CN107331844A - 一种网络多孔氮掺杂石墨烯纳米片的制备方法 - Google Patents
一种网络多孔氮掺杂石墨烯纳米片的制备方法 Download PDFInfo
- Publication number
- CN107331844A CN107331844A CN201710529298.9A CN201710529298A CN107331844A CN 107331844 A CN107331844 A CN 107331844A CN 201710529298 A CN201710529298 A CN 201710529298A CN 107331844 A CN107331844 A CN 107331844A
- Authority
- CN
- China
- Prior art keywords
- network
- nanometer sheet
- preparation
- doped graphene
- graphene nanometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种网络多孔氮掺杂石墨烯纳米片的制备方法。本发明通过含氮有机物和水溶性盐模板混合,直接惰性气氛下高温梯度煅烧制备网络多孔氮掺杂石墨烯纳米片。制备的网络多孔氮掺杂石墨烯纳米片作为钠/钾电池负极材料,具有优异的性能。
Description
技术领域
本发明涉及一种网络多孔氮掺杂石墨烯纳米片的制备方法。
背景技术
石墨烯是一类碳原子构成的正六边形扩展的二维网格结构的纳米材料,由于其性能优异且具有多种潜在的应用。收到人们的广泛关注。然而,二维石墨烯之间又极易层-层相互叠加使其丧失二维纳米结构的特有性质,因此,如何阻止石墨烯分子层-层之间的叠加,使其在宏观尺度依旧保持其石墨烯特性成为科学研究需要解决的关键问题。
因此,通过三维网络石墨烯构筑,从而在宏观尺度保持石墨烯的二维特性成为当今纳米材料领域的研究热点(Nat Mater, 2011, 10: 424; Adv Mater, 2012, 24: 5083;CN201611191949.X;CN201611232796.9)。相关研究表明,异质原子掺杂可以氮掺杂改变石墨烯分子上的电子云密度,因而具有独特的材料特性,氮原子掺杂的石墨烯由于石墨烯分子内C-N键间的极性,致使氮掺杂石墨烯催化氧还原性能优于石墨烯。三维氮掺杂石墨烯的制备方法通常通过三维石墨烯在氨气气氛还原得到(ACS Nano, 2013, 7(5): 4042),这种方法工艺繁琐,同时氨气的使用有一定的危险性,因而开发一种简单规模制备网络氮掺杂石墨烯纳米片的方法非常必要。
发明内容
针对上述现有技术存在的问题,本发明的目的是提出一种网络多孔氮掺杂石墨烯纳米片的制备方法。
本发明通过含氮有机物和水溶性盐模板混合,直接惰性气氛下高温梯度煅烧制备网络多孔氮掺杂石墨烯纳米片。
一种网络多孔氮掺杂石墨烯纳米片的制备方法,其特征在于将含氮有机物与可水溶性盐模板混合,然后置入气氛炉中梯度煅烧:首先按照升温速度1-10 ℃/min,升温至300-500 ℃,保温0.5-2h后,继续升温至600-1500 ℃,升温速度1-10 ℃/min,保温时间为1-3 h,降至室温后取出;煅烧后成黑色块状,粉碎后,每次加入原料质量的2-5倍30-100 ℃蒸馏水抽滤洗涤,将滤渣60-120 ℃恒温12-24 h烘干,得到网络多孔氮掺杂石墨烯纳米片。
本发明所述的含氮有机物选自柠檬酸三胺、乙二胺四乙酸或乙二酸二乙胺。
水溶性盐模板选自碳酸氢钠或碳酸氢钾。
含氮有机物与水溶性盐模板的质量比为1:0.1-10。
本发明原材料丰富、廉价易得、设备要求简单、环境友好、产品质量稳定。其中通过将含氮有机物和水溶性盐模板混合后直接惰性气氛下高温梯度煅烧,通过粉碎、洗涤、烘干等到网络多孔氮掺杂石墨烯纳米片。
制备的网络多孔氮掺杂石墨烯纳米片作为钠/钾电池负极材料,具有优异的性能。
本发明与其他网络状石墨烯纳米片制备方法相比,具有以下优点:
1、本方法原料廉价易得,制备所用原料均为含氮有机物和水溶性盐,产地广泛且价格低廉;
2、本方法无需高真空设备,设备要求简单;
3、本方法环境相对友好,不涉及易燃气体,产生废水中所含大部分为无机盐类,易于回收,环境污染小;
4、所制备材料作为钠/钾电池负极,具有优异的性能,同时可广泛用于储能,光催化,高分子填料等领域。
附图说明
图1为实施例1中所制备网络多孔氮掺杂石墨烯纳米片TEM照片。
图2为实施例3中所制备网络多孔氮掺杂石墨烯纳米片TEM照片。
图3为实施例1中所制备网络多孔氮掺杂石墨烯纳米片氮含量EDX谱图。
图4为实施例1中所制备网络多孔氮掺杂石墨烯纳米片钾离子半电池测试。
具体实施方式
实施例1:
称取10 g 柠檬酸三胺和30 g碳酸氢钠球磨混合均匀后加入瓷舟中,置入氩气气氛炉中,首先,按照升温速率5 ℃/min升温至400 ℃,保温2 h后,继续按照5 ℃/min升温至800℃,保温1 h后,自然降至室温,取出样品;将所得黑色块状样品粉碎后,加入50 ℃蒸馏水80g进行抽滤洗涤,反复进行5次,将洗涤后的滤渣60 ℃ 保温12 h干燥得到网络多孔氮掺杂石墨烯纳米片。
实施例2:
称取10 g 柠檬酸三胺和100 g碳酸氢钾球磨混合均匀后加入瓷舟中,置入氩气气氛炉中,首先,按照升温速率2 ℃/min升温至500 ℃,保温0.5 h后,继续按照10 ℃/min升温至1500 ℃,保温1 h后,自然降至室温,取出样品;将所得黑色块状样品粉碎后,加入100 ℃蒸馏水500 g进行抽滤洗涤,反复进行3次,将洗涤后的滤渣80 ℃ 保温24 h干燥得到网络多孔氮掺杂石墨烯纳米片。
实施例3:
称取10 g 乙二酸二乙胺和5 g碳酸氢钠机械混合均匀后加入瓷舟中,置入氮气气氛炉中,首先,按照升温速率10 ℃/min升温至400 ℃,保温2 h后,继续按照5 ℃/min升温至800℃,保温2 h后,自然降至室温,取出样品;将所得黑色块状样品粉碎后,加入80 ℃蒸馏水45g进行抽滤洗涤,反复进行8次,将洗涤后的滤渣80 ℃ 保温24 h干燥得到网络多孔氮掺杂石墨烯纳米片。
实施例4:
称取10 g 乙二酸二乙胺和10 g碳酸氢钾机械混合均匀后加入瓷舟中,置入氮气气氛炉中,首先,按照升温速率5 ℃/min升温至300 ℃,保温1 h后,继续按照5 ℃/min升温至900 ℃,保温1 h后,自然降至室温,取出样品;将所得黑色块状样品粉碎后,加入80 ℃蒸馏水50 g进行抽滤洗涤,反复进行5次,将洗涤后的滤渣120 ℃ 保温20 h干燥得到网络多孔氮掺杂石墨烯纳米片。
实施例5:
称取10 g乙二胺四乙酸和40 g碳酸氢钾机械混合均匀后加入瓷舟中,置入氮气气氛炉中,首先,按照升温速率5 ℃/min升温至500 ℃,保温1 h后,继续按照5 ℃/min升温至900℃,保温1 h后,自然降至室温,取出样品;将所得黑色块状样品粉碎后,加入80 ℃蒸馏水50g进行抽滤洗涤,反复进行5次,将洗涤后的滤渣80 ℃ 保温20 h干燥得到网络多孔氮掺杂石墨烯纳米片。
实施例6:
称取10 g乙二胺四乙酸和20 g碳酸氢钠机械混合均匀后加入瓷舟中,置入氮气气氛炉中,首先,按照升温速率5 ℃/min升温至300 ℃,保温1.5 h后,继续按照5 ℃/min升温至900 ℃,保温1 h后,自然降至室温,取出样品;将所得黑色块状样品粉碎后,加入80 ℃蒸馏水50 g进行抽滤洗涤,反复进行5次,将洗涤后的滤渣80 ℃ 保温14 h干燥得到网络多孔氮掺杂石墨烯纳米片。
实施例7:
称取10 g 乙二酸二乙胺和50 g碳酸氢钾机械混合均匀后加入瓷舟中,置入氮气气氛炉中,首先,按照升温速率5 ℃/min升温至300 ℃,保温1.5 h后,继续按照5 ℃/min升温至900 ℃,保温1 h后,自然降至室温,取出样品;将所得黑色块状样品粉碎后,加入80 ℃蒸馏水50 g进行抽滤洗涤,反复进行5次,将洗涤后的滤渣80 ℃ 保温14 h干燥得到网络多孔氮掺杂石墨烯纳米片。
实施例8:
称取10 g 柠檬酸三胺和2 g碳酸氢钾机械混合均匀后加入瓷舟中,置入氮气气氛炉中,首先,按照升温速率5 ℃/min升温至300 ℃,保温1.5 h后,继续按照5 ℃/min升温至900 ℃,保温1 h后,自然降至室温,取出样品;将所得黑色块状样品粉碎后,加入80 ℃蒸馏水30 g进行抽滤洗涤,反复进行5次,将洗涤后的滤渣80 ℃ 保温14 h干燥得到网络多孔氮掺杂石墨烯纳米片。
试验例1
本试验例将各实施例所得网络状石墨烯纳米片作为钠离子电池电极材料组装钠离子半电池:选择钠片为对电极,0.8 M KPF6溶于EC/DMC(1:1 体积比) 作为电解液,在手套箱(水含量小于0.1 ppm,氧含量小于0.3 ppm)里进行CR2032半电池组装后测试。测试电流密度为0.1A/g,检测结果表1所示,实施例1的钾电性能如图4所示。
表1各实施例的网络多孔氮掺杂石墨烯纳米片0.1A g-1的钾电性能检测结果
。
Claims (4)
1.一种网络多孔氮掺杂石墨烯纳米片的制备方法,其特征在于将含氮有机物与可水溶性盐模板混合,然后置入气氛炉中梯度煅烧:首先按照升温速度1-10 ℃/min,升温至300-500 ℃,保温0.5-2h后,继续升温至600-1500 ℃,升温速度1-10 ℃/min,保温时间为1-3h,降至室温后取出;煅烧后成黑色块状,粉碎后,每次加入原料质量的2-5倍30-100 ℃蒸馏水抽滤洗涤,将滤渣60-120 ℃恒温12-24 h烘干,得到网络多孔氮掺杂石墨烯纳米片。
2.根据权利要求1中所述的制备方法,其特征在于含氮有机物选自柠檬酸三胺、乙二胺四乙酸或乙二酸二乙胺。
3.根据权利要求1中所述的制备方法,其特征在于水溶性盐模板选自碳酸氢钠或碳酸氢钾
4.根据权利要求1或2或3中所述的制备方法,其特征在于含氮有机物与水溶性盐模板的质量比为1:0.1-10。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710529298.9A CN107331844A (zh) | 2017-07-01 | 2017-07-01 | 一种网络多孔氮掺杂石墨烯纳米片的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710529298.9A CN107331844A (zh) | 2017-07-01 | 2017-07-01 | 一种网络多孔氮掺杂石墨烯纳米片的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107331844A true CN107331844A (zh) | 2017-11-07 |
Family
ID=60199619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710529298.9A Pending CN107331844A (zh) | 2017-07-01 | 2017-07-01 | 一种网络多孔氮掺杂石墨烯纳米片的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107331844A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108232116A (zh) * | 2017-12-15 | 2018-06-29 | 江苏大学 | 一种氮、磷共掺杂石墨烯凝胶电化学储钠电极的制备方法 |
CN108735991A (zh) * | 2018-05-07 | 2018-11-02 | 北京科技大学 | 一种钾离子电池用负极材料及制备方法和电解液 |
CN109286018A (zh) * | 2018-12-06 | 2019-01-29 | 中国科学院兰州化学物理研究所 | 一种超薄二维碳片的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103121669A (zh) * | 2011-11-21 | 2013-05-29 | 海洋王照明科技股份有限公司 | 掺氮石墨烯的制备方法 |
CN103985884A (zh) * | 2014-05-21 | 2014-08-13 | 华中科技大学 | 一种氮掺杂碳纳米材料、其制备方法及应用 |
CN106587017A (zh) * | 2016-12-14 | 2017-04-26 | 中国石油大学(北京) | 一种多孔石墨烯及其制备方法 |
-
2017
- 2017-07-01 CN CN201710529298.9A patent/CN107331844A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103121669A (zh) * | 2011-11-21 | 2013-05-29 | 海洋王照明科技股份有限公司 | 掺氮石墨烯的制备方法 |
CN103985884A (zh) * | 2014-05-21 | 2014-08-13 | 华中科技大学 | 一种氮掺杂碳纳米材料、其制备方法及应用 |
CN106587017A (zh) * | 2016-12-14 | 2017-04-26 | 中国石油大学(北京) | 一种多孔石墨烯及其制备方法 |
Non-Patent Citations (1)
Title |
---|
PINGPING ZHAO等: ""Capacitive Performance of Nitrogen-Doped Hierarchical Porous Carbon Easily Synthesized with Double Metal Organic Salt"", 《ECS ELECTROCHEMISTRY LETTERS》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108232116A (zh) * | 2017-12-15 | 2018-06-29 | 江苏大学 | 一种氮、磷共掺杂石墨烯凝胶电化学储钠电极的制备方法 |
CN108735991A (zh) * | 2018-05-07 | 2018-11-02 | 北京科技大学 | 一种钾离子电池用负极材料及制备方法和电解液 |
CN108735991B (zh) * | 2018-05-07 | 2021-03-05 | 北京科技大学 | 一种钾离子电池用负极材料及制备方法和电解液 |
CN109286018A (zh) * | 2018-12-06 | 2019-01-29 | 中国科学院兰州化学物理研究所 | 一种超薄二维碳片的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhu et al. | Facile synthesis of a MoO2–Mo2C–C composite and its application as favorable anode material for lithium-ion batteries | |
Chen et al. | Uniform and porous Mn-doped Co3O4 microspheres: Solvothermal synthesis and their superior supercapacitor performances | |
Gu et al. | Microwave-assisted synthesis of nanosphere-like NiCo2O4 consisting of porous nanosheets and its application in electro-catalytic oxidation of methanol | |
Wei et al. | Facile synthesis of NiMn2O4 nanosheet arrays grown on nickel foam as novel electrode materials for high-performance supercapacitors | |
Xiao et al. | 3D hierarchical Co3O4 twin‐spheres with an urchin‐like structure: large‐scale synthesis, multistep‐splitting growth, and electrochemical pseudocapacitors | |
CN106549163B (zh) | 一种钴、氮共掺杂超薄纳米碳片的制备方法及其应用 | |
Liao et al. | Hydrothermal synthesis of mesoporous MnCo2O4/CoCo2O4 ellipsoid-like microstructures for high-performance electrochemical supercapacitors | |
Zhang et al. | A novel 2D porous print fabric-like α-Fe2O3 sheet with high performance as the anode material for lithium-ion battery | |
Zhao et al. | Preparation and application of porous nitrogen-doped graphene obtained by co-pyrolysis of lignosulfonate and graphene oxide | |
CN102923688B (zh) | 一种氮掺杂碳材料的制备方法及其应用 | |
Qin et al. | Germanium Quantum Dots Embedded in N‐Doping Graphene Matrix with Sponge‐Like Architecture for Enhanced Performance in Lithium‐Ion Batteries | |
Sydulu Singu et al. | Tunability of porous CuCo2O4 architectures as high‐performance electrode materials for supercapacitors | |
Mamak et al. | Lanthanum strontium manganite/yttria-stabilized zirconia nanocomposites derived from a surfactant assisted, co-assembled mesoporous phase | |
Leng et al. | Enhancing the cyclability of Li–O2 batteries using PdM alloy nanoparticles anchored on nitrogen-doped reduced graphene as the cathode catalyst | |
Chen et al. | TiO2–B Nanosheets/Anatase Nanocrystals Co‐Anchored on Nanoporous Graphene: In Situ Reduction–Hydrolysis Synthesis and Their Superior Rate Performance as an Anode Material | |
Qian et al. | Surfactant effects on the morphology and pseudocapacitive behavior of V2O5⋅ H2O | |
CN104766645A (zh) | 一种碳纳米管-石墨烯复合导电浆料及其制备方法与应用 | |
CN106981671A (zh) | 一种三维多孔氮掺杂石墨烯及其制备方法和应用 | |
Zhao et al. | Effect of La0. 8Sr0. 2Co0. 2Fe0. 8O3− δ morphology on the performance of composite cathodes | |
Wang et al. | A facile route for PbO@ C nanocomposites: An electrode candidate for lead-acid batteries with enhanced capacitance | |
Shim | Microwave-assisted synthesis of porous nickel cobaltite with different morphologies in ionic liquid and their application in supercapacitors | |
Fan et al. | 2D Fe2O3 nanosheets with bi-continuous pores inherited from Fe-MOF precursors: an advanced anode material for Li-ion half/full batteries | |
Zhang et al. | Self-assembly formation of hierarchical mixed spinel MnCo2O4 porous nanospheres confined by polypyrrole pyrolytic carbon for high-performance lithium storage | |
CN107331844A (zh) | 一种网络多孔氮掺杂石墨烯纳米片的制备方法 | |
Wang et al. | Advance of Prussian Blue‐Derived Nanohybrids in Energy Storage: Current Status and Perspective |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171107 |
|
RJ01 | Rejection of invention patent application after publication |