[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN107315350B - 一种电静液作动系统双闭环模型参考自适应控制方法 - Google Patents

一种电静液作动系统双闭环模型参考自适应控制方法 Download PDF

Info

Publication number
CN107315350B
CN107315350B CN201710678849.8A CN201710678849A CN107315350B CN 107315350 B CN107315350 B CN 107315350B CN 201710678849 A CN201710678849 A CN 201710678849A CN 107315350 B CN107315350 B CN 107315350B
Authority
CN
China
Prior art keywords
adaptive
actuator
control
electro
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710678849.8A
Other languages
English (en)
Other versions
CN107315350A (zh
Inventor
张扬
郭一楠
巩敦卫
王晔枫
程伟
何勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201710678849.8A priority Critical patent/CN107315350B/zh
Publication of CN107315350A publication Critical patent/CN107315350A/zh
Application granted granted Critical
Publication of CN107315350B publication Critical patent/CN107315350B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种电静液作动系统双闭环模型参考自适应控制方法,首先构建作动器压差内环控制系统,提高电静液作动器的阻尼;在作动器压差内环控制系统中,增设反馈通道高通滤波器,消除电静液作动器阻尼升高引起的刚度下降;采用模型参考自适应控制方法,提高对作动系统固有不确定性的适应能力;利用基于信号的控制输出补偿器,对自适应调节器的等效输出控制量进行补偿,得到补偿后的自适应调节器等效输出,提高小信号任务指令下的系统响应精度和灵敏度。本发明方法,可以根据实际工况灵活调节系统动态性能,改善大信号任务指令下的响应快速性,显著提高小信号任务指令下的系统灵敏度与精度。

Description

一种电静液作动系统双闭环模型参考自适应控制方法
技术领域
本发明涉及一种电静液作动器的控制方法,具体涉及一种电静液作动系统双闭环模型参考自适应控制方法。
技术背景
电静液作动器是一种新型作动器,其具有体积小、可靠性高、重量轻、效率高、管路结构简单等优点,在顶升系统、支护系统、飞控系统、先进制造等领域有着广阔的使用前景。但由于电机和泵的转动惯量大,同时其频宽和刚度不足,阀自身的死区特性,以及子机构本身所具有的非线性因素,长期运行造成的油温、密度等参数漂移等不确定因素都会影响系统的控制性能。特别是,在小信号任务下,当存在外部干扰时,系统的定位精度和响应速度往往不能满足控制需求。为此,有必要采用恰当的控制方法,提高系统的动静态特性,以满足对电静液作动系统具有高性能需求的应用领域。
目前,面向电动静液作动器的控制方法主要有:PID控制、滑模控制、遗传算法等。文献(张振,李海军,诸德放.EHA反馈线性化最优滑模面双模糊滑模控制[J].北京航空航天大学学报,2016,42(7):1398-1405)提出一种基于反馈线性化最优滑模面的双模糊滑模控制方法。该方法虽然很好的保证了系统的跟踪性能,并且采用模糊控制算法消弱了抖振,但是抖振对系统的控制品质依然存在影响。文献(马纪明,付永领,李军,高波.一体化电动静液作动器(EHA)的设计与仿真分析[J].航空学报,2005,26(1):79-83)对电动静液系统采用PID控制器实现系统的位置控制。仿真结果表明,系统调节时间为1秒左右;当在2秒添加负载后,受扰动后的调节时间为0.5秒。显然,系统的快速性和抗扰性还可以进一步加以改善和提升,从而满足某些应用领域中电静液作动系统的高性能需求。文献(谢鹏,张红梅.基于自适应遗传算法的EHA控制器优化设计[J].传感技术学报,2016,29(6):909-914.)提出一种基于自适应遗传算法的电动静液控制器。实验表明,采用该算法后,系统的快速性、精确度与稳定性都有所改善。但是,将遗传算法等智能优化算法用于解决电静液系统的实时控制问题还存在一定困难。另外,该算法所呈现的结果中伴有4.76%的超调,其控制性能有待于进一步提升,以拓展其适用范围。
发明内容
本发明所要解决的技术问题是:克服现有技术存在的缺陷,提出了一种电静液作动系统双闭环模型参考自适应控制方法,针对电静液作动系统,面向不同的信号任务,采用双闭环模型参考自适应控制方法,提高电静液作动系统的运行质量,改善系统的动态响应性能和鲁棒性。
为了实现上述目的,本发明提出的电静液作动系统双闭环模型参考自适应控制方法,具体步骤如下:
步骤1.构建作动器压差内环控制系统,提高电静液作动器的阻尼。
步骤2.在作动器压差内环控制系统中,增设反馈通道高通滤波器,消除电静液作动器阻尼升高引起的刚度下降。
步骤3.设置模型参考自适应外环控制系统,采用模型参考自适应控制方法,提高对作动系统固有不确定性的适应能力。
步骤4.利用基于信号的控制输出补偿器,对步骤3自适应调节器的等效输出控制量进行补偿,得到补偿后的自适应调节器等效输出,提高小信号任务指令下的系统响应精度和灵敏度。
步骤1所述构建作动器压差内环控制系统,提高电静液作动器的阻尼,具体步骤如下:
Figure BDA0001374995130000024
为系统相对阻尼系数;ω0为系统固有频率;Kfr为前向速度放大系数;s为传递函数的复变量;X为输出量;U为输入量。不失一般性,电静液作动器传递函数表示为:
Figure BDA0001374995130000021
提取作动器压差,采用比例控制器,构建作动器压差内环控制系统。令Kup为压差反馈放大系数;m为活塞上的惯性质量;A为作动筒的活塞面积;Kc为控制器比例增益。由此,得到内环控制系统传递函数为:
Figure BDA0001374995130000022
对比压差内环控制系统增加前后的传递函数,可知:增加压差闭环系统后,系统等效阻尼增大,改善了系统抗干扰性能。
步骤2所述的在作动器压差内环控制系统中,增设反馈通道高通滤波器,消除电静液作动器阻尼升高引起的刚度下降。具体内容如下:
虽然能够提高系统阻尼,但是会造成系统刚度的下降,导致稳态误差存在,记为
其中,Kfp为前向系统的压差放大系数;Kfb为位置反馈系数;F为外部负载;X为作动筒的活塞位移。在静态外力和摩擦力等干扰因素影响下,会出现静态误差。尤其在控制信号是正弦输入时,若作动器存在干性摩擦,会导致系统产生明显响应滞后,使系统整体性能恶化。
为此,在压差内环控制系统中,增设反馈通道高通滤波器,根据系统固有频率确定高通滤波器的截止频率,消弱低频段压差反馈信号,改善系统响应的稳态误差。值得注意的是,对于控制信号是正弦输入时,高通滤波器的截止频率不仅取决于系统固有频率,还与控制信号频率相关。
令ωHPF为高通滤波器的截止频率。由此,得到增加滤波器后的等效内环传递函数为:
步骤3所述设置模型参考自适应外环控制系统,采用模型参考自适应控制方法,提高对作动系统固有不确定性的适应能力,具体内容如下:
考虑到电静液作动系统中部件存在的非线性、非定常特性,采用模型参考自适应控制方法作为外环控制策略。
首先,定义参考模型:
Figure BDA0001374995130000032
其中,AM为n×n维矩阵,为参考模型的系统矩阵;BM为n×m维矩阵,为参考模型的控制矩阵;xM为n维参考模型的状态向量;
Figure BDA0001374995130000033
为xM的导数;g为m维输入向量。
其次,得到参考模型输出与实际系统输出之间的偏差e,记为:
e=x-xM (6)
其中,x为系统状态向量。
再次,根据李雅普诺夫方程,得到自适应调节器的输出控制量为:
z=-hsignBTPe (7)
其中,sign为符号函数;BT为B的转置矩阵,B为被控对象的控制矩阵;P为对称正定矩阵,可通过求解李亚普诺夫方程确定;h=const>0。
在实际过程中,,B的性能可通过BM来保证,所以上式可以写为:
其中:
Figure BDA0001374995130000035
为BM的转置矩阵。
最后,根据步骤2构建的等效压差内环控制系统,结合设计的上述模型参考自适应控制器,确定自适应调节器的等效输出控制量为:
z'=-hSat(k1e+T1ε) (9)
Figure BDA0001374995130000041
其中,Sat为连续饱和函数;k1为常数矩阵;T1与T2为平均滤波器时间常数的对角阵;ε为适应信号;为ε的一阶导数;
Figure BDA0001374995130000043
为e的一阶导数。
步骤4所述利用基于信号的控制输出补偿器,对自适应调节器的等效输出控制量进行补偿,得到补偿后的自适应调节器等效输出,提高小信号任务指令下的系统响应精度和灵敏度。
考虑到在上述模型参考自适应外环控制作用下,当输入为小信号任务指令时,特别是正弦小信号输入时,系统灵敏度和精度不能保证。因此,根据信号输入,设计自适应调节器输出补偿环节。补偿器采用信号相关的分段函数为:
其中,K1与K2为分段点,用于划分信号任务指令的大小;a1与a2补偿强度;b1与b2为阶段补偿的基准值;c为补偿峰值。
在上述补偿环节作用下,得到补偿后的自适应调节器等效输出为:
z″=z′×Az (12)
本发明首先为提高系统抗干扰能力,提取作动器压差,构建压差内环控制系统来改善系统阻尼;其次,在压差检测反馈通道,设计滤波器来抵消阻尼升高引起的刚度下降;在此基础上,设计基于信号的改进模型参考自适应外环控制方法。采用该方法,可以根据实际工况灵活调节系统动态性能,改善大信号任务指令下的响应快速性,显著提高小信号任务指令下的系统灵敏度与精度。特别是,无论何种任务指令下,系统响应基本无超调,满足对电静液作动系统有高性能需求的应用领域。
附图说明
图1电静液作动系统双闭环控制原理图。
图2高通滤波器截止频率。
图3阶跃信号下的系统响应对比曲线。
图4正弦信号下的系统响应对比曲线。
具体实施方式
以下结合附图和具体实例,对本发明所提方法的实施方式进行详细说明:
电静液作动系统及其子机构固有的转动惯量大,同时其频宽和刚度不足,阀自身的死区特性,以及子机构本身所具有的非线性因素,长期运行造成的油温、密度参数漂移等不确定因素都会影响系统的控制性能。在对抗扰性能、机动性能、精度等方面有着较高控制品质的应用场合,常规的方法无法满足要求。
针对上述具体工作,使用本发明提出的电静液作动系统双闭环模型参考自适应控制方法,提高电静液作动系统的运行质量,改善系统的动态响应性能和鲁棒性。具体步骤如下:
Figure BDA0001374995130000056
为系统相对阻尼系数;ω0为系统固有频率;Kfr为前向速度放大系数;s为传递函数的复变量;X为输出量;U为输入量。不失一般性,电静液作动器传递函数表示为:
提取作动器压差,采用比例控制器,构建作动器压差内环控制系统。令Kup为压差反馈放大系数;m为活塞上的惯性质量;A为作动筒的活塞面积;Kc为控制器比例增益。由此,得到内环控制系统传递函数为:
Figure BDA0001374995130000052
可见,在引入压差内环控制后,系统阻尼增大。附加阻尼系数ζadd=0.5KfrKupω0m/A,则附加阻尼为:
引入压差内环控制后,虽然能够提高系统阻尼,但是也会造成系统刚度下降。
利用拉布拉斯变换的终值定理可得:
Figure BDA0001374995130000054
其中,R(s)为输入信号的传递函数;E(s)为误差传递函数;N(s)为扰动信号的传递函数;G1(s)为控制器的传递函数;G2(s)为被控对象的传递函数;H(s)为反馈通道的传递函数。
令Kfp为前向系统的压差放大系数;Kfb为位置反馈系数;F为外部负载;X为作动筒的活塞位移。则系统稳态误差为:
Figure BDA0001374995130000055
在静态外力和摩擦力等干扰因素影响下,系统存在静态误差。尤其是在控制信号为正弦输入时,若作动器存在干性摩擦,会导致系统产生明显响应滞后,使系统整体性能恶化。
为此,在压差内环控制系统中,增设反馈通道高通滤波器。根据系统固有频率,确定高通滤波器的截止频率,消弱低频段压差反馈信号,减小系统响应的稳态误差。值得注意的是,当控制信号为正弦输入时,高通滤波器的截止频率不仅取决于系统固有频率,还与控制信号频率相关,如图1所示。
令ωHPF为高通滤波器的截止频率,则高通滤波器的传递函数为:
Figure BDA0001374995130000061
由此,得到增加反馈通道高通滤波器后的压差内环控制系统的等效传递函数为:
Figure BDA0001374995130000062
由于电机和泵的转动惯量大,同时其频宽和刚度不足;阀自身的死区特性,以及子机构本身所具有的非线性因素;长期运行造成的油温、密度参数漂移等不确定因素都会影响系统的控制性能,所以采用模型参考自适应控制方法实现外环对给定值的控制。
首先,定义参考模型为:
Figure BDA0001374995130000064
BM=B0 (10)
式中,AM为n×n维矩阵,为参考模型的系统矩阵;BM为n×m维矩阵,为参考模型的控制矩阵;xM为n维参考模型的状态向量;
Figure BDA0001374995130000065
为xM的导数;g为m维输入向量;A0和B0为在额定工况下系统的线性化矩阵,它们应兼顾系统的动静态特性及性能的可达性;K为线性反馈矩阵;
Figure BDA0001374995130000066
为B0的转置矩阵。
同时,AM和BM须满足:
A-AM=BB+(A-AM) (11)
B-BM=BB+(B-BM) (12)
其中,B+=(BTB)-1BT为B的伪逆矩阵;A为被控对象的系统矩阵;B为被控对象的控制
矩阵。
其次,得到参考模型输出与实际系统输出之间的偏差,记为:
e=x-xM (13)
其中,x为系统状态向量。
自适应目标||e(t)||≤ε0在满足以下情况时可以实现:
limt→∞||e(t)||=0 (14)
其中,ε0为大于零的一个很小的正数。
再次,根据李雅普诺夫方程,得到自适应调节器输出控制量为:
z=-hsignBTPe (15)
其中,sign为符号函数;BT为B的转置矩阵;h=const>0;矩阵P∈Rn×n为对称正定矩阵,可通过求解李亚普诺夫方程确定。
在实际过程中,,B的性能可通过BM来保证,所以上式可以写为:
Figure BDA0001374995130000071
Figure BDA0001374995130000072
其中,Q=QT>0。
Figure BDA0001374995130000073
其中,为干扰量;Q为对称正定矩阵;QT为Q的转置矩阵;
Figure BDA0001374995130000076
为AM的转置矩阵。
结合设计的上述模型参考自适应控制器,确定自适应控制器的等效输出控制量为:
z′=-hSat(k1e+T1ε) (20)
Figure BDA0001374995130000077
其中,Sat为连续饱和函数;k1为常数矩阵;T1与T2为平均滤波器时间常数的对角阵;ε为适应信号;
Figure BDA0001374995130000078
为ε的一阶导数;
Figure BDA0001374995130000079
为e的一阶导数。
根据信号输入,设计自适应调节器输出补偿环节,为:
Figure BDA00013749951300000710
其中,K1与K2为分段点,用于划分信号任务指令的大小;a1与a2补偿强度;b1与b2为阶段补偿的基准值;c为补偿峰值。
在上述补偿环节作用下,得到补偿后的自适应调节器等效输出为:
z″=z′×Δz (23)
算例分析:
针对某电静液作动系统,其系统参数如表1所示。
表1电静液作动系统参数含义及取值
Figure BDA0001374995130000081
分别面向阶跃信号和正弦信号任务,分析系统的动静态响应性能;并在0.4秒处施加外在负载扰动,验证系统的抗扰能力。
补偿器和控制器的设计参数选取如下:
Kup=1e-6,ωHPF=3e-4,k1=3,T1=0.009,T2=2.69e-4,a1=-666.7,b1=2.2,a2=-13.47,b2=1.8,c=1。
在阶跃信号任务下,系统的响应性能和抗扰性能如图3所示。仿真结果分别分析比较了压差内环模型参考自适应控制方法(记为无ΔP)、无压差闭环模型参考自适应控制方法(记为有ΔP)和本专利所提基于信号的双闭环模型参考自适应控制方法(记为SAC)等三种算法的系统控制性能,如表2所示。
表2三种算法的控制性能对比
算法 调节时间(秒) 上升时间(秒) 干扰抑制时间(秒)
无ΔP 0.116 0.065 0.050
有ΔP 0.079 0.041 0.044
SAC 0.064 0.043 0.005
可见,本专利所提控制方法大幅提升了系统的响应快速性,提高了系统的抗干扰能力。
在正弦信号输入任务下,系统的正弦响应波形如图4所示。对上述三种控制方法的仿真结果,比较可知本专利所提控制方法有较好的跟踪特性,对突加扰动具有较好的鲁棒性。

Claims (1)

1.一种电静液作动系统双闭环模型参考自适应控制方法,其步骤如下:
步骤1.构建作动器压差内环控制系统,提高电静液作动器的阻尼;具体步骤如下:
电静液作动器传递函数为:
Figure FDA0002290935610000011
其中,ζ0为系统相对阻尼系数;ω0为系统固有频率;Kfr为前向速度放大系数;s为传递函数的复变量;X为输出量;U为输入量;
提取作动器压差,采用比例控制器,构建作动器压差内环控制系统;内环控制系统传递函数为:
Figure FDA0002290935610000012
其中,Kup为压差反馈放大系数,Kc为控制器比例增益;m为活塞上的惯性质量;A为作动筒的活塞面积;
步骤2.在作动器压差内环控制系统中,增设反馈通道高通滤波器,消除电静液作动器阻尼升高引起的刚度下降;其步骤如下:
在压差内环控制系统中,增设反馈通道高通滤波器,根据系统固有频率确定高通滤波器的截止频率,消弱低频段压差反馈信号,改善系统响应的稳态误差;
增加滤波器后的等效内环传递函数为:
Figure FDA0002290935610000013
其中:ωHPF为高通滤波器的截止频率;
步骤3.设置模型参考自适应外环控制系统,采用模型参考自适应控制方法,提高对作动系统固有不确定性的适应能力;其步骤如下:
首先,定义参考模型:
Figure FDA0002290935610000014
其中,AM为n×n维矩阵,为参考模型的系统矩阵;BM为n×m维矩阵,为参考模型的控制矩阵;xM为n维参考模型的状态向量;
Figure FDA0002290935610000015
为xM的导数;g为m维输入向量;
其次,得到参考模型输出与实际系统输出之间的偏差e,记为:
e=x-xM
其中,x为系统状态向量;
再次,根据李雅普诺夫方程,得到自适应调节器的输出控制量为:
Figure FDA0002290935610000021
其中,sign为符号函数;
Figure FDA0002290935610000024
为BM的转置矩阵;P为对称正定矩阵,通过求解李亚普诺夫方程确定;h=const>0;
最后,确定自适应调节器的等效输出控制量为:
z′=hSat(k1e+T1ε)
其中,Sat为连续饱和函数;k1为常数矩阵;T1与T2为平均滤波器时间常数的对角阵;ε为适应信号;为ε的一阶导数;
Figure FDA0002290935610000026
为e的一阶导数;
步骤4.利用基于信号的控制输出补偿器,对自适应调节器的等效输出控制量进行补偿,得到补偿后的自适应调节器等效输出,提高小信号任务指令下的系统响应精度和灵敏度;
所述利用基于信号的控制输出补偿器,对自适应调节器的等效输出控制量进行补偿,其步骤是:
补偿器采用信号相关的分段函数:
其中,K1与K2为分段点,用于划分信号任务指令的大小;a1与a2补偿强度;b1与b2为阶段补偿的基准值;c为补偿峰值;
补偿后的自适应调节器等效输出为:
z″=z′×Δz。
CN201710678849.8A 2017-08-10 2017-08-10 一种电静液作动系统双闭环模型参考自适应控制方法 Active CN107315350B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710678849.8A CN107315350B (zh) 2017-08-10 2017-08-10 一种电静液作动系统双闭环模型参考自适应控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710678849.8A CN107315350B (zh) 2017-08-10 2017-08-10 一种电静液作动系统双闭环模型参考自适应控制方法

Publications (2)

Publication Number Publication Date
CN107315350A CN107315350A (zh) 2017-11-03
CN107315350B true CN107315350B (zh) 2020-01-31

Family

ID=60175213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710678849.8A Active CN107315350B (zh) 2017-08-10 2017-08-10 一种电静液作动系统双闭环模型参考自适应控制方法

Country Status (1)

Country Link
CN (1) CN107315350B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110426954B (zh) * 2019-07-25 2020-06-26 山东大学 深海起重机主动升沉补偿控制器及控制系统
CN111273548B (zh) * 2020-02-05 2022-05-03 哈尔滨工业大学 基于参考模型和扰动精确观测补偿的三阶舵机控制方法
CN113219858B (zh) * 2021-05-26 2023-03-31 北京航空航天大学 一种电动静液作动器半物理仿真验证平台
CN114313050B (zh) * 2021-12-21 2023-07-21 北京理工大学重庆创新中心 一种轮腿机器人的关节驱动装置、控制方法及轮腿机器人

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436187A (zh) * 2010-11-26 2012-05-02 北京航空航天大学 一种基于电动静液作动系统的多学科建模方法
CN104265708A (zh) * 2014-09-04 2015-01-07 北京航空航天大学 一种基于运动状态同步的自适应解耦控制方法
CN104345639A (zh) * 2014-10-09 2015-02-11 南京理工大学 一种电液位置伺服系统鲁棒自适应控制方法
CN104360596A (zh) * 2014-10-13 2015-02-18 浙江工业大学 机电伺服系统有限时间摩擦参数辨识和自适应滑模控制方法
CN104536295A (zh) * 2014-12-17 2015-04-22 河海大学常州校区 一种悬臂梁鲁棒自适应控制方法
CN104656453A (zh) * 2015-03-09 2015-05-27 北京航空航天大学 一种基于非相似余度作动系统缓变故障的被动容错控制方法
CN105487385A (zh) * 2016-02-01 2016-04-13 金陵科技学院 基于无模型自适应内模控制方法
CN105790668A (zh) * 2016-04-26 2016-07-20 北京理工大学 一种能克服传动间隙非线性的双环自抗扰控制器
CN105822614A (zh) * 2016-04-14 2016-08-03 南京航空航天大学 一种电静液作动器
CN106130043A (zh) * 2016-07-13 2016-11-16 江苏大学 基于情感智能及无源性理论的三相四桥臂的双闭环控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9577763B2 (en) * 2015-04-22 2017-02-21 Ciena Corporation Spectrum controller systems and methods in optical networks

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436187A (zh) * 2010-11-26 2012-05-02 北京航空航天大学 一种基于电动静液作动系统的多学科建模方法
CN104265708A (zh) * 2014-09-04 2015-01-07 北京航空航天大学 一种基于运动状态同步的自适应解耦控制方法
CN104345639A (zh) * 2014-10-09 2015-02-11 南京理工大学 一种电液位置伺服系统鲁棒自适应控制方法
CN104360596A (zh) * 2014-10-13 2015-02-18 浙江工业大学 机电伺服系统有限时间摩擦参数辨识和自适应滑模控制方法
CN104536295A (zh) * 2014-12-17 2015-04-22 河海大学常州校区 一种悬臂梁鲁棒自适应控制方法
CN104656453A (zh) * 2015-03-09 2015-05-27 北京航空航天大学 一种基于非相似余度作动系统缓变故障的被动容错控制方法
CN105487385A (zh) * 2016-02-01 2016-04-13 金陵科技学院 基于无模型自适应内模控制方法
CN105822614A (zh) * 2016-04-14 2016-08-03 南京航空航天大学 一种电静液作动器
CN105790668A (zh) * 2016-04-26 2016-07-20 北京理工大学 一种能克服传动间隙非线性的双环自抗扰控制器
CN106130043A (zh) * 2016-07-13 2016-11-16 江苏大学 基于情感智能及无源性理论的三相四桥臂的双闭环控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
双控制回路电静液作动器建模及控制器设计;张振等;《火力与指挥控制》;20170228;第97-105页 *

Also Published As

Publication number Publication date
CN107315350A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
CN107315350B (zh) 一种电静液作动系统双闭环模型参考自适应控制方法
CN108873702B (zh) 一种电液位置伺服控制系统的线性自抗扰控制方法及装置
CN104111607B (zh) 一种考虑输入时滞的电机位置伺服系统的控制方法
CN105700347B (zh) 一种含磁滞补偿的液压马达预设性能跟踪控制方法
CN108869420B (zh) 一种基于指令滤波的电液伺服系统自适应反步控制方法
Dasmahapatra et al. Design of an adaptive fuzzy-bias SMC and validation for a rugged electrohydraulic system
Sarkar et al. GA-optimized feedforward-PID tracking control for a rugged electrohydraulic system design
CN108757192B (zh) 一种基于模糊变结构的柴油发动机电控调速及测试方法
CN109426150B (zh) 基于扩张状态观测器的负载模拟器反步控制方法
Zad et al. Robust Model Predictive position Control of direct drive electro-hydraulic servo system
CN106354013B (zh) 攻角的线性自抗扰控制方法
Zhou et al. Predictive inverse model allocation for constrained over-actuated linear systems
Zhong et al. A novel ADRC-based design for a kind of flexible aerocraft
Shen et al. Angle tracking control of integrated hydraulic transformer inner loop servo system
Fadel et al. Motion control of an aircraft electro-hydraulic servo actuator
CN113377029B (zh) 一种飞机舵机电动伺服系统多余力矩抑制方法
CN111308889A (zh) 一种喷杆系统的自适应积分鲁棒控制方法
CN107959453A (zh) 一种改进的mras速度观测方法
CN115236974A (zh) 一种复合抗扰控制器及其控制参数优化方法
CN114625006B (zh) 一种高速大惯量电液位置伺服系统的输出反馈控制方法
CN113791543A (zh) 基于干扰观测器的静止无功补偿器的有限时间量化控制方法
Liu et al. Design of gain-scheduling robust controller for aircraft engine
Deniz et al. Experimental verification of lead-lag compensators on a twin rotor system
CN115309044B (zh) 一种基于模型预测控制的机械臂角速度控制方法
CN114909367B (zh) 一种基于扩张状态观测器的非奇异终端滑模气动定位控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 221116 No. 1 University Road, copper mountain, Jiangsu, Xuzhou

Applicant after: China University of Mining & Technology

Address before: 221116 Xuzhou University Road, Jiangsu, No. 1

Applicant before: China University of Mining & Technology

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant