[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN107522482A - 一种高磁通、高频低功耗MnZn铁氧体材料及其制造方法 - Google Patents

一种高磁通、高频低功耗MnZn铁氧体材料及其制造方法 Download PDF

Info

Publication number
CN107522482A
CN107522482A CN201710695134.3A CN201710695134A CN107522482A CN 107522482 A CN107522482 A CN 107522482A CN 201710695134 A CN201710695134 A CN 201710695134A CN 107522482 A CN107522482 A CN 107522482A
Authority
CN
China
Prior art keywords
frequency
magnetic flux
low
ferrite materials
mnzn ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710695134.3A
Other languages
English (en)
Inventor
赵光
李庆
黄艳峰
陈小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING NEW CONDA MAGNETIC INDUSTRIAL Co Ltd
Original Assignee
NANJING NEW CONDA MAGNETIC INDUSTRIAL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING NEW CONDA MAGNETIC INDUSTRIAL Co Ltd filed Critical NANJING NEW CONDA MAGNETIC INDUSTRIAL Co Ltd
Priority to CN201710695134.3A priority Critical patent/CN107522482A/zh
Publication of CN107522482A publication Critical patent/CN107522482A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明公开了一种高磁通、高频低功耗MnZn铁氧体材料及其制造方法,属于软磁铁氧体材料制造技术领域。该材料的主成分为:Fe2O3为53.5~55mol%、ZnO为5.5~7.0mol%、MnO为余量;按主成分总重量计,辅助成分为:CaCO3为0.1~0.15wt%、SiO2为0.003~0.005wt%、ZrO2为0.03~0.05wt%、Co2O3为0.3~0.4wt%、TiO2为0.1~0.2wt%、NaO2为0.006~0.01wt%。本发明采用合理的主成分和辅助成分,尤其是利用Na等微量添加物对烧结材料显微结构的调控作用,结合烧结升温阶段的低氧含量强力致密化及不高于1170℃的较低烧结温度,得到晶粒细小均匀且密度较高的显微结构,从而大幅度降低了高磁通、高频率条件下的功耗。

Description

一种高磁通、高频低功耗MnZn铁氧体材料及其制造方法
技术领域
本发明属于软磁铁氧体材料制造技术领域,涉及一种高磁通、高频低功耗MnZn铁氧体材料及其制造方法。
背景技术
MnZn铁氧体作为最重要的氧化物软磁材料,被用来制成各种规格的磁粉芯,进而加工成各种变压器和电感器等磁性元器件,广泛应用于通讯、电磁干扰抑制、新能源、汽车电子、 IT、家电、绿色照明、工业、医疗、航空航天和军事等领域。为了实现电子设备的小型化和轻量化,多年来人们一直致力于提高电路的工作频率,因此要求所用的MnZn铁氧体材料必须在高频下具有优良的电磁特性,如低损耗、高截止频率等。为了适应这一要求,在上世纪九十年代,以TDK公司PC50和SIEMENS公司N49为代表的第一代高频低功耗铁氧体材料问世,将功率转换应用的最高工作频率由100kHz左右提升到500kHz~1MHz,在这以后,各厂商又陆续推出最高应用频率达到2MHz~4MHz的材料。然而,随着工作频率的大幅度提高,铁氧体材料的功耗也急剧增大,以致不得不大幅度降低应用时的工作磁通密度,以限制功耗和温升,但是这样的设计,实际上大大限制了元器件的使用效能,不利于整机小型化。近年来,随着GaN、SiC等第三代功率半导体器件的推广应用,开关电源类功率转换设备的工作频率和功率密度正在进一步提高,这要求所用的MnZn铁氧体材料和元器件在高频、大磁通下具有低功耗特性。从实用的角度看,尤其希望铁氧体磁粉芯在频率为1MHz左右、磁通密度为75~ 100mT的工作条件下具有较低的功耗。
经检索,中国专利CN201610919447.8公开了一种高频低功耗MnZn铁氧体材料,由主成分和辅助成分制备得到的,主成分为:52.9~55.3mol%Fe2O3、7~10mol%ZnO、余量为Mn3O4;按主成分总重量计,辅助成分为0.03~0.35wt%CaCO3、0.005~0.01wt%SiO2、0.02~ 0.1wt%TiO2、0.02~0.08wt%Bi2O3、0.02~0.07wt%Nb2O5、0.01~0.08wt%MoO3中的4种以上,制备的高频低功耗MnZn铁氧体材料在1MHz、50mT条件下,在60℃和80℃的功耗分别小于 380mW/cm3和395mW/cm3,磁导率为1500±25%。中国专利CN201410462188.1公开了一种高饱和磁通密度在高频范围低功耗的锰锌铁氧体材料,主成份包括:氧化铁51~57mol%、氧化锌6~12mol%及余量的氧化锰;按主成份总重量计,辅助成份包括:氧化钙200~1500ppm、氧化硅50~200ppm、氧化钛500~3000ppm,该锰锌铁氧体材料在25℃饱和磁通密度500mT 以上,在频率为1MHz、磁通密度30mT、温度100℃的测试条件下,体积功耗70mW/cm3以下。上述专利中的高频低功耗MnZn铁氧体材料大都仅提供了30~50mT、1MHz下的功耗指标,缺乏75mT~100mT大磁通密度下的高频(1MHz)功耗指标和技术保障,这不能很好地满足第三代功率半导体器件及相关电子设备小型化、高功率密度化的应用要求。
发明内容
1.要解决的问题
针对现有MnZn铁氧体材料缺乏75mT~100mT大磁通密度下的高频功耗指标和技术保障,不能很好地满足第三代功率半导体器件及相关电子设备小型化、高功率密度化的应用要求的问题,本发明提供了一种高磁通、高频低功耗MnZn铁氧体材料及其制造方法,在高磁通(75mT~100mT)、高频(1MHz)下降低了材料的功耗。
2.技术方案
本发明所采用的技术方案如下:
本发明的高磁通、高频低功耗MnZn铁氧体材料的主成分为:Fe2O3为53.5~55mol%、 ZnO为5.5~7.0mol%、MnO为余量(“MnO为余量”即指用100mol%减去Fe2O3和ZnO的摩尔百分比);按主成分总重量计,辅助成分为:CaCO3为0.1~0.15wt%、SiO2为0.003~0.005wt%、ZrO2为0.03~0.05wt%、Co2O3为0.3~0.4wt%、TiO2为0.1~0.3wt%、NaO2为0.006~ 0.01wt%。
于本发明一种可能的实施方式中,由于在平均晶粒直径小于3.0μm时磁滞损耗增大,所述高磁通、高频低功耗MnZn铁氧体材料,具有细小、致密、均匀的多晶显微结构,其平均晶粒尺寸为3.0~3.5μm,磁粉芯密度为4900~4950kg/m3
本发明的高磁通、高频低功耗MnZn铁氧体材料,该材料的主成分为:Fe2O3为53.5~55mol%、ZnO为5.5~7.0mol%、MnO为余量;按主成分总重量计,辅助成分为:CaCO3为 0.1~0.15wt%、SiO2为0.003~0.005wt%、ZrO2为0.03~0.05wt%、Co2O3为0.3~0.4wt%、TiO2为0.1~0.2wt%、NaO2为0.006~0.01wt%,其中该烧结体在测定磁场为1194A/m下测定的25℃下的饱和磁通密度Bs典型值为540mT,在测定磁场为1194A/m下测定的100℃下的饱和磁通密度Bs典型值为430mT,且在测定条件为75mT、1MHz、100℃下测定的功耗密度 Pcv典型值为800kW/m3,在测定条件为100mT、1MHz、100℃下测定的功耗密度Pcv典型值为1800kW/m3
于本发明一种可能的实施方式中,所述高磁通、高频低功耗MnZn铁氧体材料,在0.25mT、 10kHz、25℃下测定的起始磁导率μi典型值为1200。
本发明的高磁通、高频低功耗MnZn铁氧体材料的制造方法为:
(1)称取主成分各组分,在搅拌式球磨机内加纯水混匀后干燥;
(2)在空气中于900~950℃预烧1.5~2.5h;
(3)向预烧好的粉料中加入辅助成分各组分,其中Na是主要以碳酸钠溶液的形式添加;
(4)将上述粉料在搅拌式球磨机内加纯水进行研磨粉碎,粉碎至粉料平均粒径为0.8~ 0.9μm,再进行干燥;在粉料中加入9±0.25wt%的PVA溶液(溶液浓度为10±0.25wt%),混匀、加压、过筛,完成造粒;
(5)使用成型机将粒料压制成外径为16mm、内径为8mm、高度为5mm的环形磁粉芯的毛坯,毛坯密度控制在2950~3000kg/m3
(6)将毛坯放入气氛保护式钟罩炉内烧结成铁氧体磁粉芯,烧结过程包括升温阶段、恒温阶段和降温阶段;通过调整注入窑内的空气和高纯氮气的配比进行烧结气氛的控制;在升温阶段900℃至恒温开始,烧结炉内氧含量控制在0.8%以下;恒温阶段的温度为1150~1170 ℃,时间为3~4h;按照MnZn铁氧体平衡气氛烧结规律设定和控制恒温阶段及降温阶段的炉内氧含量。
3.有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明的高磁通、高频低功耗MnZn铁氧体材料,采用合理的主成分和辅助成分,尤其是利用Na等添加物对烧结材料显微结构的调控作用,结合烧结升温阶段的低氧含量强力致密化及恒温阶段较低的烧结温度,得到晶粒细小均匀且密度较高的显微结构,从而大幅度降低了高磁通75mT~100mT、高频率条件下材料的功耗;
(2)本发明的高磁通、高频低功耗MnZn铁氧体材料,可制成各种电感器及变压器,适用于采用GaN、SiC等第三代功率半导体器件的高频功率转换电路,如各种小型化通讯设备电源、光伏微型逆变器、云计算系统及数据中心服务器电源、军用电子设备电源等,对器件及模组提高功率密度、实现小型化具有重要的应用价值;
(3)本发明的高磁通、高频低功耗MnZn铁氧体材料,其中NaO2为0.006~0.01wt%,相比专利名称为《一种宽温低功耗锰锌铁氧体粉料》(专利号CN201510976617.1)的中国专利公开了铁氧体的成分包括碳酸钾与碳酸锂的总量小于2份,碳酸钾和碳酸锂在烧结过程中,分解为氧化钾和氧化锂,产生低熔点物质,一定程度上起到助溶剂的作用,有利于固相反应的进行,加速铁氧体烧结过程中的致密化,使产品密度增大,而本发明的铁氧体材料NaO2含量少,Na作为细化晶粒的成分,晶粒细小均匀且密度较高,还可以抑制晶粒内部的涡流及由此引起的涡流损耗;
(4)本发明的高磁通、高频低功耗MnZn铁氧体材料的制备方法,其烧结过程在升温阶段900℃至恒温开始,烧结炉内氧含量控制在0.8%以下;恒温阶段的温度为1150~1170℃,时间为3~4h,一方面原料可以得到充分的反应,另一方面在该温度范围内,碳酸钠分解熔融,产生低熔点物质,一定程度上起到助溶剂的作用,有利于固相反应的进行。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1为本发明实施例1样品的SEM-EDX图。
具体实施方式
首先,说明本发明的MnZn铁氧体组成的限定理由。
众所周知,功耗Pcv为功率转换用途软磁铁氧体材料的关键性能指标,Pcv由磁滞损耗 Ph、涡流损耗Pe和剩余损耗Pr三部分构成。本发明的发明人通过大量的试验研究表明,在500kHz以下材料的Pcv主要由Ph和Pe构成,Pr可以忽略;在1MHz附近,Pe在Pcv中占比最大,Pr的影响也较显著。在1MHz频率下,Pcv随磁通密度B的增加呈指数型迅速增加,其中Pe、Pr随B的增大尤其显著,所以为了降低高磁通、高频下的功耗,必须采用必要的技术手段,着重抑制Pe和Pr。
当增加Fe2O3的量时,高温区域的饱和磁通密度升高,但另一方面铁心损耗存在变差的倾向。在Fe2O3低于53.5mol%时,高温区域的饱和磁通密度降低;另一方面,在Fe2O3超过 55mol%时,铁心损耗显著增大。因此,本发明将Fe2O3设定在53.5~55mol%。在该范围内,伴随Fe2O3量的增加底限温度向高温侧移动。
ZnO的量也对饱和磁通密度和铁心损耗带来影响。当ZnO低于5.5mol%时饱和磁通密度也降低,同时损耗增大;而且,即使在ZnO超过7mol%时饱和磁通密度降低,同时损耗增大。因此,本发明中将ZnO设定在5.5~7.0mol%。在该范围内,伴随ZnO的量的增加底限温度向高温侧移动。
本发明的发明人还通过大量研究表明,适合的主成分可以兼顾材料的各项性能,如较高的Fe2O3含量和较低的ZnO含量结合,有利于获得较高的饱和磁化强度和较低的起始磁导率,从而提高材料的铁磁共振频率和截止频率,这样可有效抑制高频损耗;添加适合的辅助成分对改善性能至关重要,如添加Ca、Si、Zr等可大幅度提高晶界电阻;添加Ti可抑制晶粒内 Fe2+与Fe3+间的电子跃迁,降低晶粒导电性;添加Co可调节磁滞损耗及磁导率的温度特性;添加Na可细化晶粒,抑制晶粒内部的涡流及由此引起的涡流损耗。另外,MnZn铁氧体功耗与多晶材料的显微结构有密切的关系,采用本发明的制造工艺,一方面添加PVA溶液,另一方面升温阶段、恒温阶段和降温阶段的处理,在可获得细密、均匀的晶粒(平均晶粒尺寸为 3.0~3.5μm),气孔较少且分布在晶界,烧结体相对密度较高,这样的显微结构不仅有利于畴壁位移和磁畴转动,减少磁化所需能量,即减少了磁滞损耗Ph,同时因为细小晶粒和高电阻的晶界限制了感生涡流的通路,从而减少了涡流损耗Pe;另外,本发明的发明人还发现,理想的显微结构也有利于降低剩余损耗Pr。
下面通过具体实施例来进一步说明本发明的技术方案。
实施例1
(1)称取主成分各组分:Fe2O3为54.5mol%、ZnO为6.0mol%、MnO为39.5mol%,在搅拌式球磨机内加纯水混匀后干燥;
(2)在空气中于900℃预烧2h;
(3)向预烧好的粉料中加入辅助成分各组分,按主成分总重量计为:CaCO3为0.1wt%、 SiO2为0.003%、ZrO2为0.05wt%、Co2O3为0.3wt%、TiO2为0.15wt%、NaO2为0.006wt%;其中Na是以碳酸钠和碳酸铵(碳酸钠:碳酸铵=1:1)混合溶液的形式添加(添加量换算成 NaO2为0.006wt%),本发明的预烧料在碱性条件下,会产生一系列的不利变化,例如预烧料表现出强的亲水性,这样的预烧料生产得到的磁体极易出现开裂、起层等缺陷,磁体难有理想的合格率;碳酸钠与碳酸铵混合溶液呈中性或近中性,磁体不易出现开裂、起层等缺陷,保证了最终的产品能够达到上述的磁性能;
(4)将上述粉料在搅拌式球磨机内加纯水进行研磨粉碎,粉碎至平均粒径为0.8μm,再进行干燥;
(5)在粉料中加入9wt%的PVA溶液(溶液浓度为10wt%),混匀、加压、过筛,完成造粒;
(6)使用成型机将造粒料压制成外径为16mm、内径为8mm、高度为5mm的环形磁粉芯的毛坯,毛坯密度控制在2980kg/m3
(7)将毛坯放入气氛保护式钟罩炉内烧结成铁氧体磁粉芯;烧结过程包括升温阶段、恒温阶段和降温阶段;采用高纯氮气和空气进行气氛配比控制;在升温阶段900℃至恒温开始,烧结炉内氧含量控制在0.5%;恒温阶段的温度为1150℃、时间为3.5h;按照MnZn铁氧体平衡气氛烧结规律设定和控制恒温阶段及降温阶段的炉内氧含量。
使用LCR测量仪、B-H分析仪等仪器测量烧结磁粉芯样品的电磁性能;采用SEM-EDX分析样品的显微结构。
该实施例样品主要电磁性能如下表:
用SEM-EDX拍摄的实施例1样品显微结构照片如图1,图1显示出样品晶粒尺寸细小而均匀,平均晶粒直径约3~3.5μm,气孔较少,结构致密;其它实施例样品也有相似的显微结构。
实施例2
(1)称取主成分各组分:Fe2O3为55mol%、ZnO为5.5mol%、MnO为39.5mol%;在搅拌式球磨机内加纯水混匀后干燥;
(2)在空气中于930℃预烧2h;
(3)向预烧好的粉料中加入辅助成分各组分,按主成分总重量计为:CaCO3为0.125wt%、 SiO2为0.005%、ZrO2为0.04wt%、Co2O3为0.3wt%、TiO2为0.1wt%、NaO2为0.006wt%;其中Na是主要以碳酸钠溶液的形式添加(添加量换算成NaO2为0.006%);
(4)将上述粉料在搅拌式球磨机内加纯水进行研磨粉碎,粉碎至平均粒径为0.9μm,再进行干燥;
(5)在粉料中加入9.25wt%的PVA溶液(溶液浓度为10.25wt%),混匀、加压、过筛,完成造粒;
(6)使用成型机将造粒料压制成外径为16mm、内径为8mm、高度为5mm的环形磁粉芯的毛坯,毛坯密度控制在3000kg/m3
(7)将毛坯放入气氛保护式钟罩炉内烧结成铁氧体磁粉芯;烧结过程包括升温阶段、恒温阶段和降温阶段;采用高纯氮气和空气进行气氛配比控制;在升温阶段900℃至恒温开始,烧结炉内氧含量控制在0.8%;恒温阶段的温度为1150℃、时间为4h;按照MnZn铁氧体平衡气氛烧结规律设定和控制恒温阶段及降温阶段的炉内氧含量。
该实施例样品主要电磁性能如下表:
实施例3
(1)称取主成分各组分:Fe2O3为53.5mol%、ZnO为7.0mol%、MnO为39.5mol%,在搅拌式球磨机内加纯水混匀后干燥;
(2)在空气中于950℃预烧2h;
(3)向预烧好的粉料中加入辅助成分各组分,按主成分总重量计为:CaCO3为0.15wt%、 SiO2为0.003%、ZrO2为0.04wt%、Co2O3为0.4wt%、TiO2为0.2wt%、NaO2为0.006wt%;其中Na是主要以碳酸钠溶液的形式添加(添加量换算成NaO2为0.006%);
(4)将上述粉料在搅拌式球磨机内加纯水进行研磨粉碎,粉碎至平均粒径为0.8μm,再进行干燥;
(5)在粉料中加入9.25wt%的PVA溶液(溶液浓度为10wt%),混匀、加压、过筛,完成造粒;
(6)使用成型机将造粒料压制成外径为16mm、内径为8mm、高度为5mm的环形磁粉芯的毛坯,毛坯密度控制在2980kg/m3
(7)将毛坯放入气氛保护式钟罩炉内烧结成铁氧体磁粉芯;烧结过程包括升温阶段、恒温阶段和降温阶段;采用高纯氮气和空气进行气氛配比控制;在升温阶段900℃至恒温开始,烧结炉内氧含量控制在0.56%;恒温阶段的温度为1170℃、时间为3h;按照MnZn铁氧体平衡气氛烧结规律设定和控制恒温阶段及降温阶段的炉内氧含量。
该实施例样品主要电磁性能如下表:
实施例4
(1)称取主成分各组分:Fe2O3为54.5mol%、ZnO为5.5mol%、MnO为39.5mol%,在搅拌式球磨机内加纯水混匀后干燥;
(2)在空气中于940℃预烧2h;
(3)向预烧好的粉料中加入辅助成分各组分,按主成分总重量计为:CaCO3为0.1wt%、 SiO2为0.004%、ZrO2为0.03wt%、Co2O3为0.35wt%、TiO2为0.2wt%、NaO2为0.008wt%,其中Na是主要以碳酸钠溶液的形式添加(添加量换算成NaO2为0.008%);
(4)将上述粉料在搅拌式球磨机内加纯水进行研磨粉碎,粉碎至平均粒径为0.9μm,再进行干燥;
(5)在粉料中加入9.25wt%的PVA溶液(溶液浓度为10wt%),混匀、加压、过筛,完成造粒;
(6)使用成型机将造粒料压制成外径为16mm、内径为8mm、高度为5mm的环形磁粉芯的毛坯,毛坯密度控制在3000kg/m3
(7)将毛坯放入气氛保护式钟罩炉内烧结成铁氧体磁粉芯;烧结过程包括升温阶段、恒温阶段和降温阶段;采用高纯氮气和空气进行气氛配比控制;在升温阶段900℃至恒温开始,烧结炉内氧含量控制在0.6%;恒温阶段的温度为1150℃、时间为4h;按照MnZn铁氧体平衡气氛烧结规律设定和控制恒温阶段及降温阶段的炉内氧含量。
该实施例样品主要电磁性能如下表:
实施例5
(1)称取主成分各组分:Fe2O3为54mol%、ZnO为6.5mol%、MnO为39.5mol%,在搅拌式球磨机内加纯水混匀后干燥;
(2)在空气中于950℃预烧2h;
(3)向预烧好的粉料中加入辅助成分各组分,按主成分总重量计为:CaCO3为0.15wt%、 SiO2为0.003%、ZrO2为0.04wt%、Co2O3为0.3wt%、TiO2为0.15wt%、NaO2为0.01wt%;其中Na是主要以碳酸钠溶液的形式添加(添加量换算成NaO2为0.01%);
(4)将上述粉料在搅拌式球磨机内加纯水进行研磨粉碎,粉碎至平均粒径为0.9μm,再进行干燥;
(5)在粉料中加入9.25wt%的PVA溶液(溶液浓度为10.25wt%),混匀、加压、过筛,完成造粒;
(6)使用成型机将造粒料压制成外径为16mm、内径为8mm、高度为5mm的环形磁粉芯的毛坯,毛坯密度控制在3000kg/m3
(7)将毛坯放入气氛保护式钟罩炉内烧结成铁氧体磁粉芯;烧结过程包括升温阶段、恒温阶段和降温阶段,采用高纯氮气和空气进行气氛配比控制;在升温阶段900℃至恒温开始,烧结炉内氧含量控制在0.7%;恒温阶段的温度为1160℃、时间为3h;按照MnZn铁氧体平衡气氛烧结规律设定和控制恒温阶段及降温阶段的炉内氧含量。
该实施例样品主要电磁性能如下表:
以上所述为本发明的较佳实施例而已,但本发明不应该局限于该实施例所公开的内容。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。

Claims (10)

1.一种高磁通、高频低功耗MnZn铁氧体材料,其特征在于,该材料的主成分为:Fe2O3为53.5~55mol%、ZnO为5.5~7.0mol%、MnO为余量;按主成分总重量计,辅助成分为:CaCO3为0.1~0.15wt%、SiO2为0.003~0.005wt%、ZrO2为0.03~0.05wt%、Co2O3为0.3~0.4wt%、TiO2为0.1~0.2wt%、NaO2为0.006~0.01wt%。
2.根据权利要求1所述的高磁通、高频低功耗MnZn铁氧体材料,其特征在于,该材料的平均晶粒尺寸为3.0~3.5μm,磁粉芯密度为4900~4950kg/m3
3.根据权利要求2所述的高磁通、高频低功耗MnZn铁氧体材料,其特征在于,该材料在测定磁场为1194A/m下测定的25℃下的饱和磁通密度Bs典型值为540mT,在测定磁场为1194A/m下测定的100℃下的饱和磁通密度Bs典型值为430mT,且在测定条件为75mT、1MHz、100℃下测定的功耗密度Pcv典型值为800kW/m3,在测定条件为100mT、1MHz、100℃下测定的功耗密度Pcv典型值为1800kW/m3
4.根据权利要求3所述的高磁通、高频低功耗MnZn铁氧体材料,其特征在于,在0.25mT、10kHz、25℃下测定的起始磁导率μi典型值为1200。
5.一种根据权利要求1至4任一项所述的高磁通、高频低功耗MnZn铁氧体材料的制造方法,其特征在于,包括步骤:1)称取主成分各组分,球磨混匀后干燥;2)在空气中900~950℃预烧1.5~2.5h;3)向预烧好的粉料中加入辅助成分各组分,进行球磨粉碎,再进行干燥和造粒;4)压制成毛坯,把毛坯在气氛保护条件下烧结成铁氧体磁粉芯。
6.根据权利要求5所述的高磁通、高频低功耗MnZn铁氧体材料的制造方法,其特征在于,所述球磨混匀步骤采用搅拌式球磨机内加纯水混匀。
7.根据权利要求6所述的高磁通、高频低功耗MnZn铁氧体材料的制造方法,其特征在于,所述辅助成分Na是主要以碳酸钠溶液的形式添加,添加量换算成NaO2为0.006~0.01wt%。
8.根据权利要求7所述的高磁通、高频低功耗MnZn铁氧体材料的制造方法,其特征在于,在所述造粒之前,在干燥粉料中加入9±0.25wt%的PVA溶液,混匀、加压、过筛,完成造粒。
9.根据权利要求8所述的高磁通、高频低功耗MnZn铁氧体材料的制造方法,其特征在于,所述压制步骤采用成型机将粒料压制成外径为16mm、内径为8mm、高度为5mm的环形磁粉芯的毛坯,毛坯密度控制在2950~3000kg/m3
10.根据权利要求9所述的高磁通、高频低功耗MnZn铁氧体材料的制造方法,其特征在于,所述烧结过程包括升温阶段、恒温阶段和降温阶段,通过调整注入窑内的空气和高纯氮气的配比进行烧结气氛的控制;在升温阶段900℃至恒温开始,烧结窑内氧含量不大于0.8%;恒温阶段的烧结温度为1150~1170℃,时间为3~4h;按照MnZn铁氧体平衡氧分压规律设定和控制恒温阶段及降温阶段的烧结窑内氧含量。
CN201710695134.3A 2017-08-15 2017-08-15 一种高磁通、高频低功耗MnZn铁氧体材料及其制造方法 Pending CN107522482A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710695134.3A CN107522482A (zh) 2017-08-15 2017-08-15 一种高磁通、高频低功耗MnZn铁氧体材料及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710695134.3A CN107522482A (zh) 2017-08-15 2017-08-15 一种高磁通、高频低功耗MnZn铁氧体材料及其制造方法

Publications (1)

Publication Number Publication Date
CN107522482A true CN107522482A (zh) 2017-12-29

Family

ID=60681086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710695134.3A Pending CN107522482A (zh) 2017-08-15 2017-08-15 一种高磁通、高频低功耗MnZn铁氧体材料及其制造方法

Country Status (1)

Country Link
CN (1) CN107522482A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113658769A (zh) * 2021-08-30 2021-11-16 西安交通大学 一种高频高Q值FeSiAl@MnZn铁氧体软磁复合磁粉芯及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402266A (zh) * 2002-09-13 2003-03-12 无锡晶石磁性电子器件有限公司 一种锰锌系铁氧体磁芯
US20070228319A1 (en) * 2006-03-30 2007-10-04 Tdk Corporation Mn-Zn Based Ferrite Material
CN101593596A (zh) * 2008-03-25 2009-12-02 Tdk株式会社 烧结铁氧体及其制造方法
CN105565790A (zh) * 2014-10-09 2016-05-11 桐乡市耀润电子有限公司 Yr950宽温高直流叠加低功耗锰锌铁氧体材料及其制备方法
CN106396661A (zh) * 2016-08-30 2017-02-15 南京新康达磁业股份有限公司 一种宽温低功耗锰锌铁氧体材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402266A (zh) * 2002-09-13 2003-03-12 无锡晶石磁性电子器件有限公司 一种锰锌系铁氧体磁芯
US20070228319A1 (en) * 2006-03-30 2007-10-04 Tdk Corporation Mn-Zn Based Ferrite Material
CN101593596A (zh) * 2008-03-25 2009-12-02 Tdk株式会社 烧结铁氧体及其制造方法
CN105565790A (zh) * 2014-10-09 2016-05-11 桐乡市耀润电子有限公司 Yr950宽温高直流叠加低功耗锰锌铁氧体材料及其制备方法
CN106396661A (zh) * 2016-08-30 2017-02-15 南京新康达磁业股份有限公司 一种宽温低功耗锰锌铁氧体材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113658769A (zh) * 2021-08-30 2021-11-16 西安交通大学 一种高频高Q值FeSiAl@MnZn铁氧体软磁复合磁粉芯及其制备方法

Similar Documents

Publication Publication Date Title
CN102924070B (zh) 宽温高频低功耗锰锌铁氧体材料及制造方法
CN111233452B (zh) 一种高频高阻抗的贫铁锰锌铁氧体及其制备方法
CN103058643B (zh) 宽温高叠加低功耗Mn-Zn软磁铁氧体材料及制备方法
CN103951411A (zh) 宽温低功耗高居里温度锰锌铁氧体材料及制备方法
CN107352993A (zh) 一种高频锰锌软磁铁氧体材料及其制备方法
CN108530050A (zh) 宽温低损耗高阻抗MnZn软磁铁氧体材料及制备方法
CN114195500B (zh) 充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法
CN109485403A (zh) 一种高Bs低损耗软磁铁氧体材料及其制备方法
JP3584438B2 (ja) Mn−Znフェライトおよびその製造方法
Wang et al. Sintering, microstructure and magnetic properties of low temperature co-fired NiCuZn ferrites with Nb2O5 and MoO3 additions
CN110655397A (zh) 一种宽温高磁导率低损耗NiCuZn软磁铁氧体材料及其制备方法
TW200421360A (en) Electromagnetic wave absorber formed of Mn-Zn ferrite
CN112898007A (zh) 超富铁高磁通密度的锰锌铁氧体材料及其制备方法和应用
JP2007204349A (ja) 低損失酸化物磁性材料の製造方法
CN114436636A (zh) 一种差共模电感用高磁导率锰锌铁氧体材料及其制备方法
CN109678483A (zh) 宽温低温度系数低功耗锰锌铁氧体材料的制备方法
CN109354489A (zh) 一种高频低损耗铁氧体材料及其制备方法
CN107522482A (zh) 一种高磁通、高频低功耗MnZn铁氧体材料及其制造方法
JP2004247370A (ja) MnZnフェライト
JP2003068516A (ja) Mn−Zn−Ni系フェライトおよびその製造方法
CN112441828B (zh) 一种铁氧体材料及其制备方法
CN109553407A (zh) 一种高频低频兼容的锰锌功率材料及其制备方法和应用
CN107129292B (zh) 一种制备高性能MnZn铁氧体的离子联合替代方法
JP2007297232A (ja) 酸化物磁性材料の製造方法
JP4551782B2 (ja) Mn−Zn−Ni系フェライト

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171229

RJ01 Rejection of invention patent application after publication