CN107498854B - A 3D printing device for ultrasonic plasticizing fused deposition modeling - Google Patents
A 3D printing device for ultrasonic plasticizing fused deposition modeling Download PDFInfo
- Publication number
- CN107498854B CN107498854B CN201710935050.2A CN201710935050A CN107498854B CN 107498854 B CN107498854 B CN 107498854B CN 201710935050 A CN201710935050 A CN 201710935050A CN 107498854 B CN107498854 B CN 107498854B
- Authority
- CN
- China
- Prior art keywords
- printing
- ultrasonic
- connecting rod
- channel
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010146 3D printing Methods 0.000 title claims abstract description 28
- 230000008021 deposition Effects 0.000 title claims abstract description 16
- 238000007639 printing Methods 0.000 claims abstract description 90
- 239000000463 material Substances 0.000 claims abstract description 78
- 230000008018 melting Effects 0.000 claims abstract description 27
- 238000002844 melting Methods 0.000 claims abstract description 27
- 239000012768 molten material Substances 0.000 claims abstract description 9
- 230000007246 mechanism Effects 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 14
- 239000000155 melt Substances 0.000 claims description 4
- 230000002542 deteriorative effect Effects 0.000 claims description 3
- 230000033001 locomotion Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 4
- 244000309464 bull Species 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 230000009916 joint effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229920000426 Microplastic Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
Abstract
Description
技术领域technical field
本发明涉及3D打印技术领域,特别的,涉及一种超声塑化熔融沉积成型3D打印装置。The invention relates to the technical field of 3D printing, in particular, to a 3D printing device of ultrasonic plasticization fusion deposition modeling.
背景技术Background technique
近年来3D打印技术越来越多的用于制造零部件,其逐层制造的技术特性相比传统的制造技术能更快、更个性化地制造零部件。这种技术在武器装备、汽车、医学、建筑领域均有广泛的应用,但是由于机器尺寸、材料、成本等的限制,3D打印技术仍处于开发的阶段。In recent years, 3D printing technology has been used more and more to manufacture parts, and its technical characteristics of layer-by-layer manufacturing can make parts faster and more personalized than traditional manufacturing technology. This technology has a wide range of applications in the fields of weaponry, automobiles, medicine, and construction. However, due to limitations in machine size, materials, and costs, 3D printing technology is still in the development stage.
目前3D打印的原材料形式主要有丝状、粉末状、颗粒状三种形式,相应的3D打印设备由于材料的形式不同其加工原理略有区别,其中颗粒状物料是新型的物料形式,其价格更为便宜、容易制得且材料性能优异。At present, the raw materials for 3D printing mainly have three forms: filamentous, powdery, and granular. The corresponding 3D printing equipment has slightly different processing principles due to the different forms of materials. Among them, granular materials are new types of materials, and their prices are higher. It is cheap, easy to manufacture and has excellent material properties.
使用丝状物料的3D打印机工作原理是熔融沉积技术,这种设备的结构较为简单但成型精度较低,成型速度相对较慢;使用粉末状物料的3D打印机工作原理是粉末固化烧结技术,这种设备可制造复杂构件或模具,但样件表面粗糙,呈现颗粒状;使用颗粒状物料的3D打印机工作原理也是熔融沉积技术,只是使用了螺杆与加热线圈的组合结构,具体为在进料口处设置加热线圈熔融物料,然后使用螺杆旋转对物料进行剪切及挤压至喷嘴处,其结构但对复杂一些,加工精度相对较高,但螺杆结构有两大缺点:一、螺杆直径较大:在一根轴上加工出螺纹便可得到螺杆,因此其直径不能做的太小,否则会在齿根处发生断裂;二、物料易变质:由于加热线圈熔融物料需要一定的时间,因此物料会较长时间的停留在料筒内。The working principle of 3D printers using filamentous materials is fused deposition technology. The structure of this equipment is relatively simple but the molding accuracy is low, and the molding speed is relatively slow; the working principle of 3D printers using powder materials is powder solidification sintering technology. The equipment can manufacture complex components or molds, but the surface of the sample is rough and granular; the working principle of the 3D printer using granular materials is also the fusion deposition technology, but the combined structure of the screw and the heating coil is used, specifically at the feed port. Set the heating coil to melt the material, and then use the screw to rotate to shear and extrude the material to the nozzle. The structure is more complicated and the processing accuracy is relatively high, but the screw structure has two major disadvantages: 1. The diameter of the screw is large: The screw can be obtained by processing the thread on a shaft, so its diameter cannot be made too small, otherwise it will break at the root of the tooth; 2. The material is easy to deteriorate: it takes a certain time for the heating coil to melt the material, so the material will be broken. Stay in the barrel for a long time.
发明内容Contents of the invention
本发明目的在于提供一种结构简单、操作方便的3D打印装置,以达到能给快速及定量打印的目的。The purpose of the present invention is to provide a 3D printing device with simple structure and convenient operation, so as to achieve the purpose of fast and quantitative printing.
为实现上述目的,本发明提供了一种超声塑化熔融沉积成型装置,包括支架、打印单元、打印头单元以及物料熔融单元;In order to achieve the above purpose, the present invention provides an ultrasonic plasticizing fused deposition molding device, including a bracket, a printing unit, a printing head unit and a material melting unit;
所述支架包括上下设置的第一工作平台和第二工作平台,所述第一工作平台设置有所述打印头单元和物料熔融单元,所述第二工作平台上设置有所述打印单元;The support includes a first working platform and a second working platform arranged up and down, the first working platform is provided with the printing head unit and the material melting unit, and the printing unit is provided on the second working platform;
所述物料熔融单元包括超声系统、定量装置以及驱动系统,所述定量装置包括连接杆、左板和右板;The material melting unit includes an ultrasonic system, a quantitative device and a drive system, and the quantitative device includes a connecting rod, a left plate and a right plate;
所述连接杆一端设置在第二底座的空腔内,另一端伸出所述空腔并通过第一连接板与所述超声系统连接,使得所述定量装置和所述超声系统能够同步移动;One end of the connecting rod is arranged in the cavity of the second base, and the other end extends out of the cavity and is connected to the ultrasonic system through the first connecting plate, so that the quantitative device and the ultrasonic system can move synchronously;
所述左板设置在所述空腔内,且与所述连接杆设置在空腔内的一端固定;所述右板对应所述左板设置在所述空腔内且所述右板与所述左板之间设置有一定距离;所述右板套设在所述连接杆上且能沿所述连接杆移动,从而调节所述右板与所述左板之间的间距控制物料的量;The left plate is arranged in the cavity and fixed with one end of the connecting rod arranged in the cavity; the right plate is arranged in the cavity corresponding to the left plate and the right plate is connected to the cavity. There is a certain distance between the left plates; the right plate is sleeved on the connecting rod and can move along the connecting rod, thereby adjusting the distance between the right plate and the left plate to control the amount of materials ;
所述超声系统用于熔融物料,所述驱动系统用于驱动所述超声系统前后运动,从而使得超声系统熔融所述定量装置量取的物料;所述打印头单元用于将熔融的物料传递到打印单元进行打印。The ultrasonic system is used to melt the material, and the drive system is used to drive the ultrasonic system to move back and forth, so that the ultrasonic system melts the material measured by the dosing device; the print head unit is used to transfer the melted material to The printing unit performs printing.
特别地,所述超声系统包括依次连接的工具头、变幅杆以及换能器,所述工具头的第一端伸入设置在第一底座的水平通道的第二端内,所述工具头的第二端通过变幅杆与所述换能器连接;所述第一底座固定在第一工作平台上,且设置于所述第二底座的下方;所述水平通道的尺寸与所述工具头匹配,使得所述工具头能在所述水平通道内前后移动;所述水平通道的第一端外侧连接有连接通道,所述连接通道连通所述打印头单元,使得通过超声系统熔融的物料能通过所述连接通道进入所述打印头单元。In particular, the ultrasonic system includes a tool head, a horn and a transducer connected in sequence, the first end of the tool head protrudes into the second end of the horizontal channel arranged on the first base, the tool head The second end of the second end is connected with the transducer through the horn; the first base is fixed on the first working platform, and is arranged below the second base; the size of the horizontal channel is the same as that of the tool The head is matched so that the tool head can move back and forth in the horizontal channel; the first end of the horizontal channel is connected with a connecting channel outside the first end, and the connecting channel communicates with the print head unit so that the material melted by the ultrasonic system The printhead unit is accessible through the connection channel.
特别地,所述连接通道采用弹簧针阀式喷嘴,且所述弹簧针阀式喷嘴的开口朝向所述打印头单元。In particular, the connecting channel adopts a spring needle valve nozzle, and the opening of the spring needle valve nozzle faces the print head unit.
特别地,所述第二底座的上表面设置有料筒,所述料筒的出口通向所述空腔内;所述空腔的下方设置有一个通道,所述通道的两端分别连接所述空腔和所述水平通道;所述通道靠近所述水平通道的第一端设置。In particular, a cartridge is provided on the upper surface of the second base, and the outlet of the cartridge leads into the cavity; a channel is provided below the cavity, and the two ends of the channel are respectively connected to the a cavity and the horizontal channel; the channel is disposed proximate to the first end of the horizontal channel.
特别地,所述驱动系统采用滚珠丝杠传动,所述驱动系统包括设置在第一工作平台上的驱动导槽以及沿驱动导槽运动的驱动滑台;所述换能器通过第三L形连接板与所述驱动滑台连接,所述第三L形连接板的竖板套设在所述换能器的驻点处,其横板与所述驱动滑台连接,使得驱动系统的驱动滑台向前滑动的同时就可以带动超声系统前进。In particular, the drive system is driven by a ball screw, and the drive system includes a drive guide groove arranged on the first working platform and a drive slide table that moves along the drive guide groove; the transducer passes through the third L-shaped The connecting plate is connected with the driving slide, the vertical plate of the third L-shaped connecting plate is sleeved at the stagnation point of the transducer, and its horizontal plate is connected with the driving slide, so that the driving of the drive system When the slide table slides forward, it can drive the ultrasonic system forward.
特别地,所述打印头单元包括增速机构和曲柄连杆机构,所述增速机构用于提供曲柄连杆机构运动的动力;In particular, the print head unit includes a speed increasing mechanism and a crank connecting rod mechanism, and the speed increasing mechanism is used to provide power for the crank connecting rod mechanism to move;
所述增速机构包括的电机、联轴器、大齿轮和小齿轮,所述电机安装在电机座上;所述联轴器的两端分别与所述电机和所述大齿轮连接,所述大齿轮和所述小齿轮啮合,所述电机带动所述联轴器转动,进一步带动所述大齿轮转动,从而带动小齿轮转动;The speed-up mechanism includes a motor, a shaft coupling, a bull gear and a pinion, and the motor is installed on a motor seat; the two ends of the coupling are respectively connected with the motor and the bull gear, and the The large gear meshes with the small gear, and the motor drives the coupling to rotate, which further drives the large gear to rotate, thereby driving the small gear to rotate;
所述曲柄连杆机构包括两个偏心曲柄、连杆和活塞,两个所述偏心曲柄互相通过连接件连接并分别固定在打印头底座的内侧壁上,其中一个所述偏心曲柄与所述小齿轮连接,所述小齿轮的转动带动两个偏心曲柄转动;所述连杆设置在两个所述偏心曲柄之间的连接件上,所述连杆能随所述偏心曲柄的旋转而上下运动;所述活塞的顶端与所述连杆的下端连接,所述活塞的下端为锥尖状,所述活塞能随所述连杆在打印头底座的孔道内上下移动,使得所述活塞能将活塞内部的熔融的物料挤出;所述活塞的侧壁上还设置有一个短管,所述短管连通所述连接通道与所述活塞。The crank-link mechanism includes two eccentric cranks, a connecting rod and a piston, and the two eccentric cranks are connected to each other through connectors and are respectively fixed on the inner side walls of the print head base, and one of the eccentric cranks is connected to the small Gear connection, the rotation of the pinion drives the two eccentric cranks to rotate; the connecting rod is arranged on the connecting piece between the two eccentric cranks, and the connecting rod can move up and down with the rotation of the eccentric crank ; the top of the piston is connected with the lower end of the connecting rod, the lower end of the piston is conical, and the piston can move up and down in the channel of the print head base with the connecting rod, so that the piston can move The molten material inside the piston is extruded; a short tube is also provided on the side wall of the piston, and the short tube communicates with the connecting channel and the piston.
特别地,所述打印头底座的下方还设置有一个打印喷嘴,所述打印喷嘴与所述打印头底座可拆卸式连接,便于更换所述打印喷嘴;所述活塞的下端通向所述打印喷嘴。In particular, a print nozzle is provided below the print head base, and the print nozzle is detachably connected to the print head base for easy replacement of the print nozzle; the lower end of the piston leads to the print nozzle .
特别地,所述打印头底座的下部外侧还设置有加热线圈,所述加热线圈用于保持物料的温度,防止物料变质。In particular, a heating coil is provided on the outside of the lower part of the print head base, and the heating coil is used to maintain the temperature of the material and prevent the material from deteriorating.
特别地,所述打印单元包括打印平台、X向模组、Y向模组以及Z向模组,所述X向模组、Y向模组以及Z向模组均采用滚珠丝杠传动,所述打印单元至少包括一组X向模组;In particular, the printing unit includes a printing platform, an X-direction module, a Y-direction module, and a Z-direction module. The X-direction module, the Y-direction module, and the Z-direction module are all driven by ball screws. The printing unit includes at least one set of X-direction modules;
所述X向模组包括X向导槽以及沿X向导槽运动的X向滑台,所述X向导槽设置在所述第二工作平台上;所述第二工作平台上与所述X向导槽平行设置有一个滑槽,所述滑槽内设置有一个沿所述滑槽运动的第一滚轮,所述第一滚轮的上表面与所述X向滑台的上表面位于同一水平面;The X-direction module includes an X-guiding groove and an X-direction slide table moving along the X-guiding groove, and the X-guiding groove is arranged on the second working platform; A chute is arranged in parallel, and a first roller moving along the chute is arranged in the chute, and the upper surface of the first roller is at the same level as the upper surface of the X-direction slide table;
所述Y向模组包括Y向导槽以及沿Y向导槽运动的Y向滑台;所述X向模组和所述Y向模组之间采用竖直设置的第一L形连接板连接,所述第一L形连接板的横板一端设置在X向滑台的上表面,另一端设置在所述第一滚轮的上表面,所述Y向导槽设置在所述第一L形连接板的竖板上;The Y-direction module includes a Y-direction groove and a Y-direction sliding table moving along the Y-direction groove; the X-direction module and the Y-direction module are connected by a vertically arranged first L-shaped connecting plate, One end of the horizontal plate of the first L-shaped connecting plate is set on the upper surface of the X-direction slide, the other end is set on the upper surface of the first roller, and the Y guide groove is set on the first L-shaped connecting plate on the vertical board;
所述Z向模组均包括Z向导槽以及沿Z向导槽运动的Z向滑台,所述Z向导槽的背面直接或间接与所述Y向滑台连接;The Z-direction modules each include a Z guide groove and a Z-direction sliding table moving along the Z guide groove, and the back of the Z guide groove is directly or indirectly connected to the Y-direction slide table;
所述打印平台通过第二L形连接板与所述Z向滑台连接,所述第二L形连接板设置在所述打印平台的下方。The printing platform is connected to the Z-direction sliding table through a second L-shaped connecting plate, and the second L-shaped connecting plate is arranged below the printing platform.
应用本发明的技术方案,具有以下有益效果:Applying the technical solution of the present invention has the following beneficial effects:
1、通过对超声振动系统进行应力应变分析,在满足强度的条件下(工具头的最大应变小于0.1mm,最大应力小于2Mpa)工具头前端的最小直径可以缩小到5mm,对比现有技术螺杆的最小直径为12mm,缩小了将近一半,因此本发明的3D打印装置的尺寸更小,结构更为紧凑。1. Through the stress-strain analysis of the ultrasonic vibration system, under the condition of satisfying the strength (the maximum strain of the tool head is less than 0.1mm, and the maximum stress is less than 2Mpa), the minimum diameter of the front end of the tool head can be reduced to 5mm, compared with the prior art screw The minimum diameter is 12mm, which is reduced by nearly half, so the size of the 3D printing device of the present invention is smaller and the structure is more compact.
2、相比于线圈加热的形式来说,采用超声系统的方式进行熔融可使物料在超声振动及压力的共同作用下快速熔融,物料熔融的速度更快,且这种方式更加节能,更便于控制,熔融的质量更高。2. Compared with the form of coil heating, the melting of the ultrasonic system can make the material melt rapidly under the joint action of ultrasonic vibration and pressure, and the melting speed of the material is faster, and this method is more energy-saving and more convenient. control, the quality of fusion is higher.
3、本发明的装置可以通过调整打印喷嘴出料口的直径和调节定量装置的容积(螺纹结构)来改变出料量的大小,从而适应不同的加工场合和不同的精度要求。3. The device of the present invention can change the output volume by adjusting the diameter of the printing nozzle outlet and adjusting the volume (thread structure) of the dosing device, thereby adapting to different processing occasions and different precision requirements.
4、本发明的装置通过超声系统熔融,再使用加热线圈进行保温处理,使物料在运行过程中不会变质,打印的质量更高。4. The device of the present invention melts through the ultrasonic system, and then uses the heating coil for heat preservation treatment, so that the material will not deteriorate during operation, and the printing quality is higher.
5、本发明整个装置结构紧凑,质量轻,易于制作。5. The whole device of the present invention is compact in structure, light in weight and easy to manufacture.
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。In addition to the objects, features and advantages described above, the present invention has other objects, features and advantages. Hereinafter, the present invention will be described in further detail with reference to the drawings.
附图说明Description of drawings
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings constituting a part of this application are used to provide further understanding of the present invention, and the schematic embodiments and descriptions of the present invention are used to explain the present invention, and do not constitute an improper limitation of the present invention.
在附图中:In the attached picture:
图1是实施例1中3D打印装置的内部整体结构示意图;1 is a schematic diagram of the internal overall structure of the 3D printing device in
图2是实施例1中3D打印装置的外部整体结构示意图;2 is a schematic diagram of the overall external structure of the 3D printing device in
图3是实施例1中3D打印装置的打印单元的结构示意图;3 is a schematic structural view of the printing unit of the 3D printing device in
图4是实施例1中3D打印装置的打印头单元的结构示意图;4 is a schematic structural view of the print head unit of the 3D printing device in
图5是实施例1中3D打印装置的物料熔融单元的结构示意图;5 is a schematic structural view of the material melting unit of the 3D printing device in Example 1;
图6是实施例1中3D打印装置的打印头单元与物料熔融单元之间连接的结构示意图;6 is a schematic structural diagram of the connection between the print head unit and the material melting unit of the 3D printing device in Example 1;
附图标记:Reference signs:
1、支架,11、第一工作平台,12、第二工作平台,13、入料口,14、取料门,15、闭门器,16、第二滚轮,2、打印单元,21、打印平台,22、X向模组,221、X向导槽,222、X向滑台,23、Y向模组,231、Y向导槽,24、Z向模组,241、Z向导槽,25、第一L形连接板,26、滑槽,27、第一滚轮,3、打印头单元,30、加热线圈,31、打印头底座,311、打印喷嘴,32、电机,33、联轴器,34、大齿轮,35、小齿轮,36、电机座,37、偏心曲柄,38、连杆,39、活塞,391、短管,4、物料熔融单元,41、超声系统,411、工具头,412、变幅杆,413、换能器,414,第一连接板,42、料筒,43、第一底座,431、水平通道,432、通道,44、第二底座,441、空腔,45、定量装置,451、连接杆,452、左板,453、右板,46、驱动系统,461、驱动导槽,462、驱动滑台,463、第三L形连接板,47、弹簧针阀式喷嘴。1. Bracket, 11. First working platform, 12. Second working platform, 13. Material inlet, 14. Reclaiming door, 15. Door closer, 16. Second roller, 2. Printing unit, 21. Printing Platform, 22, X direction module, 221, X guide groove, 222, X direction slide table, 23, Y direction module, 231, Y guide groove, 24, Z direction module, 241, Z guide groove, 25, The first L-shaped connecting plate, 26, the chute, 27, the first roller, 3, the print head unit, 30, the heating coil, 31, the print head base, 311, the print nozzle, 32, the motor, 33, the coupling, 34, large gear, 35, pinion, 36, motor seat, 37, eccentric crank, 38, connecting rod, 39, piston, 391, short tube, 4, material melting unit, 41, ultrasonic system, 411, tool head, 412, horn, 413, transducer, 414, first connecting plate, 42, barrel, 43, first base, 431, horizontal channel, 432, channel, 44, second base, 441, cavity, 45, quantitative device, 451, connecting rod, 452, left plate, 453, right plate, 46, driving system, 461, driving guide groove, 462, driving sliding table, 463, third L-shaped connecting plate, 47, pogo pin Valve nozzle.
具体实施方式Detailed ways
以下结合附图对本发明的实施例进行详细说明,但是本发明可以根据权利要求限定和覆盖的多种不同方式实施。The embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but the present invention can be implemented in various ways defined and covered by the claims.
实施例1Example 1
详见图1,一种超声塑化熔融沉积成型3D打印装置,包括支架1、打印单元2、打印头单元3以及物料熔融单元4。See FIG. 1 for details, an ultrasonic plasticized fused deposition modeling 3D printing device, including a
在本实施例中,所述支架的框架整体是由4040铝型材搭建而成,型材之间用直角件连接,型材端部用端头用尼龙盖板进行封堵;所述支架的底部安装第二滚轮16,便于搬运整个装置。In this embodiment, the whole frame of the bracket is constructed of 4040 aluminum profiles, and the profiles are connected with right-angled pieces, and the ends of the profiles are sealed with nylon covers; the bottom of the bracket is installed with a second Two
所述支架的框架通过直角件安装有两块平板,两块平板将框架分为上下设置的第一工作平台11和第二工作平台12,所述第一工作平台设置有所述打印头单元和物料熔融单元,所述第二工作平台上设置所述打印单元。The frame of the support is equipped with two flat plates through right-angle parts, and the two flat plates divide the frame into a
详见图2,所述支架的框架外部用挡板包裹,防止外部环境(比如空气中粉尘等)影响打印质量。所述支架一共设置有上中下三层挡板,三层挡板均固定在框架上,上层挡板中的最顶部处挡板设置有一个入料口13便于倾倒物料;中层的侧挡板及顶部挡板用亚克力材料(PMMA),其透明性较好,便于观察加工的过程;底层(下层)挡板起一个包裹的作用。中层挡板的其中一块侧板上设置有一个取料门14,取料门为上下翻转的开启方式,取料门上安装有一个闭门器15使门能自动复位。See Figure 2 for details, the outside of the frame of the bracket is wrapped with a baffle to prevent the external environment (such as dust in the air, etc.) from affecting the printing quality. The support is provided with upper, middle and lower baffles in total, and the three baffles are all fixed on the frame. The top baffle in the upper baffle is provided with a
详见图3,所述打印单元包括打印平台21、X向模组22、Y向模组23以及Z向模组24,所述X向模组、Y向模组以及Z向模组均采用滚珠丝杠传动,所述打印平台能随所述X向模组、Y向模组以及Z向模组在XYZ方向上运动。3 for details, the printing unit includes a printing platform 21, an
所述X向模组包括X向导槽221以及沿X向导槽运动的X向滑台222,所述X向导槽设置在所述第二工作平台上;所述第二工作平台上与所述X向导槽平行设置有一个滑槽26,所述滑槽内设置有一个沿所述滑槽运动的第一滚轮27,所述第一滚轮的上表面与所述X向滑台的上表面位于同一水平面。The X-direction module includes an
所述滑槽与所述第一滚轮的组合还可以用同样的X向模组替换,两个所述X向导槽平行设置在所述第二工作平台上,所述第一L形连接板的横板的两端分别设置在两块X向滑台的上表面。The combination of the chute and the first roller can also be replaced by the same X-direction module, the two X-guiding grooves are arranged in parallel on the second working platform, and the first L-shaped connecting plate The two ends of the horizontal plate are respectively arranged on the upper surfaces of the two X-direction sliding tables.
所述滑槽与所述第一滚轮的组合还可以用同样的X向模组替换,两个所述X向导槽平行设置在所述第二工作平台上,所述第一L形连接板的横板的两端分别设置在两块X向滑台的上表面。The combination of the chute and the first roller can also be replaced by the same X-direction module, the two X-guiding grooves are arranged in parallel on the second working platform, and the first L-shaped connecting plate The two ends of the horizontal plate are respectively arranged on the upper surfaces of the two X-direction sliding tables.
所述Y向模组包括Y向导槽231以及沿Y向导槽运动的Y向滑台;所述X向模组和所述Y向模组之间采用竖直设置的第一L形连接板25连接,所述第一L形连接板的横板一端设置在X向滑台的上表面,另一端设置在所述第一滚轮的上表面,所述Y向导槽沿所述第一L形连接板的竖板的长度方向设置。The Y-direction module includes a
所述Z向模组均包括Z向导槽241以及沿Z向导槽运动的Z向滑台,所述Z向导槽的背面固定在所述Y向滑台上。Each of the Z-direction modules includes a Z-guiding
所述打印平台通过第二L形连接板与所述Z向滑台连接,所述第二L形连接板设置在所述打印平台的下方。The printing platform is connected to the Z-direction sliding table through a second L-shaped connecting plate, and the second L-shaped connecting plate is arranged below the printing platform.
打印单元采用丝杠螺母传动,可以使打印平台在三个方向高精度的移动,这种高精度的定位使得打印的制品质量更高,尺寸更为精确。The printing unit is driven by a screw nut, which can make the printing platform move in three directions with high precision. This high-precision positioning makes the printed products higher in quality and more accurate in size.
详见图4,所述打印头单元包括增速机构和曲柄连杆机构。Referring to Fig. 4 for details, the print head unit includes a speed increasing mechanism and a crank linkage mechanism.
所述增速机构包括电机32、联轴器33、大齿轮34和小齿轮35,所述电机安装在电机座36上;所述联轴器的两端分别与所述电机和所述大齿轮连接,所述大齿轮和所述小齿轮啮合,所述电机带动所述联轴器转动,进一步带动所述大齿轮转动,从而带动小齿轮转动。所述增速机构通过大齿轮和小齿轮,将电机的转速增大,从而为曲柄连杆机构提供更大的动力。Described speed-up mechanism comprises
所述曲柄连杆机构包括两个偏心曲柄37、连杆38和活塞39,所述两个偏心曲柄互相通过连接件连接并分别固定在打印头底座31的内侧壁上,其中一个所述偏心曲柄与所述小齿轮连接,所述小齿轮的转动带动两个偏心曲柄转动;所述连杆设置在两个所述偏心曲柄之间的连接件上,所述连杆能随所述偏心曲柄的旋转而上下运动;所述活塞的顶端与所述连杆的下端通过销钉连接,所述活塞的下端为锥尖状,所述活塞能随所述连杆在打印头底座的孔道内上下移动,使得所述活塞能将活塞内部的熔融的物料挤出;所述活塞的侧壁上还设置有一个短管391;所述打印头底座的下方还设置有一个打印喷嘴311,所述活塞的下端通向所述打印喷嘴,所述打印喷嘴与所述打印头底座之间通过螺纹连接,便于更换所述打印喷嘴。Described crank-link mechanism comprises two
曲柄连杆结构中的连杆和活塞是设置在打印头底座内部,但是为了清楚展示连杆和活塞的连接结构,在图4中对右侧的打印头底座进行了竖剖,即去掉打印头底座外侧的结构,露出连杆和活塞。The connecting rod and piston in the crank connecting rod structure are arranged inside the print head base, but in order to clearly show the connecting structure of the connecting rod and piston, the vertical section of the print head base on the right is shown in Figure 4, that is, the print head is removed The structure on the outside of the base exposes the connecting rod and piston.
通过大小齿轮、偏心曲柄和连杆带动打印活塞上下往复运动,这种方式可以使得3D打印装置的出料更加均匀,打印质量更高。The large and small gears, eccentric crank and connecting rod drive the printing piston to reciprocate up and down. This method can make the output of the 3D printing device more uniform and the printing quality higher.
所述打印头底座的下部外侧还设置有加热线圈30,所述加热线圈的温度为恒定,所述加热线圈用于保持物料的温度,防止物料变质,使打印质量得到保证。A
所述打印头底座的下方还设置有两个耳片,通过所述耳片用螺栓与螺母将打印头底座固定在第一工作平台上。Two lugs are arranged under the print head base, and the print head base is fixed on the first working platform with bolts and nuts through the lugs.
详见图5-图6,所述物料熔融单元包括用于将颗粒状的物料熔融的超声系统41、定量装置45以及驱动系统46。Referring to FIGS. 5-6 for details, the material melting unit includes an
所述超声系统包括依次通过螺纹连接的工具头411、变幅杆412以及换能器413(工具头与变幅杆之间、变幅杆与换能器之间采用反向螺纹进行旋合,使得超声振动系统在工作时不出现松动的情况);所述工具头的第一端伸入设置在第一底座43的水平通道431的第二端内,所述工具头的第二端通过变幅杆与所述换能器连接;所述第一底座固定在第一工作平台上,且设置于所述第二底座的下方;所述水平通道的尺寸与所述工具头匹配,使得所述工具头能在所述水平通道内前后移动;所述水平通道的第一端外侧连接有弹簧针阀式喷嘴47,所述弹簧针阀式喷嘴连通所述打印头单元的短管,使得通过超声系统熔融的物料能通过所述弹簧针阀式喷嘴进入所述打印头单元。在打印过程中可以通过调节弹簧针阀式喷嘴的弹簧弹力来调节物料的注射压力,从而调节打印速率。The ultrasonic system includes a
为了减少换能器的振动对3D打印的影响,换能器的外部可以套设换能器罩;同时,为了对换能器进行降温,还可以在换能器的尾部加设一个风扇。In order to reduce the impact of the vibration of the transducer on 3D printing, a transducer cover can be placed outside the transducer; at the same time, in order to cool the transducer, a fan can also be added at the end of the transducer.
所述定量装置包括连接杆451、左板452和右板453;所述连接杆一端设置在第二底座44的空腔441内,另一端伸出所述空腔并通过第一连接板与所述超声系统连接,使得所述定量装置和所述超声系统能够同步移动;所述连接杆设置在空腔内一端部分设置有第一螺纹;所述第二底座设置在所述第一底座的上方;所述左板设置在所述空腔内,且与所述连接杆设置在空腔内一端的端部固定;所述右板对应所述左板设置在所述空腔内且所述右板与所述左板之间设置有一定距离,形成定量室;所述右板为一个倒置的凹形结构,所述右板套设在所述连接杆上,且所述右板背离所述左板的一侧设置有与所述连接杆的第一螺纹匹配的第二螺纹,通过旋转所述连接杆能使所述右板沿所述连接杆移动,从而调节所述定量室的体积控制物料的量。The quantitative device includes a connecting
所述第二底座的是上表面设置有料筒42,所述料筒的出口通向所述空腔内,所述料筒的入口上方对应所述入料口,通过入料口倒物料至所述料筒中;所述空腔的下方设置有一个通道432(此处的通道可以选用斜坡或垂直形式都可以,但考虑到实际生产制造过程中斜坡的加工难度较大且精度不易保证,优选垂直通道),所述通道的两端分别连接所述空腔和所述水平通道;所述通道靠近所述水平通道第一端设置。The upper surface of the second base is provided with a
所述驱动系统采用滚珠丝杠传动,所述驱动系统包括固定在所述第一工作平台上的驱动导槽461以及沿驱动导槽运动的驱动滑台462;所述换能器通过第三L形连接板463与所述驱动滑台连接,所述第三L形连接板的上部套设在所述换能器的驻点处(即振幅为零处),下部与所述驱动滑台连接,使得驱动系统的驱动滑台向前滑动的同时就可以带动超声系统前进。定量装置与驱动系统安装在超声振动系统驻点(超声振动振幅为0)的位置,使得定量装置与驱动系统能不受超声振动的影响平稳工作。The drive system adopts ball screw transmission, and the drive system includes a
图5中定量装置是设置在第二底座内,通道和工具头是设置在第一底座的水平通道内,因此为了清楚展示定量装置、工具头及通道的连接和结构,对第一底座和第二底座进行了竖剖,即去掉第一底座和第二底座的外侧结构,露出定量装置、工具头和通道。In Fig. 5, the quantitative device is arranged in the second base, and the channel and the tool head are arranged in the horizontal channel of the first base, so in order to clearly show the connection and structure of the quantitative device, the tool head and the channel, the first base and the second base The second base is vertically sectioned, that is, the outer structures of the first base and the second base are removed to expose the dosing device, the tool head and the channel.
图6中对打印头底座、第一底座和第二底座均进行了竖剖,以显示内部的结构。In FIG. 6 , the print head base, the first base and the second base are vertically sectioned to show the internal structure.
运用本实施例中的3D打印装置的打印过程如下:The printing process using the 3D printing device in this embodiment is as follows:
前期准备:根据三维模型的大小、复杂程度等确定打印参数,然后根据打印参数选择合适的打印喷嘴的直径,根据打印喷嘴口的流量确定所需物料的体积,转动定量装置的连接杆使定量装置右板左右移动以达到确定的体积量。Preliminary preparation: Determine the printing parameters according to the size and complexity of the 3D model, then select the appropriate diameter of the printing nozzle according to the printing parameters, determine the volume of the required material according to the flow rate of the printing nozzle, and turn the connecting rod of the dosing device to make the dosing device The right plate moves left and right to achieve a defined amount of volume.
复位:使打印平台复位,打印平台在Z向位于最高点处,打印平台的中心正对打印头单元的打印喷嘴。Reset: reset the printing platform, the printing platform is at the highest point in the Z direction, and the center of the printing platform is facing the printing nozzle of the print head unit.
入料:从3D打印装置的顶部向料筒入料口内倒入颗粒状的塑料粒(材料为PLA)。Feeding: Pour granular plastic pellets (the material is PLA) from the top of the 3D printing device into the feeding port of the barrel.
定量:定量装置取一定体积量的物料A进入定量室,驱动系统工作,驱动系统的驱动滑台缓慢向前滑动,同时定量装置同幅度向前滑动,滑动一段距离后,定量室到达通道上方,物料A落入通道内(因为通道底端被同时移动到位的工具头挡住,因此一定量的物料A堆积在通道的底部)。Quantitative: The quantitative device takes a certain volume of material A into the quantitative chamber, the drive system works, the driving slide table of the drive system slides forward slowly, and at the same time the quantitative device slides forward with the same amplitude, after sliding for a certain distance, the quantitative chamber reaches the top of the passage, Material A falls into the channel (because the bottom end of the channel is blocked by the tool head which moves into place at the same time, a certain amount of material A accumulates at the bottom of the channel).
熔融:超声系统与定量装置继续向前运动,工具头在接近弹簧针阀式喷嘴的入口处停下,然后驱动系统电机快速反向转动,使超声系统与定量装置反向直线移动,当超声系统工具头移动到通道后方时,原本堆积在通道的物料A全部进入工具头所在的水平通道内;然后超声系统与定量装置继续反向直线移动,直至定量室运动到料筒出口的下方。Melting: The ultrasonic system and the dosing device continue to move forward, the tool head stops near the entrance of the spring needle valve nozzle, and then the motor of the drive system rotates in reverse quickly, so that the ultrasonic system and the dosing device move in a straight line in the opposite direction. When the ultrasonic system When the tool head moves to the back of the channel, all the material A originally accumulated in the channel enters the horizontal channel where the tool head is located; then the ultrasonic system and the dosing device continue to move in the opposite direction until the dosing chamber moves below the barrel outlet.
然后定量装置量取相同量的物料B。然后超声系统与定量装置开始缓慢地重复向前移动,滑动一段距离后,定量室到达通道上方,物料B堆积在通道的底部。工具头推动物料A继续向前移动,使物料A压实。物料A在超声振动与工具头压力的共同作用下快速熔融。在熔融的期间工具头继续前进,工具头所在的水平通道内的压力不断上升,当压力达到弹簧针阀式喷嘴的开启压力时,物料经过弹簧针阀式喷嘴内的通道进入打印头单元的底部。打印头单元外部有加热线圈传热,使物料保持温度。Then the dosing device measures the same amount of material B. Then the ultrasonic system and the dosing device start to move forward slowly and repeatedly. After sliding for a certain distance, the dosing chamber reaches the top of the channel, and the material B accumulates at the bottom of the channel. The tool head pushes the material A to continue to move forward, so that the material A is compacted. Material A melts rapidly under the joint action of ultrasonic vibration and tool head pressure. During the melting period, the tool head continues to move forward, and the pressure in the horizontal channel where the tool head is located continues to rise. When the pressure reaches the opening pressure of the spring needle valve nozzle, the material enters the bottom of the print head unit through the channel in the spring needle valve nozzle. . There is a heating coil outside the print head unit to transfer heat to keep the material at temperature.
打印:异步电动机经过一级齿轮增速机构(大小齿轮)带动偏心曲柄做旋转运动。偏心曲柄的旋转运动使连杆带动活塞在打印头底座的孔内做上下运动。在活塞向下运动时,活塞尖端对打印头单元的熔融物料A施以加力的作用使物料最终以一颗一颗的熔融物料球的形式注射到打印平台上。Printing: The asynchronous motor drives the eccentric crank to rotate through the first-stage gear speed-increasing mechanism (large and small gears). The rotary motion of the eccentric crank makes the connecting rod drive the piston to move up and down in the hole of the print head base. When the piston moves downward, the tip of the piston exerts force on the molten material A of the print head unit, so that the material is finally injected onto the printing platform in the form of molten material balls one by one.
3D打印平台移动:根据打印的顺序XY向模组同时运动使当前打印点正好位于打印喷头的正下方,当三维模型的层A打印完成后,Z向线性模组工作带动打印平台向下移动,准备打印下一层B。3D printing platform movement: According to the order of printing, the XY direction module moves simultaneously so that the current printing point is just below the printing nozzle. When the layer A of the 3D model is printed, the Z direction linear module works to drive the printing platform to move downward. Ready to print the next layer B.
在本实施例中,打印头单元的工作周期为1s,即打印头单元每秒打印出一个熔融物料球到打印平台上;物料熔融单元的工作周期为1min(包含进程与回程),即物料熔融单元每分钟向打印头单元内输送一次物料,这些物料的体积刚好等于打印喷嘴在一分钟内的出料体积,即定量装置定量的物料体积为打印喷嘴每分钟的出料体积。In this embodiment, the working cycle of the print head unit is 1s, that is, the printing head unit prints a molten material ball on the printing platform per second; the working cycle of the material melting unit is 1min (including process and return), that is, the material melting The unit delivers materials to the print head unit once per minute. The volume of these materials is just equal to the output volume of the printing nozzle in one minute, that is, the volume of the material quantified by the dosing device is the output volume of the printing nozzle per minute.
因此,整个装置可以连续工作,打印头单元的打印喷嘴可以不间断地出料。Therefore, the whole device can work continuously, and the printing nozzles of the print head unit can discharge materials without interruption.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710935050.2A CN107498854B (en) | 2017-10-10 | 2017-10-10 | A 3D printing device for ultrasonic plasticizing fused deposition modeling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710935050.2A CN107498854B (en) | 2017-10-10 | 2017-10-10 | A 3D printing device for ultrasonic plasticizing fused deposition modeling |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107498854A CN107498854A (en) | 2017-12-22 |
CN107498854B true CN107498854B (en) | 2023-02-28 |
Family
ID=60701055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710935050.2A Active CN107498854B (en) | 2017-10-10 | 2017-10-10 | A 3D printing device for ultrasonic plasticizing fused deposition modeling |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107498854B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2760771C1 (en) * | 2018-05-28 | 2021-11-30 | Когел Интеллиджент Машинери Лимитед | 3d printing device, production line with the specified device, and cyclic printing method for the specified production line |
CN109226770A (en) * | 2018-11-12 | 2019-01-18 | 深圳艾利佳材料科技有限公司 | A kind of tungsten-copper alloy ultrasound plasticizing injection moulding forming method and device |
CN110561740A (en) * | 2019-10-12 | 2019-12-13 | 四川大学 | Quick forming feeding device |
CN112658287A (en) * | 2020-12-09 | 2021-04-16 | 北京石油化工学院 | 3D printing nozzle and objective table moving device in high-temperature closed box |
CN114290668A (en) * | 2021-12-27 | 2022-04-08 | 南京航空航天大学 | Ultrasonic micro-rolling additive manufacturing and forming device and method for continuous fiber composite material |
CN115365515B (en) * | 2022-08-26 | 2023-05-30 | 南京航空航天大学 | Ultrasonic fusion composite deposition additive manufacturing device and manufacturing method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101261266A (en) * | 2008-04-11 | 2008-09-10 | 蒋炳炎 | A test device for polymer melting and plasticization using ultrasonic vibration |
CN103213257A (en) * | 2013-04-09 | 2013-07-24 | 中南大学 | A screwless ultrasonic melting and plasticizing polymer micro-injection molding device and molding method |
CN105235214A (en) * | 2015-10-27 | 2016-01-13 | 大连理工大学 | Quantitative feeding device for melt extrusion printing of screw rod and feeding method |
CN205044112U (en) * | 2015-09-25 | 2016-02-24 | 东莞市松湖塑料机械股份有限公司 | A plastics silk extruding means for desktop consumptive material testing machine |
EP3124214A2 (en) * | 2015-07-31 | 2017-02-01 | The Boeing Company | System for additively manufacturing composite parts |
CN106985385A (en) * | 2017-04-16 | 2017-07-28 | 吉林大学 | Compound material ultrasound deposits increasing material manufacturing device and method |
CN207535304U (en) * | 2017-10-10 | 2018-06-26 | 中南大学 | A kind of ultrasound plastifying fusion deposition modeling 3D printing device |
-
2017
- 2017-10-10 CN CN201710935050.2A patent/CN107498854B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101261266A (en) * | 2008-04-11 | 2008-09-10 | 蒋炳炎 | A test device for polymer melting and plasticization using ultrasonic vibration |
CN103213257A (en) * | 2013-04-09 | 2013-07-24 | 中南大学 | A screwless ultrasonic melting and plasticizing polymer micro-injection molding device and molding method |
EP3124214A2 (en) * | 2015-07-31 | 2017-02-01 | The Boeing Company | System for additively manufacturing composite parts |
CN205044112U (en) * | 2015-09-25 | 2016-02-24 | 东莞市松湖塑料机械股份有限公司 | A plastics silk extruding means for desktop consumptive material testing machine |
CN105235214A (en) * | 2015-10-27 | 2016-01-13 | 大连理工大学 | Quantitative feeding device for melt extrusion printing of screw rod and feeding method |
CN106985385A (en) * | 2017-04-16 | 2017-07-28 | 吉林大学 | Compound material ultrasound deposits increasing material manufacturing device and method |
CN207535304U (en) * | 2017-10-10 | 2018-06-26 | 中南大学 | A kind of ultrasound plastifying fusion deposition modeling 3D printing device |
Also Published As
Publication number | Publication date |
---|---|
CN107498854A (en) | 2017-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107498854B (en) | A 3D printing device for ultrasonic plasticizing fused deposition modeling | |
CN105751459B (en) | The Coinjection molding apparatus of spherical rotor | |
CN109414862A (en) | By the extruder of the equipment of extrusion-compound extrusion moulding (CEM) increasing material manufacturing metal parts | |
CN108817397B (en) | Additive manufacturing device and method | |
CN109605742B (en) | A magnetorheological elastomer 3D printing device and method | |
CN106827443A (en) | A kind of short carbon fiber reinforced high temperature glutinous thermoplastic rapid shaping screw extrusion apparatus high | |
CN211640994U (en) | Automatic molding manufacturing equipment for fiber reinforced structural member | |
CN211363495U (en) | 3D print head | |
CN211917720U (en) | A 3D printing device | |
WO2020133871A1 (en) | Chocolate 3d-printing extrusion device | |
CN100493879C (en) | Vertical miniature injection molding machine | |
CN108582655A (en) | A kind of full electric injection molding machine independence She Tai mechanisms | |
CN207535304U (en) | A kind of ultrasound plastifying fusion deposition modeling 3D printing device | |
CN107486984A (en) | Barrel and the high storing parallel arm 3D printer of nozzle separate type | |
CN219153740U (en) | Wire diameter adjustable self-cleaning type 3D printer extrusion device | |
CN209208082U (en) | A kind of vapour-pressure type 3D printing device | |
CN207240853U (en) | A kind of barrel and the high storing parallel arm 3D printer of nozzle separate type | |
CN110352122A (en) | Injection (mo(u)lding) machine and injection moulding method | |
CN110103402B (en) | Feeding and pressurizing assembly for ultrasonic plasticizing system | |
WO2016107493A1 (en) | High-speed print head for 3d printer | |
CN2564336Y (en) | Spiral extrusion injector for fast forming system | |
CN113210568B (en) | Mix double spray 3D printer of feeding | |
CN205705155U (en) | The inner screw channel screw of injection forming machine of vibration plunger | |
CN105751460B (en) | Vibrate plunger type Coinjection molding apparatus | |
CN104382214A (en) | Food printing forming machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |