acquisition Holdings, Inc. Augmented reality microphone pick-up pattern visualization
CN108965757B (zh) * 2018-08-02 2021-04-06 广州酷狗计算机科技有限公司 视频录制方法、装置、终端及存储介质
WO2020037282A1 (en) * 2018-08-17 2020-02-20 Dts, Inc. Spatial audio signal encoder
US10796704B2 (en) * 2018-08-17 2020-10-06 Dts, Inc. Spatial audio signal decoder
US11410666B2 (en) 2018-10-08 2022-08-09 Dolby Laboratories Licensing Corporation Transforming audio signals captured in different formats into a reduced number of formats for simplifying encoding and decoding operations
KR20210090096A (ko) 2018-11-13 2021-07-19 돌비 레버러토리즈 라이쎈싱 코오포레이션 오디오 신호 및 연관된 메타데이터에 의해 공간 오디오를 표현하는 것
GB201818959D0 (en) 2018-11-21 2019-01-09 Nokia Technologies Oy Ambience audio representation and associated rendering
MX2021006565A (es) * 2018-12-07 2021-08-11 Fraunhofer Ges Forschung Aparato, metodo y programa de computadora para codificacion, decodificacion, procesamiento de escenas y otros procedimientos relacionados con codificacion de audio espacial basada en dirac que utiliza compensacion difusa.
EP3918813A4 (en) * 2019-01-29 2022-10-26 Nureva Inc. METHOD, APPARATUS AND COMPUTER-READABLE MEDIUM FOR CREATING AUDIO FOCUS AREAS DISSOCIATED FROM THE MICROPHONE SYSTEM FOR OPTIMIZING AUDIO EDITING AT PRECISE SPATIAL LOCATIONS IN A 3D SPACE
GB201902812D0 (en) * 2019-03-01 2019-04-17 Nokia Technologies Oy Wind noise reduction in parametric audio
US20200388280A1 (en) 2019-06-05 2020-12-10 Google Llc Action validation for digital assistant-based applications
EP4270172A3 (en) * 2019-06-05 2024-01-10 Google LLC Action validation for digital assistant-based applications
JP7483852B2 (ja) 2019-07-08 2024-05-15 ディーティーエス・インコーポレイテッド 不一致視聴覚捕捉システム
US11432069B2 (en) * 2019-10-10 2022-08-30 Boomcloud 360, Inc. Spectrally orthogonal audio component processing
GB201914665D0 (en) * 2019-10-10 2019-11-27 Nokia Technologies Oy Enhanced orientation signalling for immersive communications
US11304017B2 (en) 2019-10-25 2022-04-12 Magic Leap, Inc. Reverberation fingerprint estimation
US11246001B2 (en) 2020-04-23 2022-02-08 Thx Ltd. Acoustic crosstalk cancellation and virtual speakers techniques
CN111554312A (zh) * 2020-05-15 2020-08-18 西安万像电子科技有限公司 控制音频编码类型的方法、装置和系统
CN114255781A (zh) * 2020-09-25 2022-03-29 Oppo广东移动通信有限公司 一种多通道音频信号获取方法、装置及系统
CN114582357A (zh) * 2020-11-30 2022-06-03 华为技术有限公司 一种音频编解码方法和装置
CN113674751A (zh) * 2021-07-09 2021-11-19 北京字跳网络技术有限公司 音频处理方法、装置、电子设备和存储介质
CN114998087B (zh) * 2021-11-17 2023-05-05 荣耀终端有限公司 渲染方法及装置
CN114333858B (zh) * 2021-12-06 2024-10-18 安徽听见科技有限公司 音频编码及解码方法和相关装置、设备、存储介质
WO2024082181A1 (zh) * 2022-10-19 2024-04-25 北京小米移动软件有限公司 空间音频采集方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066570A1 (ja) * 2005-12-05 2007-06-14 Dimagic Co., Ltd. 収音・再生方法および装置
CN101800919A (zh) * 2009-01-16 2010-08-11 三洋电机株式会社 音响信号处理装置及再现装置
CN102124754A (zh) * 2008-08-22 2011-07-13 雅马哈株式会社 记录/再现设备
CN102265643A (zh) * 2008-12-23 2011-11-30 皇家飞利浦电子股份有限公司 语音捕获和语音再现
US20140086414A1 (en) * 2010-11-19 2014-03-27 Nokia Corporation Efficient audio coding having reduced bit rate for ambient signals and decoding using same

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072878A (en) * 1997-09-24 2000-06-06 Sonic Solutions Multi-channel surround sound mastering and reproduction techniques that preserve spatial harmonics
FI118247B (fi) 2003-02-26 2007-08-31 Fraunhofer Ges Forschung Menetelmä luonnollisen tai modifioidun tilavaikutelman aikaansaamiseksi monikanavakuuntelussa
US8345899B2 (en) 2006-05-17 2013-01-01 Creative Technology Ltd Phase-amplitude matrixed surround decoder
US8374365B2 (en) 2006-05-17 2013-02-12 Creative Technology Ltd Spatial audio analysis and synthesis for binaural reproduction and format conversion
US8712061B2 (en) 2006-05-17 2014-04-29 Creative Technology Ltd Phase-amplitude 3-D stereo encoder and decoder
US8379868B2 (en) 2006-05-17 2013-02-19 Creative Technology Ltd Spatial audio coding based on universal spatial cues
US20080004729A1 (en) 2006-06-30 2008-01-03 Nokia Corporation Direct encoding into a directional audio coding format
US8041043B2 (en) 2007-01-12 2011-10-18 Fraunhofer-Gessellschaft Zur Foerderung Angewandten Forschung E.V. Processing microphone generated signals to generate surround sound
US8180062B2 (en) 2007-05-30 2012-05-15 Nokia Corporation Spatial sound zooming
WO2009046223A2 (en) * 2007-10-03 2009-04-09 Creative Technology Ltd Spatial audio analysis and synthesis for binaural reproduction and format conversion
US8023660B2 (en) 2008-09-11 2011-09-20 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus, method and computer program for providing a set of spatial cues on the basis of a microphone signal and apparatus for providing a two-channel audio signal and a set of spatial cues
GB2467534B (en) * 2009-02-04 2014-12-24 Richard Furse Sound system
EP2249334A1 (en) 2009-05-08 2010-11-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio format transcoder
EP2285139B1 (en) * 2009-06-25 2018-08-08 Harpex Ltd. Device and method for converting spatial audio signal
EP2346028A1 (en) * 2009-12-17 2011-07-20 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. An apparatus and a method for converting a first parametric spatial audio signal into a second parametric spatial audio signal
US9552840B2 (en) * 2010-10-25 2017-01-24 Qualcomm Incorporated Three-dimensional sound capturing and reproducing with multi-microphones
EP2450880A1 (en) * 2010-11-05 2012-05-09 Thomson Licensing Data structure for Higher Order Ambisonics audio data
MX338525B (es) * 2010-12-03 2016-04-20 Fraunhofer Ges Forschung Aparato y método para la codificación de audio espacial basada en la geometría.
EP2469741A1 (en) 2010-12-21 2012-06-27 Thomson Licensing Method and apparatus for encoding and decoding successive frames of an ambisonics representation of a 2- or 3-dimensional sound field
US8873762B2 (en) 2011-08-15 2014-10-28 Stmicroelectronics Asia Pacific Pte Ltd System and method for efficient sound production using directional enhancement
EP2600637A1 (en) * 2011-12-02 2013-06-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for microphone positioning based on a spatial power density
WO2013186593A1 (en) * 2012-06-14 2013-12-19 Nokia Corporation Audio capture apparatus
CN202721697U (zh) 2012-07-27 2013-02-06 上海晨思电子科技有限公司 一种无偏估计装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066570A1 (ja) * 2005-12-05 2007-06-14 Dimagic Co., Ltd. 収音・再生方法および装置
CN102124754A (zh) * 2008-08-22 2011-07-13 雅马哈株式会社 记录/再现设备
CN102265643A (zh) * 2008-12-23 2011-11-30 皇家飞利浦电子股份有限公司 语音捕获和语音再现
CN101800919A (zh) * 2009-01-16 2010-08-11 三洋电机株式会社 音响信号处理装置及再现装置
US20140086414A1 (en) * 2010-11-19 2014-03-27 Nokia Corporation Efficient audio coding having reduced bit rate for ambient signals and decoding using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Directional audio coding - perception-based reproduction of spatial sound;V.Pulkki et al;《INTERNATIONAL WORKSHOP ON THE PRINCIPLES AND APPLICATIONS OF SPATIAL HEARING》;20091113;全文 *
音频感知编码模型及关键技术的研究;李琳;《中国博士学位论文全文数据库 信息科技辑》;20090615(第06期);全文 *

Also Published As

Publication number Publication date
KR20170109023A (ko) 2017-09-27
WO2016123572A1 (en) 2016-08-04
US20180098174A1 (en) 2018-04-05
CN107533843A (zh) 2018-01-02
US10187739B2 (en) 2019-01-22
US9794721B2 (en) 2017-10-17
EP3251116A1 (en) 2017-12-06
US20160227337A1 (en) 2016-08-04
KR102516625B1 (ko) 2023-03-30
EP3251116A4 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
CN107533843B (zh) 用于捕获、编码、分布和解码沉浸式音频的系统和方法
US10674262B2 (en) Merging audio signals with spatial metadata
US12114146B2 (en) Determination of targeted spatial audio parameters and associated spatial audio playback
RU2759160C2 (ru) УСТРОЙСТВО, СПОСОБ И КОМПЬЮТЕРНАЯ ПРОГРАММА ДЛЯ КОДИРОВАНИЯ, ДЕКОДИРОВАНИЯ, ОБРАБОТКИ СЦЕНЫ И ДРУГИХ ПРОЦЕДУР, ОТНОСЯЩИХСЯ К ОСНОВАННОМУ НА DirAC ПРОСТРАНСТВЕННОМУ АУДИОКОДИРОВАНИЮ
US9313599B2 (en) Apparatus and method for multi-channel signal playback
US9794686B2 (en) Controllable playback system offering hierarchical playback options
US9219972B2 (en) Efficient audio coding having reduced bit rate for ambient signals and decoding using same
TW201810249A (zh) 使用近場/遠場渲染之距離聲相偏移
JP2015525897A (ja) 後方互換性のあるオーディオ符号化のためのシステム、方法、装置、およびコンピュータ可読媒体
US20240147179A1 (en) Ambience Audio Representation and Associated Rendering
JP2009527970A (ja) オーディオ符号化及び復号
WO2019239011A1 (en) Spatial audio capture, transmission and reproduction
CN112823534B (zh) 信号处理设备和方法以及程序
US11483669B2 (en) Spatial audio parameters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1248910

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant