CN107246852A - Measurement scaling method, device and angle-adjusting mechanism based on angle-adjusting mechanism - Google Patents
Measurement scaling method, device and angle-adjusting mechanism based on angle-adjusting mechanism Download PDFInfo
- Publication number
- CN107246852A CN107246852A CN201710612716.0A CN201710612716A CN107246852A CN 107246852 A CN107246852 A CN 107246852A CN 201710612716 A CN201710612716 A CN 201710612716A CN 107246852 A CN107246852 A CN 107246852A
- Authority
- CN
- China
- Prior art keywords
- angle
- angular displacement
- coordinate system
- servo angular
- servo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Numerical Control (AREA)
Abstract
本发明公开了基于角度调整机构的测量标定方法、装置及角度调整机构,该方法包括:建立第一伺服角位移台对应的第一固联坐标系以及第二伺服角位移台对应的第二固联坐标系,以及在所述两个伺服角位移台均处于角度原点时,基于所述两个伺服角位移台的摆动轴线建立基准坐标系;控制所述两个伺服角位移平台分别输出第一角度以及第二角度,并根据所述自准直仪测量获得标准反射板相对于基准坐标系的倾斜角度;基于所述转换关系,建立所述第一角度及所述第二角度映射至所述基准坐标系的计算模型;基于所述倾斜角度利用所述计算模型,计算获得所述两个伺服角位移台的实际夹角。本发明实施例实现了对两个伺服角位移台的相交角度的测量标定。The invention discloses a measurement and calibration method, device and angle adjustment mechanism based on an angle adjustment mechanism. The method includes: establishing a first fixed coordinate system corresponding to the first servo angular displacement platform and a second fixed coordinate system corresponding to the second servo angular displacement platform. coordinate system, and when the two servo angular displacement platforms are at the angle origin, a reference coordinate system is established based on the swing axes of the two servo angular displacement platforms; the two servo angular displacement platforms are controlled to output the first angle and a second angle, and according to the autocollimator measurement to obtain the tilt angle of the standard reflector relative to the reference coordinate system; based on the conversion relationship, establish the first angle and the second angle mapped to the A calculation model of the reference coordinate system; based on the tilt angle, the calculation model is used to calculate and obtain the actual angle between the two servo angular displacement stages. The embodiment of the present invention realizes the measurement and calibration of the intersection angle of two servo angular displacement stages.
Description
技术领域technical field
本发明实施例涉及工业控制技术领域,具体地说,涉及一种基于角度调整机构的测量标定方法、装置及角度调整机构。Embodiments of the present invention relate to the technical field of industrial control, in particular, to a measurement and calibration method, device and angle adjustment mechanism based on an angle adjustment mechanism.
背景技术Background technique
角度调整机构是在CNC(Computer numerical control,计算机数字控制机床)进行加工作业时,对加工工件进行角度调整控制的装置。目前,广泛采用两个伺服角位移台联动构成的角度调整机构,通过控制两个伺服角位移台输出所需的角度,来实现工件的角度调整。The angle adjustment mechanism is a device that controls the angle adjustment of the workpiece when CNC (Computer numerical control, computer numerical control machine tool) performs processing operations. At present, the angle adjustment mechanism formed by the linkage of two servo angular displacement stages is widely used, and the angle adjustment of the workpiece is realized by controlling the required angle output by the two servo angular displacement stages.
现有技术中,两个伺服角位移台通常按照摆动轴线正交的组装方式进行组装,以使得两个伺服角位移台形成90度正交形式。In the prior art, two servo angular displacement stages are usually assembled in an assembly manner in which the swing axes are orthogonal, so that the two servo angular displacement stages form a 90-degree orthogonal form.
但是,在机构组装过程中,难以控制两伺服角位移台的摆动轴线的正交程度,导致会出现角度偏差,因此,需要对两伺服角位移台的相交角度进行测量标定,以确定相交角度是否为正交角度。However, in the mechanism assembly process, it is difficult to control the orthogonality of the swing axes of the two servo angular displacement stages, resulting in angular deviation. Therefore, it is necessary to measure and calibrate the intersection angle of the two servo angular displacement stages to determine whether the intersection angle is is the orthogonal angle.
发明内容Contents of the invention
有鉴于此,本发明实施例提供了一种基于角度调整机构的测量标定方法、装置及角度调整机构,用以解决现有技术中无法有效实现两伺服角位移台的相交角度的测量标定的技术问题。In view of this, the embodiment of the present invention provides a measurement and calibration method, device and angle adjustment mechanism based on an angle adjustment mechanism to solve the problem that the measurement and calibration of the intersection angle of two servo angular displacement stages cannot be effectively realized in the prior art question.
为了解决上述技术问题,本发明的第一方面提供一种基于角度调整机构的测量标定方法,所述角度调整机构包括:按照摆动轴线正交的组装方式安装在基座上的两个伺服角位移台;所述角度调整机构的执行面上安装标准反射板;所述标准反射板跟随所述两个伺服角位移台的联动而运动;所述标准反射板上方安装自准直仪;所述两个伺服角位移台均处于角度原点时,所述标准反射板与所述基座对应的基准水平面平行以及所述自准直仪的测量角度标定为测量零点;In order to solve the above technical problems, the first aspect of the present invention provides a measurement and calibration method based on an angle adjustment mechanism, the angle adjustment mechanism includes: two servo angular displacements installed on the base in an assembly mode orthogonal to the swing axis stage; a standard reflector is installed on the execution surface of the angle adjustment mechanism; the standard reflector moves following the linkage of the two servo angular displacement stages; an autocollimator is installed above the standard reflector; the two When the three servo angular displacement stages are all at the angle origin, the reference level plane corresponding to the standard reflector and the base is parallel and the measurement angle of the autocollimator is demarcated as the measurement zero point;
所述方法包括:The methods include:
建立所述两个伺服角位移台中第一伺服角位移台对应的第一固联坐标系以及第二伺服角位移台对应的第二固联坐标系,以及在所述两个伺服角位移台均处于角度原点时,基于所述两个伺服角位移台的摆动轴线建立基准坐标系;其中,所述两个伺服角位移台处于角度原点时,所述基准坐标系与所述第一固联坐标系、所述第二固联坐标系的坐标系方向重合;Establishing the first fixed coordinate system corresponding to the first servo angular displacement platform and the second fixed coordinate system corresponding to the second servo angular displacement platform in the two servo angular displacement platforms, and When being at the origin of the angle, a reference coordinate system is established based on the swing axes of the two servo angular displacement stages; wherein, when the two servo angular displacement stages are at the origin of the angle, the reference coordinate system and the first fixed coordinate system, the direction of the coordinate system of the second fixed coordinate system coincides;
在两个伺服角位移台输出任意角度时,确定第一固联坐标系、第二固联坐标系以及所述基准坐标系的转换关系;其中,所述转换关系与所述两个伺服角位移台的夹角相关;When the two servo angular displacement platforms output any angle, determine the conversion relationship of the first fixed coordinate system, the second fixed coordinate system and the reference coordinate system; wherein, the conversion relationship and the two servo angular displacements The included angle of the platform is related;
控制所述两个伺服角位移平台分别输出第一角度以及第二角度,并根据所述自准直仪测量获得标准反射板相对于基准坐标系的倾斜角度;Controlling the two servo angular displacement platforms to output the first angle and the second angle respectively, and obtaining the inclination angle of the standard reflector relative to the reference coordinate system according to the measurement of the autocollimator;
基于所述转换关系,建立所述第一角度、所述第二角度映射至所述基准坐标系的计算模型;Based on the transformation relationship, establishing a calculation model in which the first angle and the second angle are mapped to the reference coordinate system;
基于所述倾斜角度利用所述计算模型,计算获得所述两个伺服角位移台的实际夹角。The calculation model is used to calculate and obtain the actual included angle of the two servo angular displacement stages based on the tilt angle.
优选地,所述两个伺服角位移台输出任意角度时,确定第一固联坐标系、第二固联坐标系以及所述基准坐标系的转换关系包括:Preferably, when the two servo angular displacement stages output any angle, determining the conversion relationship between the first fixed coordinate system, the second fixed coordinate system and the reference coordinate system includes:
在所述第一伺服角位移台输出任意角度时,确定第一固联坐标系相对于所述基准坐标系的第一转换关系;When the first servo angular displacement stage outputs any angle, determine the first conversion relationship of the first fixed coordinate system relative to the reference coordinate system;
在所述第二伺服角位移台输出任意角度时,确定第二固联坐标系相对于所述第一固联坐标系的第二转换关系;When the second servo angular displacement stage outputs any angle, determine the second conversion relationship of the second fixed coordinate system relative to the first fixed coordinate system;
基于所述第一转换关系以及所述第二转换关系,建立所述第二固联坐标系相对于所述基准坐标系的第三转换关系;Establishing a third conversion relationship between the second fixed coordinate system and the reference coordinate system based on the first conversion relationship and the second conversion relationship;
所述基于所述转换关系,建立所述第一角度、所述第二角度映射至所述基准坐标系的计算模型包括:Based on the conversion relationship, establishing a calculation model for mapping the first angle and the second angle to the reference coordinate system includes:
基于所述第三转换关系,建立所述第一角度、所述第二角度映射至所述基准坐标系的计算模型。Based on the third conversion relationship, a calculation model in which the first angle and the second angle are mapped to the reference coordinate system is established.
优选地,所述第三转换关系中包括以所述两个伺服角位移平台的夹角作为的未知参量;Preferably, the third conversion relationship includes an unknown parameter taking the angle between the two servo angular displacement platforms as an unknown parameter;
所述基于所述倾斜角度利用所述计算模型,计算获得所述两个伺服角位移台的实际夹角包括:The calculating and obtaining the actual angle of the two servo angular displacement stages using the calculation model based on the tilt angle includes:
将所述倾斜角度利用所述计算模型的结果数据,计算获得所述第三转换关系的实际数据;Using the result data of the calculation model to calculate the tilt angle to obtain the actual data of the third conversion relationship;
根据所述第三转换关系的实际数据,计算获得的所述未知参量作为所述两个伺服角位移台的实际夹角。According to the actual data of the third conversion relationship, the unknown parameter obtained by calculation is used as the actual angle between the two servo angular displacement stages.
优选地,所述基于所述倾斜角度利用所述计算模型,计算获得所述两个伺服角位移台的实际夹角包括:Preferably, the calculating and obtaining the actual included angle of the two servo angular displacement stages by using the calculation model based on the tilt angle includes:
根据所述两个伺服角位移平台的理论夹角以及所述计算模型,计算获得所述标准反射板相对于所述基准坐标系的待校正角度;Calculate and obtain the angle to be corrected of the standard reflector relative to the reference coordinate system according to the theoretical angle between the two servo angular displacement platforms and the calculation model;
比较所述待校正角度以及所述倾斜角度是否一致;Comparing whether the angle to be corrected and the angle of inclination are consistent;
如果是,确定所述两个伺服角位移台的实际夹角为所述理论夹角;If yes, determine that the actual angle between the two servo angular displacement stages is the theoretical angle;
如果否,基于所述倾斜角度利用所述计算模型,计算获得所述两个伺服角位移台的实际夹角。If not, calculate and obtain the actual included angle of the two servo angular displacement stages by using the calculation model based on the tilt angle.
优选地,所述基于所述倾斜角度利用所述计算模型,计算获得所述两个伺服角位移台的实际夹角之后,所述方法还包括:Preferably, after calculating and obtaining the actual angle between the two servo angular displacement stages by using the calculation model based on the tilt angle, the method further includes:
计算所述两个伺服角位移台的实际夹角与理论夹角的偏差数值;Calculate the deviation value between the actual angle and the theoretical angle of the two servo angular displacement stages;
将所述偏差数值输入所述角度调整机构的数控系统,以供所述数控系统执行角度调整时,基于所述偏差数值控制所述两个伺服角位移台的输出角度。The deviation value is input into the numerical control system of the angle adjustment mechanism, so that when the numerical control system performs angle adjustment, the output angles of the two servo angular displacement stages are controlled based on the deviation value.
本发明的第二方面提供一种基于角度调整机构的测量标定装置,所述角度调整机构包括:按照摆动轴线正交的组装方式安装在基座上的两个伺服角位移台;所述角度调整机构的执行面上安装标准反射板;所述标准反射板跟随所述两个伺服角位移台的联动而运动;所述标准反射板上方安装自准直仪;所述两个伺服角位移台均处于角度原点时,所述标准反射板与所述基座对应的基准水平面平行以及所述自准直仪的测量角度标定为测量零点;The second aspect of the present invention provides a measurement and calibration device based on an angle adjustment mechanism. The angle adjustment mechanism includes: two servo angular displacement stages installed on the base in an assembly mode orthogonal to the swing axis; the angle adjustment A standard reflection plate is installed on the execution surface of the mechanism; the standard reflection plate moves following the linkage of the two servo angular displacement stages; an autocollimator is installed above the standard reflection plate; the two servo angular displacement stages are both When at the origin of the angle, the standard reflector is parallel to the reference horizontal plane corresponding to the base and the measurement angle of the autocollimator is calibrated as the measurement zero point;
所述装置包括:The devices include:
第一建立模块,用于建立所述两个伺服角位移台中第一伺服角位移台对应的第一固联坐标系以及第二伺服角位移台对应的第二固联坐标系,以及在所述两个伺服角位移台均处于角度原点时,基于所述两个伺服角位移台的摆动轴线建立基准坐标系;其中,所述两个伺服角位移台处于角度原点时,所述基准坐标系与所述第一固联坐标系、所述第二固联坐标系的坐标系方向重合;The first establishment module is used to establish the first fixed coordinate system corresponding to the first servo angular displacement platform of the two servo angular displacement platforms and the second fixed coordinate system corresponding to the second servo angular displacement platform, and in the When the two servo angular displacement stages are at the origin of the angle, a reference coordinate system is established based on the swing axes of the two servo angular displacement stages; wherein, when the two servo angular displacement stages are at the origin of the angle, the reference coordinate system and The coordinate system directions of the first fixed coordinate system and the second fixed coordinate system coincide;
第一确定模块,用于在两个伺服角位移台输出任意角度时,确定第一固联坐标系、第二固联坐标系以及所述基准坐标系的转换关系;其中,所述转换关系与所述两个伺服角位移台的夹角相关;The first determination module is used to determine the conversion relationship between the first fixed coordinate system, the second fixed coordinate system and the reference coordinate system when the two servo angular displacement stages output any angle; wherein, the conversion relationship is the same as The angle between the two servo angular displacement stages is related;
第一测量模块,用于控制所述两个伺服角位移平台分别输出第一角度以及第二角度,并根据所述自准直仪测量获得标准反射板相对于基准坐标系的倾斜角度;The first measurement module is used to control the two servo angular displacement platforms to output the first angle and the second angle respectively, and obtain the inclination angle of the standard reflector relative to the reference coordinate system according to the measurement of the autocollimator;
第二建立模块,用于基于所述转换关系,建立所述第一角度、所述第二角度映射至所述基准坐标系的计算模型;A second establishing module, configured to establish a calculation model for mapping the first angle and the second angle to the reference coordinate system based on the conversion relationship;
第一计算模块,用于基于所述倾斜角度利用所述计算模型,计算获得所述两个伺服角位移台的实际夹角。The first calculation module is configured to calculate and obtain the actual included angle of the two servo angular displacement stages by using the calculation model based on the tilt angle.
优选地,所述第一确定模块包括:Preferably, the first determination module includes:
第一确定单元,用于在所述第一伺服角位移台输出任意角度时,确定第一固联坐标系相对于所述基准坐标系的第一转换关系;A first determination unit, configured to determine a first conversion relationship between the first fixed coordinate system and the reference coordinate system when the first servo angular displacement stage outputs any angle;
第二确定单元,用于在所述第二伺服角位移台输出任意角度时,确定第二固联坐标系相对于所述第一固联坐标系的第二转换关系;The second determining unit is configured to determine a second conversion relationship of the second fixed coordinate system relative to the first fixed coordinate system when the second servo angular displacement stage outputs an arbitrary angle;
第三确定单元,用于基于所述第一转换关系以及所述第二转换关系,建立所述第二固联坐标系相对于所述基准坐标系的第三转换关系;A third determining unit, configured to establish a third conversion relationship between the second fixed coordinate system and the reference coordinate system based on the first conversion relationship and the second conversion relationship;
所述第二建立模块包括:The second building block includes:
第一建立单元,用于基于所述第三转换关系,建立所述第一角度、所述第二角度映射至所述基准坐标系的计算模型。A first establishing unit, configured to establish a calculation model in which the first angle and the second angle are mapped to the reference coordinate system based on the third conversion relationship.
优选地,所述第三转换关系中包括以所述两个伺服角位移平台的夹角作为的未知参量;Preferably, the third conversion relationship includes an unknown parameter taking the angle between the two servo angular displacement platforms as an unknown parameter;
所述第一计算模块包括:The first computing module includes:
第一计算单元,用于将所述倾斜角度利用所述计算模型的结果数据,计算获得所述第三转换关系的实际数据;a first calculation unit, configured to use the result data of the calculation model to calculate the actual data of the third conversion relationship by using the inclination angle;
第二计算单元,用于根据所述第三转换关系的实际数据,计算获得的所述未知参量作为所述两个伺服角位移台的实际夹角。The second calculation unit is configured to calculate the obtained unknown parameter as the actual angle between the two servo angular displacement stages according to the actual data of the third conversion relationship.
优选地,所述第一计算模块包括:Preferably, the first calculation module includes:
第三计算单元,用于根据所述两个伺服角位移平台的理论夹角以及所述计算模型,计算获得所述标准反射板相对于所述基准坐标系的待校正角度;The third calculation unit is used to calculate and obtain the angle to be corrected of the standard reflector relative to the reference coordinate system according to the theoretical angle between the two servo angular displacement platforms and the calculation model;
第一比较单元,用于比较所述待校正角度以及所述倾斜角度是否一致;如果是,确定所述两个伺服角位移台的实际夹角为所述理论夹角;如果否,基于所述倾斜角度利用所述计算模型,计算获得所述两个伺服角位移台的实际夹角。The first comparison unit is used to compare whether the angle to be corrected and the angle of inclination are consistent; if yes, determine that the actual angle between the two servo angular displacement stages is the theoretical angle; if not, based on the The tilt angle uses the calculation model to calculate and obtain the actual included angle of the two servo angular displacement stages.
优选地,所述装置还包括:Preferably, the device also includes:
第二计算模块,用于计算所述两个伺服角位移台的实际夹角与理论夹角的偏差数值;The second calculation module is used to calculate the deviation value between the actual angle and the theoretical angle of the two servo angular displacement stages;
第一输出模块,用于将所述偏差数值输入所述角度调整机构的数控系统,以供所述数控系统执行角度调整时,基于所述偏差数值控制所述两个伺服角位移台的输出角度。The first output module is used to input the deviation value into the numerical control system of the angle adjustment mechanism, so that when the numerical control system performs angle adjustment, it controls the output angles of the two servo angular displacement stages based on the deviation value. .
本发明的第二方面提供一种角度调整机构,所述角度调整机构包括:A second aspect of the present invention provides an angle adjustment mechanism, the angle adjustment mechanism comprising:
基座;base;
按照摆动轴正交的组装方式安装在所述基座上的两个伺服角位移台;Two servo angular displacement stages installed on the base in an assembly manner orthogonal to the swing axes;
安装在所述角度调整机构执行面上的标准反射板;其中,所述标准反射板根据所述两个伺服角位移平台的联动而运动;A standard reflection plate installed on the execution surface of the angle adjustment mechanism; wherein, the standard reflection plate moves according to the linkage of the two servo angular displacement platforms;
安装在所述标准反射板上方的自准直仪;其中,所述两个伺服角位移平台均处于角度原点时,所述标准反射板与所述安装基座对应基准水平面平行,所述自准直仪的测量角度标定为测量零点。An autocollimator installed above the standard reflector; wherein, when the two servo angular displacement platforms are at the origin of the angle, the standard reflector is parallel to the corresponding reference level of the installation base, and the self-collimator The measurement angle of the collimator is calibrated as the measurement zero point.
本发明中,通过设置角度调整机构,包括以正交方式安装的两个伺服角位移台,标准反射板以及自准直仪,所述两个伺服角位移台中的第一伺服角位移台可以建立第一固联坐标系,第二伺服角位移台可以建立第二固联坐标系,以及基于两个伺服角位移台的摆动轴线建立基准坐标系。当坐标系建立后可以根据伺服角位移台的坐标器进行相应的伺服角位移台的伺服角转动,并形成相应的角度转换关系,可以在所述两个伺服角位移台在产生角度倾斜时,可以对所述伺服角位移台之间的角度换换关系进行转换,可以得到相应的两个伺服角位移台的实际夹角,通过该实际夹角可以确定两个伺服角位移平台的摆动轴线是否正交,相交角度是否为正交角度,有效实现了相交角度的测量标定,从而基于该实际夹角,可以确定两伺服角位移台的角度偏差,基于该角度偏差可以对角度调整机构的输出角度进行补偿校正。In the present invention, by setting the angle adjustment mechanism, including two servo angular displacement stages installed in an orthogonal manner, a standard reflector and an autocollimator, the first servo angular displacement stage in the two servo angular displacement stages can be established The first fixed coordinate system and the second servo angular displacement stage can establish a second fixed coordinate system, and a reference coordinate system can be established based on the swing axes of the two servo angular displacement stages. After the coordinate system is established, the servo angular rotation of the corresponding servo angular displacement platform can be performed according to the coordinate device of the servo angular displacement platform, and a corresponding angle conversion relationship can be formed. When the two servo angular displacement platforms are tilted at an angle, The angle conversion relationship between the servo angular displacement platforms can be converted, and the corresponding actual angles of the two servo angular displacement platforms can be obtained. Through the actual angles, it can be determined whether the swing axes of the two servo angular displacement platforms are Orthogonal, whether the intersection angle is an orthogonal angle, effectively realizes the measurement and calibration of the intersection angle, so based on the actual angle, the angle deviation of the two servo angular displacement stages can be determined, and the output angle of the angle adjustment mechanism can be adjusted based on the angle deviation Make compensation corrections.
附图说明Description of drawings
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings described here are used to provide a further understanding of the present invention, and constitute a part of the present invention. The schematic embodiments of the present invention and their descriptions are used to explain the present invention, and do not constitute improper limitations to the present invention. In the attached picture:
图1是本发明提供的一种角度调整机构的一个实施例的结构示意图;Fig. 1 is a schematic structural view of an embodiment of an angle adjustment mechanism provided by the present invention;
图2是本发明提供的一种基于角度调整机构的测量标定方法的一个实施例的流程图;Fig. 2 is a flowchart of an embodiment of a measurement and calibration method based on an angle adjustment mechanism provided by the present invention;
图3是本发明提供的一种基于角度调整机构的测量标定方法的又一个实施例的流程图;Fig. 3 is a flowchart of another embodiment of a measurement and calibration method based on an angle adjustment mechanism provided by the present invention;
图4是本发明提供的一种基于角度调整机构的测量标定装置的一个实施例的结构示意图。Fig. 4 is a structural schematic diagram of an embodiment of a measurement and calibration device based on an angle adjustment mechanism provided by the present invention.
具体实施方式detailed description
以下将配合附图及实施例来详细说明本发明的实施方式,藉此对本发明如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。The implementation of the present invention will be described in detail below with reference to the drawings and examples, so as to fully understand and implement the implementation process of how to use technical means to solve technical problems and achieve technical effects in the present invention.
本发明实施例主要应用于数据领域的空间角度自动调整场景中,主要是通过实际确定两个伺服角位移台的实际角度与理论角度的差距,通过角度差距对两个伺服角位移台的联动时的实际联动角度进行角度补偿,以确保控制角度的准确性。The embodiment of the present invention is mainly used in the scene of automatic adjustment of the spatial angle in the data field, mainly by actually determining the difference between the actual angle and the theoretical angle of the two servo angular displacement stages, and the linkage time of the two servo angular displacement stages through the angle difference. The actual linkage angle is compensated to ensure the accuracy of the control angle.
现有技术中,CNC系统在进行加工作业时,需要对加工工件进行角度调整,通常对加工工件的角度调整由双伺服角位移台联动来进行角度调整。通常情况下,双伺服角位移台在组装时会形成90度正交形式,但是,在实际上组装时,实际的双伺服角位移台的组装角度通常不能达到恰好为90度正交形式,有可能存在一定的角度偏差。例如,双伺服角位移台组装的理论角度通常为90度,但在实际组装时,组装角度可能是90.1度,这就存在0.1度的角度偏差。当这种角度偏差存在时,可能会造成所述两个伺服角位移台在输出控制角度时,双伺服角位移台本身存在角度偏差造成实际对工件的控制角度出现偏差,造成加工工件加工过程中出现加工偏差,造成工件误差较大。In the prior art, the CNC system needs to adjust the angle of the workpiece when performing processing operations. Usually, the angle adjustment of the workpiece is adjusted by the linkage of two servo angular displacement stages. Usually, the dual-servo angular displacement stage will form a 90-degree orthogonal form during assembly, but in actual assembly, the actual assembly angle of the dual-servo angular displacement stage usually cannot be exactly 90-degree orthogonal form, there are There may be some angular deviation. For example, the theoretical angle of dual-servo angular translation stage assembly is usually 90 degrees, but in actual assembly, the assembly angle may be 90.1 degrees, which results in an angular deviation of 0.1 degrees. When such an angle deviation exists, it may cause the two servo angular displacement stages to output the control angle, and the dual servo angular displacement stage itself has an angle deviation, which causes a deviation in the actual control angle of the workpiece, resulting in a deviation during the processing of the workpiece. Processing deviation occurs, resulting in large workpiece errors.
发明人研究发现,虽然双伺服角位移台存在正交角度偏差,但是在实际应用中这个问题往往被忽略,造成不必要的加工工件的精度损失。发明人经过一系列的研究发现,双伺服角位移台构成的角度调整机构的正交角度偏差之所以被忽略是由于双伺服角位移台在组装过程中无法对伺服角位移台的摆动轴线进行标定,进而不能时间测量两个伺服角位移台的实际角度。因此,发明人提出了本发明的技术方案。The inventors found that although the dual-servo angular displacement stage has an orthogonal angle deviation, this problem is often ignored in practical applications, resulting in unnecessary loss of precision of the processed workpiece. After a series of research, the inventor found that the reason why the orthogonal angle deviation of the angle adjustment mechanism composed of the double servo angular displacement stage is ignored is that the swing axis of the servo angular displacement stage cannot be calibrated during the assembly process of the double servo angular displacement stage , so that the actual angle of the two servo angular displacement stages cannot be measured in time. Therefore, the inventor proposes the technical scheme of the present invention.
本发明实施例中,在CNC系统中增加了标准反射板以及激光自准直仪两个装置。在两个伺服角位移台均处于角度原点时,可以建立基准坐标系;在两个伺服角位移台均输出任一角度时,确定两个伺服角位移台分别对应的第一固联坐标系以及第二固联坐标系,并可以确定所述第一固联坐标系、第二固联坐标系与所述基准坐标系之间的转换关系。在所述两个伺服角位移台分别输出第一角度以及第二角度时,即可利用标准反射板以及激光自准仪来确定基于所述两个固联坐标系相对于基准坐标系的倾斜角度;根据所述转换关系,可以建立第一角度、第二角度映射至所述基准坐标系的计算模型,并基于所述计算模型,计算获得所述两个伺服角位移台的实际夹角。进而可以根据所述两个伺服角位移台的实际夹角,通过该实际夹角可以确定两个伺服角位移台的摆动轴线是否正交,相交角度是否为正交角度,有效实现了相交角度的测量标定,从而基于该实际夹角,可以确定两伺服角位移台的角度偏差,基于该角度偏差可以对角度调整机构的输出角度进行补偿校正。In the embodiment of the present invention, two devices, a standard reflector and a laser autocollimator, are added to the CNC system. When the two servo angular displacement stages are at the origin of the angle, a reference coordinate system can be established; when the two servo angular displacement stages output any angle, determine the first fixed coordinate system corresponding to the two servo angular displacement stages and a second fixed coordinate system, and can determine the conversion relationship between the first fixed coordinate system, the second fixed coordinate system and the reference coordinate system. When the two servo angular displacement stages respectively output the first angle and the second angle, the standard reflector and the laser autocollimator can be used to determine the inclination angle based on the two fixed coordinate systems relative to the reference coordinate system ; According to the conversion relationship, a calculation model of mapping the first angle and the second angle to the reference coordinate system can be established, and based on the calculation model, the actual angle between the two servo angular displacement stages can be calculated and obtained. Furthermore, according to the actual included angle of the two servo angular displacement stages, it can be determined whether the swing axes of the two servo angular displacement stages are orthogonal, whether the intersection angle is an orthogonal angle, and the intersection angle is effectively realized. Measurement and calibration, so that based on the actual angle, the angle deviation of the two servo angular displacement stages can be determined, and based on the angle deviation, the output angle of the angle adjustment mechanism can be compensated and corrected.
下面将结合附图对本发明实施例进行详细描述。Embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
如图1所示,为本发明提供的一种角度调整机构的一个实施例的结构示意图,该角度调整机构可以包括:As shown in Figure 1, it is a schematic structural diagram of an embodiment of an angle adjustment mechanism provided by the present invention, the angle adjustment mechanism may include:
基座100;Base 100;
按照摆动轴线正交的组装方式安装在基座100上的两个伺服角位移台;该两个伺服角位移台包括第一伺服位移台101以及第二伺服位移台102。The two servo angular displacement stages installed on the base 100 in an assembly manner orthogonal to the swing axes;
所述角度调整机构的执行面上安装标准反射板103;其中,所述标准反射板103可以跟随所述两个伺服角位移台的联动而运动;A standard reflection plate 103 is installed on the execution surface of the angle adjustment mechanism; wherein, the standard reflection plate 103 can move following the linkage of the two servo angular displacement stages;
安装在所述标准反射板103上方的自准直仪104;其中,所述两个伺服角位移台101以及102均处于角度原点时,所述标准反射板103与所述基座100对应的基准水平面平行以及所述自准直仪104的测量角度标定为测量零点。The autocollimator 104 installed above the standard reflector 103; wherein, when the two servo angular displacement stages 101 and 102 were all at the origin of the angle, the standard reflector 103 and the base 100 corresponding reference The horizontal plane is parallel and the measurement angle of the autocollimator 104 is calibrated as the measurement zero point.
其中,所述自准直仪104可以为激光自准直仪,所述自准直仪104安装于所述标准反射板103的上方。当所述两个伺服角位移台101以及102的摆动角度均为0,也即处于角度原点时,所述自准直仪的测量角度示值为0;此时所述激光自准直仪发出的激光被所述标准反射板103按原路返回,并未发生任何角度倾斜。Wherein, the autocollimator 104 may be a laser autocollimator, and the autocollimator 104 is installed above the standard reflector 103 . When the swing angles of the two servo angular displacement stages 101 and 102 are 0, that is, when they are at the origin of the angle, the measured angle indication value of the autocollimator is 0; at this time, the laser autocollimator emits The laser light is returned by the standard reflector 103 in the same way without any angle inclination.
如图2所示,为本发明提供的基于图1所示的角度调整机构的测量标定方法一个实施例的流程图,所述方法可以包括以下几个步骤:As shown in Figure 2, it is a flowchart of an embodiment of the measurement and calibration method based on the angle adjustment mechanism shown in Figure 1 provided by the present invention, and the method may include the following steps:
201:建立所述两个伺服角位移台中第一伺服角位移台对应的第一固联坐标系以及第二伺服角位移台对应的第二固联坐标系,以及在所述两个伺服角位移台均处于角度原点时,基于所述两个伺服角位移台的摆动轴线建立基准坐标系。201: Establish the first fixed-coordinate system corresponding to the first servo angular displacement platform of the two servo angular displacement platforms and the second fixed-coordinate system corresponding to the second servo angular displacement platform, and the two servo angular displacement When the stages are at the angular origin, a reference coordinate system is established based on the swing axes of the two servo angular displacement stages.
其中,所述两个伺服角位移台处于角度原点时,所述基准坐标系与所述第一固联坐标系、所述第二固联坐标系的坐标系方向重合。Wherein, when the two servo angular displacement stages are at the origin of the angle, the reference coordinate system coincides with the coordinate system directions of the first fixed coordinate system and the second fixed coordinate system.
可选地,所述伺服角位移台为可以用于CNC系统中的加工工件进行倾斜角度控制的机械控制装置。通常情况下,可以由两个伺服角位移台联动进行加工工件的倾斜角度的控制,两个伺服角位移台的摆动轴被设计为90度正交。也即所述两个伺服角位移台在组装时需要组装为摆动轴正交90的状态,由于组装过程中,两个伺服角位移台的摆动轴又无法标定,造成所述两个伺服角位移台的摆动轴之间的实际角度可能并不是恰好正交的90度,存在一定的角度误差。一旦组装完成,所述两个伺服角位移台的即被固联在CNC系统中,所述角度误差即无法再进行调整。因此,需要在后续利用所述两个伺服角位移台进行加工工件的倾斜角度控制时,可以针对所述角度误差进行修正。Optionally, the servo angular displacement stage is a mechanical control device that can be used to control the inclination angle of the workpiece in the CNC system. Normally, the tilt angle of the workpiece can be controlled by the linkage of two servo angular displacement stages, and the swing axes of the two servo angular displacement stages are designed to be 90 degrees orthogonal. That is to say, the two servo angular displacement stages need to be assembled into a state where the swing axes are orthogonal to 90° during assembly. During the assembly process, the swing axes of the two servo angular displacement stages cannot be calibrated, resulting in the two servo angular displacements The actual angle between the oscillating axes of the table may not be exactly 90 degrees of orthogonality, and there is a certain angle error. Once the assembly is completed, the two servo angular displacement stages are fixedly connected in the CNC system, and the angular error cannot be adjusted any more. Therefore, it is necessary to correct the angle error when using the two servo angular displacement stages to control the inclination angle of the workpiece subsequently.
所述两个伺服角位移台本身固联有对应的坐标系,可以根据所述两个位移台本身固联的坐标系可以确定第一固联坐标系、第二固联坐标系。所述第一固联坐标系以及所述第二固联坐标系均为笛卡尔坐标系,也即直角坐标系。当所述两个伺服角位移台的摆动轴转动时,其对应的第一固联坐标系、第二固联坐标系也发生相应的角度转动。The two servo angular displacement stages themselves are fixedly connected with corresponding coordinate systems, and the first fixed coordinate system and the second fixed coordinate system can be determined according to the fixedly connected coordinate systems of the two displacement stages themselves. Both the first fixed coordinate system and the second fixed coordinate system are Cartesian coordinate systems, that is, rectangular coordinate systems. When the swing axes of the two servo angular displacement stages rotate, the corresponding first fixed coordinate system and the second fixed coordinate system also rotate correspondingly.
所述两个伺服角位移台处于角度原点时,此时,标准反射板平行于安装基座的基准水平面,此时,自准直仪测量得到的角度输出为0,可以将此时垂直于安装基座的基准水平面的法向量可以设置为Z轴。两个伺服角位移台的设计为90度正交,因此可以将处于角度原点的两个伺服角位移台中的任一个伺服角位移台的轴向设置为指向X轴,另一个伺服角位移台的轴向设置为指向Y轴。进而可以建立相应的基准多半系。此时,所述基准坐标系与所述第一固联坐标系、第二固联坐标系的坐标系方向相同或机器。When the two servo angular displacement stages are at the origin of the angle, at this time, the standard reflector is parallel to the reference horizontal plane of the installation base. At this time, the angle output measured by the autocollimator is 0, and it can be perpendicular to the installation base at this time. The normal vector of the datum level of the base can be set to the Z axis. The two servo angular displacement stages are designed to be 90 degrees orthogonal, so the axial direction of any one of the two servo angular displacement stages at the origin of the angle can be set to point to the X axis, and the other servo angular displacement stage The axis is set to point to the Y axis. In turn, a corresponding benchmark system can be established. At this time, the coordinate system direction of the reference coordinate system is the same as that of the first fixed coordinate system and the second fixed coordinate system or the machine.
202:在两个伺服角位移台输出任意角度时,确定第一固联坐标系、第二固联坐标系以及所述基准坐标系的转换关系。202: When the two servo angular displacement stages output any angle, determine the conversion relationship between the first fixed coordinate system, the second fixed coordinate system, and the reference coordinate system.
其中,所述转换关系与所述两个伺服角位移台的夹角相关。Wherein, the conversion relationship is related to the angle between the two servo angular displacement stages.
所述两个伺服角位移台的摆动轴摆动时,其固联坐标系的随之发生变化。When the oscillating axes of the two servo angular displacement stages oscillate, their fixed coordinate systems change accordingly.
所述两个伺服角位移台摆动轴变化时,会产生二者的一个联动变化,而二者的联动变化会引起所述标准反射板的变化,进而自准直仪发出的激光在进行反射时,即可以产生反射激光的角度变化,自准直仪可以根据检测到的反射激光的变化,计算所述两个伺服位移台的变化角度,并输出所述变化角度。When the swing axes of the two servo angular displacement stages change, a linkage change of the two will occur, and the linkage change of the two will cause the change of the standard reflector, and then the laser emitted by the autocollimator will reflect , that is, the angle change of the reflected laser light can be generated, and the autocollimator can calculate the change angle of the two servo stages according to the detected change of the reflected laser light, and output the change angle.
所述两个伺服角位移台输出任一角度时,第一固联坐标系、第二固联坐标系会随之产生相应的夹角变化。可以基于空间坐标系的转换关系,确定所述第一固联坐标系、第二固联坐标系相对于所述基准坐标系的转动关系。When the two servo angular displacement stages output any angle, the first fixed coordinate system and the second fixed coordinate system will produce corresponding angle changes accordingly. The rotation relationship between the first fixed coordinate system and the second fixed coordinate system relative to the reference coordinate system may be determined based on the conversion relationship of the space coordinate system.
当所述两个伺服角位移台输出任一角度时,所述第一固联坐标系以及所述第二固联坐标系与所述基准坐标系可以如图3所示,图3中,包含了3个坐标系,其中包括,由x0,y0,z0构成的基准坐标系{0};由x1,y1,z1构成的第一固联坐标系{1};由x2,y2,z2构成的第二固联坐标系{2}。图3所示的坐标系中,为了更方便地展示不同坐标系之间的角度变化,将基准坐标系与第一固联坐标系的坐标原点设置为相同,在实际应用中,二者的坐标原点可以不同。When the two servo angular displacement stages output any angle, the first fixed coordinate system and the second fixed coordinate system and the reference coordinate system can be as shown in Figure 3, in Figure 3, including Three coordinate systems are established, including the reference coordinate system {0} composed of x0, y0, z0; the first fixed coordinate system {1} composed of x1, y1, z1; the first fixed coordinate system {1} composed of x2, y2, z2 The second fixed coordinate system {2}. In the coordinate system shown in Figure 3, in order to more conveniently display the angle changes between different coordinate systems, the coordinate origin of the reference coordinate system and the first fixed coordinate system are set to be the same. In practical applications, the coordinates of the two The origin can be different.
203:控制所述两个伺服角位移平台分别输出第一角度以及第二角度,并根据所述自准直仪测量获得标准反射板相对于基准坐标系的倾斜角度。203: Control the two servo angular displacement platforms to output the first angle and the second angle respectively, and obtain the inclination angle of the standard reflector relative to the reference coordinate system according to the measurement of the autocollimator.
由于所述标准反射板安装于角度调整机构的执行面上,在所述两个伺服角位移平台联动转动时,标准反射板跟随所述两个伺服角位移台的联动而运动。Since the standard reflection plate is installed on the execution surface of the angle adjustment mechanism, when the two servo angular displacement platforms rotate in tandem, the standard reflection plate moves following the linkage of the two servo angular displacement platforms.
可选地,CNC系统控制所述两个伺服角位移平台分别输出第一角度以及第二角度时,自准直仪可以利用标准反射板确定出相对于基准坐标系的倾斜角度。Optionally, when the CNC system controls the two servo angular displacement platforms to output the first angle and the second angle respectively, the autocollimator can use a standard reflector to determine the tilt angle relative to the reference coordinate system.
204:基于所述转换关系,建立所述第一角度、所述第二角度映射至所述基准坐标系的计算模型。204: Based on the conversion relationship, establish a calculation model in which the first angle and the second angle are mapped to the reference coordinate system.
所述第一角度与第二角度分别为两个伺服位移台的固联坐标系相较于所述基准坐标系的角度变化,所述第一角度以及所述第二角度可以由所述自直准仪测量得到。The first angle and the second angle are respectively the angle change of the fixed coordinate system of the two servo translation stages compared with the reference coordinate system, and the first angle and the second angle can be determined by the self-straightforward Accurate instrument measurement.
所述转换关系为所述两个伺服角位移台按照摆动轴转动后,形成的第一固联坐标系、第二固联坐标系与基准坐标系的转换关系,基于所述转换关系,可以将所述第一固联坐标系、第二固联坐标系映射装置所述基准坐标系中。The conversion relationship is the conversion relationship between the first fixed coordinate system, the second fixed coordinate system and the reference coordinate system formed after the two servo angular displacement stages are rotated according to the swing axis. Based on the conversion relationship, the The first fixed coordinate system and the second fixed coordinate system are mapped to the reference coordinate system of the device.
基于所述第一固联坐标系、第二固联坐标系以及所述基准坐标系的映射关系,即可以确定所述第一固联坐标系、第二固联坐标系通过所述第一角度、第二角度的映射即可以确定出映射的基准坐标系的计算模型。Based on the mapping relationship between the first fixed coordinate system, the second fixed coordinate system and the reference coordinate system, it can be determined that the first fixed coordinate system and the second fixed coordinate system pass through the first angle 1. The mapping of the second angle can determine the calculation model of the mapped reference coordinate system.
205:基于所述倾斜角度利用所述计算模型,计算获得所述两个伺服角位移台的实际夹角。205: Calculate and obtain an actual angle between the two servo angular displacement stages by using the calculation model based on the tilt angle.
所述计算模型为一个计算等式,公式的其他计算量已知的情况下,可以将两个伺服角位移台的实际夹角作为未知参量,引入公式,通过矩阵计算获得所述两个伺服角位移台的实际夹角。The calculation model is a calculation equation. When other calculation amounts of the formula are known, the actual angle between the two servo angular displacement stages can be used as an unknown parameter, and the formula is introduced to obtain the two servo angles through matrix calculation. The actual included angle of the stage.
本发明实施例中,通过引入角度调整机构,利用角度调整机构中的标准反射板以及自准直仪来确定两个伺服角位移台的倾斜角度。并可以确定在量伺服角位移台输出任意角度时,第一固联角度以及第二固联角度以及所述基准坐标系的转换关系,并基于所述转换关系确定基准坐标系的计算模型,并根据所述计算模型,可以根据所述倾斜角度分别计算获得所述两个伺服角位移台的实际夹角。通过该实际夹角可以确定两个伺服角位移台的摆动轴线是否正交,相交角度是否为正交角度,有效实现了相交角度的测量标定,从而基于该实际夹角,可以确定两伺服角位移台的角度偏差,基于该角度偏差可以对角度调整机构的输出角度进行补偿校正。In the embodiment of the present invention, by introducing an angle adjustment mechanism, the inclination angles of the two servo angular displacement stages are determined by using the standard reflection plate and the autocollimator in the angle adjustment mechanism. And it can be determined that when the servo angular displacement platform outputs any angle, the conversion relationship between the first fixed angle and the second fixed angle and the reference coordinate system, and determine the calculation model of the reference coordinate system based on the conversion relationship, and According to the calculation model, the actual included angles of the two servo angular displacement stages can be obtained by calculating respectively according to the tilt angles. Through the actual angle, it can be determined whether the swing axes of the two servo angular displacement stages are orthogonal, and whether the intersection angle is an orthogonal angle, which effectively realizes the measurement and calibration of the intersection angle, so based on the actual angle, the angular displacement of the two servos can be determined The angle deviation of the stage, based on the angle deviation, the output angle of the angle adjustment mechanism can be compensated and corrected.
如图3所示,为本发明提供的基于图1所示的角度调整机构的测量标定方法又一个实施例的流程图,所述方法可以包括以下几个步骤:As shown in Figure 3, it is a flow chart of another embodiment of the measurement and calibration method based on the angle adjustment mechanism shown in Figure 1 provided by the present invention, and the method may include the following steps:
301:建立所述两个伺服角位移台中第一伺服角位移台对应的第一固联坐标系以及第二伺服角位移台对应的第二固联坐标系,以及在所述两个伺服角位移台均处于角度原点时,基于所述两个伺服角位移台的摆动轴线建立基准坐标系。301: Establish the first fixed-coordinate system corresponding to the first servo angular displacement platform of the two servo angular displacement platforms and the second fixed-coordinate system corresponding to the second servo angular displacement platform, and the two servo angular displacement stages When the stages are at the angular origin, a reference coordinate system is established based on the swing axes of the two servo angular displacement stages.
其中,所述两个伺服角位移台处于角度原点时,所述基准坐标系与所述第一固联坐标系、所述第二固联坐标系的坐标系方向重合。Wherein, when the two servo angular displacement stages are at the origin of the angle, the reference coordinate system coincides with the coordinate system directions of the first fixed coordinate system and the second fixed coordinate system.
302:在所述第一伺服角位移台输出任意角度时,确定第一固联坐标系相对于所述基准坐标系的第一转换关系。302: When the first servo angular displacement stage outputs an arbitrary angle, determine a first conversion relationship between the first fixed coordinate system and the reference coordinate system.
本发明实施例中,假设所述第一伺服角位移台的固联坐标系为第一固联坐标系,假设所述第二伺服角位移台的固联坐标系为第二固联坐标系。所述第一伺服角位移台输出的任意角度为θ1,则第一固联坐标系相对于所述基准坐标系的第一转换关系可以表示为:In the embodiment of the present invention, it is assumed that the fixed coordinate system of the first servo angular displacement stage is the first fixed coordinate system, and the fixed coordinate system of the second servo angular displacement stage is assumed to be the second fixed coordinate system. The arbitrary angle output by the first servo angular displacement stage is θ 1 , then the first conversion relationship of the first fixed coordinate system relative to the reference coordinate system can be expressed as:
303:在所述第二伺服角位移台输出任意角度时,确定第二固联坐标系相对于所述基准坐标系的第二转换关系。303: When the second servo angular displacement stage outputs an arbitrary angle, determine a second conversion relationship between the second fixed coordinate system and the reference coordinate system.
所述第一伺服角位移台与所述第二伺服角位移台的摆动轴线90度正交,假设所述第一伺服角位移台与所述第二伺服角位移台之间的机械距离为d,因此,所述第一固联坐标系相对于所述第二固联坐标系之间的距离转置矩阵为:The swing axis of the first servo angular displacement stage and the second servo angular displacement stage is 90 degrees orthogonal, assuming that the mechanical distance between the first servo angular displacement stage and the second servo angular displacement stage is d , therefore, the distance transposition matrix between the first fixed coordinate system and the second fixed coordinate system is:
所述第一固联坐标系相对于所述第二固联坐标系之间的角度转换矩阵为:The angle conversion matrix between the first fixed coordinate system and the second fixed coordinate system is:
则基于上述公式2以及公式3可以获知所述第一固联坐标系相对于所述第二固联坐标系之间的第二转换关系为:Then based on the above formula 2 and formula 3, it can be known that the second conversion relationship between the first fixed coordinate system and the second fixed coordinate system is:
4304:基于所述第一转换关系以及所述第二转换关系,建立所述第二固联坐标系相对于所述基准坐标系的第三转换关系。4304: Based on the first conversion relationship and the second conversion relationship, establish a third conversion relationship between the second fixed coordinate system and the reference coordinate system.
基于上述公式1以及公式4可以获知所述第二固联坐标系相对于所述基准坐标系的第三转换关系:Based on the above formula 1 and formula 4, the third conversion relationship of the second fixed coordinate system relative to the reference coordinate system can be obtained:
305:控制所述两个伺服角位移平台分别输出第一角度以及第二角度,并根据所述自准直仪测量获得标准反射板相对于基准坐标系的倾斜角度。305: Control the two servo angular displacement platforms to respectively output the first angle and the second angle, and obtain the inclination angle of the standard reflector relative to the reference coordinate system according to the measurement of the autocollimator.
306:基于所述第三转换关系,建立所述第一角度、所述第二角度映射至所述基准坐标系的计算模型。306: Based on the third conversion relationship, establish a calculation model in which the first angle and the second angle are mapped to the reference coordinate system.
由于所述第一伺服角位移台与所述第二伺服角位移台之间理论上为正交关系,因此,认为所述第一角度θ1、所述第二角度θ2合成后的合成角度,可以有自直准仪通过标准反射板对激光的反射得到,该合成角度可以用笛卡尔坐标系表示,分解为相应的单位矢量形式:Since the first servo angular displacement stage and the second servo angular displacement stage are theoretically in an orthogonal relationship, it is considered that the composite angle after the synthesis of the first angle θ 1 and the second angle θ 2 , can be obtained from the self-collimator through the reflection of the laser by a standard reflector, and the resulting angle can be expressed in a Cartesian coordinate system and decomposed into the corresponding unit vector form:
其中,x,y,z为当前自直准仪采集的激光分别与标准反射板相对于基准坐标系X轴、Y轴、Z轴的角度大小。Among them, x, y, and z are the angles between the laser collected by the current self-collimator and the standard reflector relative to the X-axis, Y-axis, and Z-axis of the reference coordinate system.
由此,将合成角度分分解为如公式6所示的公式时,将其进行其次坐标变换后,得到所述第二固联坐标系相对于所述基准坐标系的单位转换矩阵:Thus, when the composite angle is decomposed into the formula shown in formula 6, after it is subjected to the second coordinate transformation, the unit conversion matrix of the second fixed coordinate system relative to the reference coordinate system is obtained:
其中,公式7为单位转换矩阵。Among them, Equation 7 is the unit conversion matrix.
而由于当所述两个伺服角位移台均置为角度原点时,也即θ1=0,θ2=0时,此时第二固联坐标系相对于自直准仪发射的激光垂直于所述标准反射板,此时,可以取所述第二固联坐标系在基准坐标系中的单位法向量为:And because when the two servo angular displacement stages are both set as the origin of the angle, that is, when θ 1 =0 and θ 2 =0, the second fixed coordinate system is perpendicular to the laser emitted from the collimator at this time The standard reflector, at this time, can take the unit normal vector of the second fixed coordinate system in the reference coordinate system as:
[1,0,0]T 公式8[1, 0, 0] T Formula 8
由于公式5为的转换关系并不为单位转换关系,因此,可以通过公式5与公式8确定出所述第二固联坐标系与所述基准坐标系的单位转换矩阵:Since the conversion relationship in Formula 5 is not a unit conversion relationship, the unit conversion matrix between the second fixed coordinate system and the reference coordinate system can be determined through Formula 5 and Formula 8:
其中,该单位转换矩阵中将所述单位法向量进行了齐次变换,以能与所述公式5的转换关系矩阵能够进行矩阵运算。Wherein, the unit normal vector is subjected to a homogeneous transformation in the unit transformation matrix, so as to be able to perform matrix operations with the transformation relationship matrix of the formula 5.
由此,所述公式9与所述公式7的转换矩阵在两个伺服台角位移等式成立:Thus, the transformation matrix of the formula 9 and the formula 7 is established in the two servo table angular displacement equations:
10上述公式10中,所述两个伺服角位移台呈90度正交,所述第一固联坐标系相对于所述第二固联坐标系之间的距离转置矩阵为公式2。当所述两个伺服角位移台的不为90度正交时,也即,所述两个伺服角位移台的实际夹角不为90度时,所述第一固联坐标系相对于所述第二固联坐标系之间的距离转置矩阵为未知矩阵D,该未知矩阵D与所述两个伺服角位移台的实际夹角相关联,而在公式10中其他变量,如x、y、z以及θ1、θ2已知,因此可以得出位置矩阵公式:10 In the above formula 10, the two servo angular displacement stages are orthogonal at 90 degrees, and the distance transposition matrix between the first fixed coordinate system and the second fixed coordinate system is formula 2. When the two servo angular displacement stages are not 90 degrees orthogonal, that is, when the actual angle between the two servo angular displacement stages is not 90 degrees, the first fixed coordinate system is relative to the The distance transposition matrix between the second fixed coordinate system is an unknown matrix D, which is associated with the actual angle between the two servo angular displacement stages, and other variables in formula 10, such as x, y, z and θ 1 , θ 2 are known, so the position matrix formula can be obtained:
通过矩阵计算可以得到相应的未知矩阵D,所述公式10即为所述计算模型的一种。The corresponding unknown matrix D can be obtained through matrix calculation, and the formula 10 is one of the calculation models.
307:基于所述倾斜角度利用所述计算模型,计算获得所述两个伺服角位移台的实际夹角。307: Calculate and obtain an actual angle between the two servo angular displacement stages by using the calculation model based on the tilt angle.
作为一种可能的实现方式,所述第三转换关系中包括以所述两个伺服角位移台的夹角作为的未知参量;As a possible implementation, the third conversion relationship includes an unknown parameter that is an angle between the two servo angular displacement stages;
假设所述未知参量为θ′,则上述公式4可以简化表示为:Assuming that the unknown parameter is θ′, the above formula 4 can be simplified as:
所述公式12中的矩阵Trans(d,0,0)Rot(x,θ′)=D,继而可以计算出该未知参量θ′。The matrix Trans(d, 0, 0)Rot(x, θ')=D in the formula 12 can then calculate the unknown parameter θ'.
所述基于所述倾斜角度利用所述计算模型,计算获得所述两个伺服角位移台的实际夹角可以包括:The calculating and obtaining the actual included angle of the two servo angular displacement stages by using the calculation model based on the tilt angle may include:
将所述倾斜角度作为所述计算模型的结果数据,计算获得所述第三转换关系的实际数据;Using the inclination angle as the result data of the calculation model to calculate and obtain the actual data of the third conversion relationship;
根据所述第三转换关系的实际数据,计算获得的所述未知参量作为所述两个伺服角位移台的实际夹角。According to the actual data of the third conversion relationship, the unknown parameter obtained by calculation is used as the actual angle between the two servo angular displacement stages.
在实际测试过程中,在公式10中其他变量,如x、y、z以及θ1、θ2已知,将其输入相应的公式10,即可以获得相应的未知矩阵D,将所述公式D以及相应的θ2等数据带入所述公式11,进而可以获得未知参量为θ′,即得到所述两个伺服角位移台的实际夹角。In the actual test process, other variables in formula 10, such as x, y, z and θ 1 , θ 2 are known, and input them into the corresponding formula 10 to obtain the corresponding unknown matrix D, and the formula D And the corresponding data such as θ 2 is brought into the formula 11, and then the unknown parameter can be obtained as θ', that is, the actual angle between the two servo angular displacement stages can be obtained.
本发明实施例中,通过第一转换关系以及第二转换关系,可以建立第二固联坐标系与基准坐标系之间的第三转换关系,并基于该第三转换关系,可以计算出第一角度以及第二角度映射至所述基准坐标系的计算模型。而所述两个伺服角位移台的夹角可以作为未知参量输入所述计算模型,并根据计算模型中的实际数据可以计算出该未知参量,即可获得所述两个伺服角位移台的夹角。通过角度转换关系可以准确计算实际的两个伺服位移台的夹角,保障了所述两个伺服角位移台的实际夹角,从而基于该实际夹角,可以确定两伺服角位移台的角度偏差,基于该角度偏差可以对角度调整机构的输出角度进行补偿较真。In the embodiment of the present invention, through the first conversion relationship and the second conversion relationship, the third conversion relationship between the second fixed coordinate system and the reference coordinate system can be established, and based on the third conversion relationship, the first The angle and the second angle are mapped to the calculation model of the reference coordinate system. And the angle between the two servo angular displacement stages can be input into the calculation model as an unknown parameter, and the unknown parameter can be calculated according to the actual data in the calculation model, and the angle between the two servo angular displacement stages can be obtained. horn. The actual included angle of the two servo angular translation stages can be accurately calculated through the angle conversion relationship, which ensures the actual included angle of the two servo angular translation stages, so based on the actual included angle, the angular deviation of the two servo angular translation stages can be determined , the output angle of the angle adjustment mechanism can be compensated and corrected based on the angle deviation.
作为又一个实施例,所述基于所述倾斜角度利用所述计算模型,计算获得所述两个伺服角位移台的实际夹角可以包括:As yet another embodiment, using the calculation model based on the tilt angle to calculate and obtain the actual angle between the two servo angular displacement stages may include:
根据所述两个伺服角位移台的理论夹角以及所述计算模型,计算获得所述标准反射板相对于所述基准坐标系的待校正角度;Calculate and obtain the angle to be corrected of the standard reflector relative to the reference coordinate system according to the theoretical angle between the two servo angular displacement stages and the calculation model;
比较所述待校正角度以及所述倾斜角度是否一致;Comparing whether the angle to be corrected and the angle of inclination are consistent;
如果是,确定所述两个伺服角位移台的实际夹角为所述理论夹角;If yes, determine that the actual angle between the two servo angular displacement stages is the theoretical angle;
如果否,基于所述倾斜角度利用所述计算模型,计算获得所述两个伺服角位移台的实际夹角。If not, calculate and obtain the actual included angle of the two servo angular displacement stages by using the calculation model based on the tilt angle.
本发明实施例中,在计算所述两个伺服角位移台的实际夹角时,可以先确认相应的待矫正角度,通过判断所述待矫正角度与所述倾斜角度是否一致,一致时,即说明所述两个伺服角位移台的实际夹角与理论夹角并不存在误差,可以直接确定所述两个伺服角位移台的实际夹角即为所述理论夹角。所述待矫正角度与所述倾斜角度不一致时,再计算所述两个伺服角位移台的实际夹角,进而可以避免盲目地计算计算模型,可以节约相关的计算步骤,提高所述两个伺服角位移台的实际夹角的确定效率。In the embodiment of the present invention, when calculating the actual included angle of the two servo angular displacement stages, the corresponding angle to be corrected can be confirmed first, and by judging whether the angle to be corrected is consistent with the tilt angle, when they are consistent, that is It shows that there is no error between the actual angle between the two servo angular displacement stages and the theoretical angle, and it can be directly determined that the actual angle between the two servo angular displacement stages is the theoretical angle. When the angle to be corrected is inconsistent with the inclination angle, then calculate the actual angle between the two servo angular displacement stages, thereby avoiding blindly calculating the calculation model, saving relevant calculation steps, and improving the The efficiency of determining the actual included angle of the angular displacement stage.
作为又一个实施例,所述基于所述倾斜角度利用所述计算模型,计算获得所述两个伺服角位移台的实际夹角之后,所述方法还可以包括:As yet another embodiment, after calculating and obtaining the actual angle between the two servo angular displacement stages by using the calculation model based on the inclination angle, the method may further include:
计算所述两个伺服角位移台的实际夹角与理论夹角的偏差数值;Calculate the deviation value between the actual angle and the theoretical angle of the two servo angular displacement stages;
将所述偏差数值输入所述角度调整机构的数控系统,以供所述数控系统执行角度调整时,基于所述偏差数值控制所述两个伺服角位移台的输出角度。The deviation value is input into the numerical control system of the angle adjustment mechanism, so that when the numerical control system performs angle adjustment, the output angles of the two servo angular displacement stages are controlled based on the deviation value.
本发明实施例中,在获得所述两个伺服角位移台的实际夹角后,将所述实际夹角与理论夹角进行比对,获得两个夹角的偏差数值,可以利用该偏差数据对数控系统利用两个伺服角位移台数据控制住角度时,进行输出角度的补偿,输出角度的补偿可以达到控制角度的优化,进而可以提高加工工件的精度。In the embodiment of the present invention, after obtaining the actual included angle of the two servo angular displacement stages, the actual included angle is compared with the theoretical included angle to obtain the deviation value of the two included angles, and the deviation data can be used When the numerical control system uses the data of two servo angular displacement stages to control the angle, the output angle is compensated, and the output angle compensation can achieve the optimization of the control angle, which can improve the accuracy of the workpiece.
如图4所示,为本发明提供的一种基于图1所示角度调整机构的测量标定装置一个实施例的结构示意图As shown in Figure 4, it is a structural schematic diagram of an embodiment of a measurement and calibration device based on the angle adjustment mechanism shown in Figure 1 provided by the present invention
所述装置可以包括以下几个模块:The device may include the following modules:
第一建立模块401,用于建立所述两个伺服角位移台中第一伺服角位移台对应的第一固联坐标系以及第二伺服角位移台对应的第二固联坐标系,以及在所述两个伺服角位移台均处于角度原点时,基于所述两个伺服角位移台的摆动轴线建立基准坐标系。The first establishment module 401 is used to establish the first fixed coordinate system corresponding to the first servo angular displacement platform of the two servo angular displacement platforms and the second fixed coordinate system corresponding to the second servo angular displacement platform, and When the two servo angular displacement stages are at the origin of the angle, a reference coordinate system is established based on the swing axes of the two servo angular displacement stages.
其中,所述两个伺服角位移台处于角度原点时,所述基准坐标系与所述第一固联坐标系、所述第二固联坐标系的坐标系方向重合。Wherein, when the two servo angular displacement stages are at the origin of the angle, the reference coordinate system coincides with the coordinate system directions of the first fixed coordinate system and the second fixed coordinate system.
可选地,所述伺服角位移台为可以用于CNC系统中的加工工件进行倾斜角度控制的机械控制装置。通常情况下,可以由两个伺服角位移台联动进行加工工件的倾斜角度的控制,两个伺服角位移台的摆动轴被设计为90度正交。也即所述两个伺服角位移台在组装时需要组装为摆动轴正交90的状态,由于组装过程中,两个伺服角位移台的摆动轴又无法标定,造成所述两个伺服角位移台的摆动轴之间的实际角度可能并不是恰好正交的90度,存在一定的角度误差。一旦组装完成,所述两个伺服角位移台的即被固联在CNC系统中,所述角度误差即无法再进行调整。因此,需要在后续利用所述两个伺服角位移台进行加工工件的倾斜角度控制时,可以针对所述角度误差进行修正。Optionally, the servo angular displacement stage is a mechanical control device that can be used to control the inclination angle of the workpiece in the CNC system. Normally, the tilt angle of the workpiece can be controlled by the linkage of two servo angular displacement stages, and the swing axes of the two servo angular displacement stages are designed to be 90 degrees orthogonal. That is to say, the two servo angular displacement stages need to be assembled into a state where the swing axes are orthogonal to 90° during assembly. During the assembly process, the swing axes of the two servo angular displacement stages cannot be calibrated, resulting in the two servo angular displacements The actual angle between the oscillating axes of the table may not be exactly 90 degrees of orthogonality, and there is a certain angle error. Once the assembly is completed, the two servo angular displacement stages are fixedly connected in the CNC system, and the angular error cannot be adjusted any more. Therefore, it is necessary to correct the angle error when using the two servo angular displacement stages to control the inclination angle of the workpiece subsequently.
所述两个伺服角位移台本身固联有对应的坐标系,可以根据所述两个位移台本身固联的坐标系可以确定第一固联坐标系、第二固联坐标系。所述第一固联坐标系以及所述第二固联坐标系均为笛卡尔坐标系,也即直角坐标系。当所述两个伺服角位移台的摆动轴转动时,其对应的第一固联坐标系、第二固联坐标系也发生相应的角度转动。The two servo angular displacement stages themselves are fixedly connected with corresponding coordinate systems, and the first fixed coordinate system and the second fixed coordinate system can be determined according to the fixedly connected coordinate systems of the two displacement stages themselves. Both the first fixed coordinate system and the second fixed coordinate system are Cartesian coordinate systems, that is, rectangular coordinate systems. When the swing axes of the two servo angular displacement stages rotate, the corresponding first fixed coordinate system and the second fixed coordinate system also rotate correspondingly.
所述两个伺服角位移台处于角度原点时,此时,标准反射板平行于安装基座的基准水平面,此时,自准直仪测量得到的角度输出为0,可以将此时垂直于安装基座的基准水平面的法向量可以设置为Z轴。两个伺服角位移台的设计为90度正交,因此可以将处于角度原点的两个伺服角位移台中的任一个伺服角位移台的轴向设置为指向X轴,另一个伺服角位移台的轴向设置为指向Y轴。进而可以建立相应的基准多半系。此时,所述基准坐标系与所述第一固联坐标系、第二固联坐标系的坐标系方向相同或机器。When the two servo angular displacement stages are at the origin of the angle, at this time, the standard reflector is parallel to the reference horizontal plane of the installation base. At this time, the angle output measured by the autocollimator is 0, and it can be perpendicular to the installation base at this time. The normal vector of the datum level of the base can be set to the Z axis. The two servo angular displacement stages are designed to be 90 degrees orthogonal, so the axial direction of any one of the two servo angular displacement stages at the origin of the angle can be set to point to the X axis, and the other servo angular displacement stage The axis is set to point to the Y axis. In turn, a corresponding benchmark system can be established. At this time, the coordinate system direction of the reference coordinate system is the same as that of the first fixed coordinate system and the second fixed coordinate system or the machine.
第一确定模块402,用于在两个伺服角位移台输出任意角度时,确定第一固联坐标系、第二固联坐标系以及所述基准坐标系的转换关系。The first determination module 402 is configured to determine the conversion relationship between the first fixed coordinate system, the second fixed coordinate system and the reference coordinate system when the two servo angular translation stages output any angle.
其中,所述转换关系与所述两个伺服角位移台的夹角相关。Wherein, the conversion relationship is related to the angle between the two servo angular displacement stages.
所述两个伺服角位移台摆动轴变化时,会产生二者的一个联动变化,而二者的联动变化会引起所述标准反射板的变化,进而自准直仪发出的激光在进行反射时,即可以产生反射激光的角度变化,自准直仪可以根据检测到的反射激光的变化,计算所述两个伺服位移台的变化角度,并输出所述变化角度。When the swing axes of the two servo angular displacement stages change, a linkage change of the two will occur, and the linkage change of the two will cause the change of the standard reflector, and then the laser emitted by the autocollimator will reflect , that is, the angle change of the reflected laser light can be generated, and the autocollimator can calculate the change angle of the two servo stages according to the detected change of the reflected laser light, and output the change angle.
所述两个伺服角位移台输出任一角度时,第一固联坐标系、第二固联坐标系会随之产生相应的夹角变化。可以基于空间坐标系的转换关系,确定所述第一固联坐标系、第二固联坐标系相对于所述基准坐标系的转动关系。When the two servo angular displacement stages output any angle, the first fixed coordinate system and the second fixed coordinate system will produce corresponding angle changes accordingly. The rotation relationship between the first fixed coordinate system and the second fixed coordinate system relative to the reference coordinate system may be determined based on the conversion relationship of the space coordinate system.
第一测量模块403,用于控制所述两个伺服角位移平台分别输出第一角度以及第二角度,并根据所述自准直仪测量获得标准反射板相对于基准坐标系的倾斜角度。The first measurement module 403 is used to control the two servo angular displacement platforms to output the first angle and the second angle respectively, and obtain the inclination angle of the standard reflector relative to the reference coordinate system according to the measurement of the autocollimator.
由于所述标准反射板安装于角度调整机构的执行面上,在所述两个伺服角位移平台联动转动时,标准反射板跟随所述两个伺服角位移台的联动而运动。Since the standard reflection plate is installed on the execution surface of the angle adjustment mechanism, when the two servo angular displacement platforms rotate in tandem, the standard reflection plate moves following the linkage of the two servo angular displacement platforms.
可选地,CNC系统控制所述两个伺服角位移平台分别输出第一角度以及第二角度时,自准直仪可以利用标准反射板确定出相对于基准坐标系的倾斜角度。Optionally, when the CNC system controls the two servo angular displacement platforms to output the first angle and the second angle respectively, the autocollimator can use a standard reflector to determine the tilt angle relative to the reference coordinate system.
第二建立模块404,用于基于所述转换关系,建立所述第一角度、所述第二角度映射至所述基准坐标系的计算模型。The second establishing module 404 is configured to establish a calculation model of mapping the first angle and the second angle to the reference coordinate system based on the conversion relationship.
所述第一角度与第二角度分别为两个伺服位移台的固联坐标系相较于所述基准坐标系的角度变化,所述第一角度以及所述第二角度可以由所述自直准仪测量得到。The first angle and the second angle are respectively the angle change of the fixed coordinate system of the two servo translation stages compared with the reference coordinate system, and the first angle and the second angle can be determined by the self-straightforward Accurate instrument measurement.
所述转换关系为所述两个伺服角位移台按照摆动轴转动后,形成的第一固联坐标系、第二固联坐标系与基准坐标系的转换关系,基于所述转换关系,可以将所述第一固联坐标系、第二固联坐标系映射装置所述基准坐标系中。The conversion relationship is the conversion relationship between the first fixed coordinate system, the second fixed coordinate system and the reference coordinate system formed after the two servo angular displacement stages are rotated according to the swing axis. Based on the conversion relationship, the The first fixed coordinate system and the second fixed coordinate system are mapped to the reference coordinate system of the device.
基于所述第一固联坐标系、第二固联坐标系以及所述基准坐标系的映射关系,即可以确定所述第一固联坐标系、第二固联坐标系通过所述第一角度、第二角度的映射即可以确定出映射的基准坐标系的计算模型。Based on the mapping relationship between the first fixed coordinate system, the second fixed coordinate system and the reference coordinate system, it can be determined that the first fixed coordinate system and the second fixed coordinate system pass through the first angle 1. The mapping of the second angle can determine the calculation model of the mapped reference coordinate system.
第一计算模块405,用于基于所述倾斜角度利用所述计算模型,计算获得所述两个伺服角位移台的实际夹角。The first calculation module 405 is configured to calculate and obtain the actual angle between the two servo angular displacement stages by using the calculation model based on the tilt angle.
所述计算模型为一个计算等式,公式的其他计算量已知的情况下,可以将两个伺服角位移台的实际夹角作为未知参量,引入公式,通过矩阵计算获得所述两个伺服角位移台的实际夹角。The calculation model is a calculation equation. When other calculation amounts of the formula are known, the actual angle between the two servo angular displacement stages can be used as an unknown parameter, and the formula is introduced to obtain the two servo angles through matrix calculation. The actual included angle of the stage.
本发明实施例中,通过引入角度调整机构,利用角度调整机构中的标准反射板以及自准直仪来确定两个伺服角位移台的倾斜角度。并可以确定在量伺服角位移台输出任意角度时,第一固联角度以及第二固联角度以及所述基准坐标系的转换关系,并基于所述转换关系确定基准坐标系的计算模型,并根据所述计算模型,可以根据所述倾斜角度分别计算获得所述两个伺服角位移台的实际夹角。通过该实际夹角可以确定两个伺服角位移台的摆动轴线是否正交,相交角度是否为正交角度,有效实现了相交角度的测量标定,从而基于该实际夹角,可以确定两伺服角位移台的角度偏差,基于该角度偏差可以对角度调整机构的输出角度进行补偿校正。In the embodiment of the present invention, by introducing an angle adjustment mechanism, the inclination angles of the two servo angular displacement stages are determined by using the standard reflection plate and the autocollimator in the angle adjustment mechanism. And it can be determined that when the servo angular displacement platform outputs any angle, the conversion relationship between the first fixed angle and the second fixed angle and the reference coordinate system, and determine the calculation model of the reference coordinate system based on the conversion relationship, and According to the calculation model, the actual included angles of the two servo angular displacement stages can be obtained by calculating respectively according to the tilt angles. Through the actual angle, it can be determined whether the swing axes of the two servo angular displacement stages are orthogonal, and whether the intersection angle is an orthogonal angle, which effectively realizes the measurement and calibration of the intersection angle, so based on the actual angle, the angular displacement of the two servos can be determined The angle deviation of the stage, based on the angle deviation, the output angle of the angle adjustment mechanism can be compensated and corrected.
作为一个实施例,所述第一确定模块可以包括:As an embodiment, the first determining module may include:
第一确定单元,用于在所述第一伺服角位移台输出任意角度时,确定第一固联坐标系相对于所述基准坐标系的第一转换关系;A first determination unit, configured to determine a first conversion relationship between the first fixed coordinate system and the reference coordinate system when the first servo angular displacement stage outputs any angle;
第二确定单元,用于在所述第二伺服角位移台输出任意角度时,确定第二固联坐标系相对于所述第一固联坐标系的第二转换关系;The second determining unit is configured to determine a second conversion relationship of the second fixed coordinate system relative to the first fixed coordinate system when the second servo angular displacement stage outputs an arbitrary angle;
第三确定单元,用于基于所述第一转换关系以及所述第二转换关系,建立所述第二固联坐标系相对于所述基准坐标系的第三转换关系;A third determining unit, configured to establish a third conversion relationship between the second fixed coordinate system and the reference coordinate system based on the first conversion relationship and the second conversion relationship;
所述第二建立模块可以包括:The second building block may include:
第一建立单元,用于基于所述第三转换关系,建立所述第一角度、所述第二角度映射至所述基准坐标系的计算模型。A first establishing unit, configured to establish a calculation model in which the first angle and the second angle are mapped to the reference coordinate system based on the third conversion relationship.
作为一种可能的实现方式,所述第三转换关系中包括以所述两个伺服角位移平台的夹角作为的未知参量;As a possible implementation, the third conversion relationship includes an unknown parameter that is the angle between the two servo angular displacement platforms;
所述第一计算模块可以包括:The first computing module may include:
第一计算单元,用于将所述倾斜角度利用所述计算模型的结果数据,计算获得所述第三转换关系的实际数据;a first calculation unit, configured to use the result data of the calculation model to calculate the actual data of the third conversion relationship by using the inclination angle;
第二计算单元,用于根据所述第三转换关系的实际数据,计算获得的所述未知参量作为所述两个伺服角位移台的实际夹角。The second calculation unit is configured to calculate the obtained unknown parameter as the actual angle between the two servo angular displacement stages according to the actual data of the third conversion relationship.
本发明实施例中,通过第一转换关系以及第二转换关系,可以建立第二固联坐标系与基准坐标系之间的第三转换关系,并基于该第三转换关系,可以计算出第一角度以及第二角度映射至所述基准坐标系的计算模型。而所述两个伺服角位移台的夹角可以作为未知参量输入所述计算模型,并根据计算模型中的实际数据可以计算出该未知参量,即可获得所述两个伺服角位移台的夹角。通过角度转换关系可以准确计算实际的两个伺服位移台的夹角,保障了所述两个伺服角位移台的实际夹角,从而基于该实际夹角,可以确定两伺服角位移台的角度偏差,基于该角度偏差可以对角度调整机构的输出角度进行补偿较真。In the embodiment of the present invention, through the first conversion relationship and the second conversion relationship, the third conversion relationship between the second fixed coordinate system and the reference coordinate system can be established, and based on the third conversion relationship, the first The angle and the second angle are mapped to the calculation model of the reference coordinate system. And the angle between the two servo angular displacement stages can be input into the calculation model as an unknown parameter, and the unknown parameter can be calculated according to the actual data in the calculation model, and the angle between the two servo angular displacement stages can be obtained. horn. The actual included angle of the two servo angular translation stages can be accurately calculated through the angle conversion relationship, which ensures the actual included angle of the two servo angular translation stages, so based on the actual included angle, the angular deviation of the two servo angular translation stages can be determined , the output angle of the angle adjustment mechanism can be compensated and corrected based on the angle deviation.
作为又一个实施例,所述第一计算模块可以包括:As yet another embodiment, the first computing module may include:
第三计算单元,用于根据所述两个伺服角位移平台的理论夹角以及所述计算模型,计算获得所述标准反射板相对于所述基准坐标系的待校正角度;The third calculation unit is used to calculate and obtain the angle to be corrected of the standard reflector relative to the reference coordinate system according to the theoretical angle between the two servo angular displacement platforms and the calculation model;
第一比较单元,用于比较所述待校正角度以及所述倾斜角度是否一致;如果是,确定所述两个伺服角位移台的实际夹角为所述理论夹角;如果否,基于所述倾斜角度利用所述计算模型,计算获得所述两个伺服角位移台的实际夹角。The first comparison unit is used to compare whether the angle to be corrected and the angle of inclination are consistent; if yes, determine that the actual angle between the two servo angular displacement stages is the theoretical angle; if not, based on the The tilt angle uses the calculation model to calculate and obtain the actual included angle of the two servo angular displacement stages.
本发明实施例中,在计算所述两个伺服角位移台的实际夹角时,可以先确认相应的待矫正角度,通过判断所述待矫正角度与所述倾斜角度是否一致,一致时,即说明所述两个伺服角位移台的实际夹角与理论夹角并不存在误差,可以直接确定所述两个伺服角位移台的实际夹角即为所述理论夹角。所述待矫正角度与所述倾斜角度不一致时,再计算所述两个伺服角位移台的实际夹角,进而可以避免盲目地计算计算模型,可以节约相关的计算步骤,提高所述两个伺服角位移台的实际夹角的确定效率。In the embodiment of the present invention, when calculating the actual included angle of the two servo angular displacement stages, the corresponding angle to be corrected can be confirmed first, and by judging whether the angle to be corrected is consistent with the tilt angle, when they are consistent, that is It shows that there is no error between the actual angle between the two servo angular displacement stages and the theoretical angle, and it can be directly determined that the actual angle between the two servo angular displacement stages is the theoretical angle. When the angle to be corrected is inconsistent with the inclination angle, then calculate the actual angle between the two servo angular displacement stages, thereby avoiding blindly calculating the calculation model, saving relevant calculation steps, and improving the The efficiency of determining the actual included angle of the angular displacement stage.
作为又一个实施例,所述装置还可以包括:As yet another embodiment, the device may also include:
第二计算模块,用于计算所述两个伺服角位移台的实际夹角与理论夹角的偏差数值;The second calculation module is used to calculate the deviation value between the actual angle and the theoretical angle of the two servo angular displacement stages;
第一输出模块,用于将所述偏差数值输入所述角度调整机构的数控系统,以供所述数控系统执行角度调整时,基于所述偏差数值控制所述两个伺服角位移台的输出角度。The first output module is used to input the deviation value into the numerical control system of the angle adjustment mechanism, so that when the numerical control system performs angle adjustment, it controls the output angles of the two servo angular displacement stages based on the deviation value. .
本发明实施例中,在获得所述两个伺服角位移台的实际夹角后,将所述实际夹角与理论夹角进行比对,获得两个夹角的偏差数值,可以利用该偏差数据对数控系统利用两个伺服角位移台数据控制住角度时,进行输出角度的补偿,输出角度的补偿可以达到控制角度的优化,进而可以提高加工工件的精度。In the embodiment of the present invention, after obtaining the actual included angle of the two servo angular displacement stages, the actual included angle is compared with the theoretical included angle to obtain the deviation value of the two included angles, and the deviation data can be used When the numerical control system uses the data of two servo angular displacement stages to control the angle, the output angle is compensated, and the output angle compensation can achieve the optimization of the control angle, which can improve the accuracy of the workpiece.
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。In a typical configuration, a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。Memory may include non-permanent storage in computer readable media, in the form of random access memory (RAM) and/or nonvolatile memory such as read only memory (ROM) or flash RAM. Memory is an example of computer readable media.
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括非暂存电脑可读媒体(transitory media),如调制的数据信号和载波。Computer-readable media, including both permanent and non-permanent, removable and non-removable media, can be implemented by any method or technology for storage of information. Information may be computer readable instructions, data structures, modules of a program, or other data. Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridge, tape magnetic disk storage or other magnetic storage device or any other non-transmission medium that can be used to store information that can be accessed by a computing device. As defined herein, computer-readable media excludes non-transitory computer-readable media, such as modulated data signals and carrier waves.
如在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”为一开放式用语,故应解释成“包含但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。此外,“耦接”一词在此包含任何直接及间接的电性耦接手段。因此,若文中描述一第一装置耦接于一第二装置,则代表所述第一装置可直接电性耦接于所述第二装置,或通过其他装置或耦接手段间接地电性耦接至所述第二装置。说明书后续描述为实施本发明的较佳实施方式,然所述描述乃以说明本发明的一般原则为目的,并非用以限定本发明的范围。本发明的保护范围当视所附权利要求所界定者为准。Certain terms are used, for example, in the description and claims to refer to particular components. Those skilled in the art should understand that hardware manufacturers may use different terms to refer to the same component. The specification and claims do not use the difference in name as a way to distinguish components, but use the difference in function of components as a criterion for distinguishing. As mentioned throughout the specification and claims, "comprising" is an open term, so it should be interpreted as "including but not limited to". "Approximately" means that within an acceptable error range, those skilled in the art can solve the technical problem within a certain error range and basically achieve the technical effect. In addition, the term "coupled" herein includes any direct and indirect electrical coupling means. Therefore, if it is described that a first device is coupled to a second device, it means that the first device may be directly electrically coupled to the second device, or indirectly electrically coupled through other devices or coupling means. connected to the second device. The following descriptions in the specification are preferred implementation modes for implementing the present invention, but the descriptions are for the purpose of illustrating the general principles of the present invention, and are not intended to limit the scope of the present invention. The scope of protection of the present invention should be defined by the appended claims.
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素It should also be noted that the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a good or system comprising a set of elements includes not only those elements but also includes items not expressly listed. other elements of the product, or elements inherent in the commodity or system. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in a commodity or system comprising said element
上述说明示出并描述了本发明的若干优选实施例,但如前所述,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。The above description shows and describes several preferred embodiments of the present invention, but as mentioned above, it should be understood that the present invention is not limited to the forms disclosed herein, and should not be regarded as excluding other embodiments, but can be used in various Various other combinations, modifications and environments, and can be modified by the above teachings or the technology or knowledge in the related field within the scope of the application concept described herein. However, changes and changes made by those skilled in the art do not depart from the spirit and scope of the present invention, and should all be within the protection scope of the appended claims of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710612716.0A CN107246852B (en) | 2017-07-25 | 2017-07-25 | Measurement calibration method, device and angle adjustment mechanism based on angle adjustment mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710612716.0A CN107246852B (en) | 2017-07-25 | 2017-07-25 | Measurement calibration method, device and angle adjustment mechanism based on angle adjustment mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107246852A true CN107246852A (en) | 2017-10-13 |
CN107246852B CN107246852B (en) | 2019-08-27 |
Family
ID=60013005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710612716.0A Active CN107246852B (en) | 2017-07-25 | 2017-07-25 | Measurement calibration method, device and angle adjustment mechanism based on angle adjustment mechanism |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107246852B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108180868A (en) * | 2017-12-29 | 2018-06-19 | 南京理工大学 | A kind of real-time three-dimensional micro imaging system based on fringe projection |
CN108489396A (en) * | 2018-05-07 | 2018-09-04 | 北京环境特性研究所 | A kind of two dimension turn top accuracy checking method |
CN109269444A (en) * | 2018-09-19 | 2019-01-25 | 贵州航天电子科技有限公司 | A kind of servo mechanism angle calibration measurement method |
CN109656195A (en) * | 2018-12-18 | 2019-04-19 | 清华大学 | The composition error caliberating device and method of lathe situ detection system |
CN112129521A (en) * | 2019-06-06 | 2020-12-25 | 上海华依科技集团股份有限公司 | Servo positioning control method for output loading mechanism of gearbox test bench |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09101127A (en) * | 1995-10-04 | 1997-04-15 | Sokkia Co Ltd | Rolling angle measuring device |
CN105382631A (en) * | 2015-12-15 | 2016-03-09 | 福建工程学院 | Equipment and method for detecting error of rotating shaft of five-axis numerical control machine tool |
CN106125774A (en) * | 2016-08-31 | 2016-11-16 | 华南理工大学 | Biaxial synchronous motion control device based on laser displacement sensor feedback and method |
CN205984099U (en) * | 2016-05-19 | 2017-02-22 | 江苏科技大学 | Open -type numerically -controlled machine tool experimental platform |
CN106910534A (en) * | 2017-03-07 | 2017-06-30 | 中南大学 | Angular displacement stage apparatus |
-
2017
- 2017-07-25 CN CN201710612716.0A patent/CN107246852B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09101127A (en) * | 1995-10-04 | 1997-04-15 | Sokkia Co Ltd | Rolling angle measuring device |
CN105382631A (en) * | 2015-12-15 | 2016-03-09 | 福建工程学院 | Equipment and method for detecting error of rotating shaft of five-axis numerical control machine tool |
CN205984099U (en) * | 2016-05-19 | 2017-02-22 | 江苏科技大学 | Open -type numerically -controlled machine tool experimental platform |
CN106125774A (en) * | 2016-08-31 | 2016-11-16 | 华南理工大学 | Biaxial synchronous motion control device based on laser displacement sensor feedback and method |
CN106910534A (en) * | 2017-03-07 | 2017-06-30 | 中南大学 | Angular displacement stage apparatus |
Non-Patent Citations (1)
Title |
---|
姚雪峰等: "高精度角位移平台的研制及误差补偿", 《仪器仪表学报》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108180868A (en) * | 2017-12-29 | 2018-06-19 | 南京理工大学 | A kind of real-time three-dimensional micro imaging system based on fringe projection |
CN108489396A (en) * | 2018-05-07 | 2018-09-04 | 北京环境特性研究所 | A kind of two dimension turn top accuracy checking method |
CN109269444A (en) * | 2018-09-19 | 2019-01-25 | 贵州航天电子科技有限公司 | A kind of servo mechanism angle calibration measurement method |
CN109656195A (en) * | 2018-12-18 | 2019-04-19 | 清华大学 | The composition error caliberating device and method of lathe situ detection system |
CN109656195B (en) * | 2018-12-18 | 2020-09-22 | 清华大学 | Comprehensive error calibration device and method for in-situ detection system of machine tool |
CN112129521A (en) * | 2019-06-06 | 2020-12-25 | 上海华依科技集团股份有限公司 | Servo positioning control method for output loading mechanism of gearbox test bench |
CN112129521B (en) * | 2019-06-06 | 2022-11-22 | 上海华依科技集团股份有限公司 | Servo positioning control method for output loading mechanism of gearbox test bench |
Also Published As
Publication number | Publication date |
---|---|
CN107246852B (en) | 2019-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107246852B (en) | Measurement calibration method, device and angle adjustment mechanism based on angle adjustment mechanism | |
CN107036557B (en) | A kind of two dimension angle measuring system and method | |
CN109483322B (en) | A zero-point calibration method for a five-axis CNC machine tool | |
CN102914260B (en) | Detection method of indexing error of turntable based on photoelectric two-axis collimator | |
CN111208493B (en) | Quick calibration method of vehicle-mounted laser radar in whole vehicle coordinate system | |
CN110006367B (en) | Yaw angle, pitch angle measurement method and device | |
TW201447220A (en) | Pupil plane calibration for scatterometry overlay measurement | |
CN116990787B (en) | Scanning platform coordinate system error correction method based on airborne laser radar system | |
CN109598637B (en) | Ship pipe section calibration method, device, system, storage medium and terminal | |
CN117590755A (en) | Dual-fast-reflector beam pointing control method and related equipment | |
CN111044077B (en) | Calibration method between star sensor measurement coordinate system and star sensor cube mirror coordinate system | |
TW201518888A (en) | System and method for compensating step mismatch in a processing machine | |
Park et al. | A new optical measurement system for determining the geometrical errors of rotary axis of a 5-axis miniaturized machine tool | |
CN113126058A (en) | Memory, control method and device for airborne laser radar system | |
CN109514441A (en) | Realize the method and system of the error compensation function of V-type AB cutter head | |
CN111102918B (en) | An Automatic Measuring System of Cube Mirror Coordinate System | |
CN114034244B (en) | Method for obtaining geometric error of any point in CMM measuring range based on Makima algorithm | |
CN105953820B (en) | A kind of optical calibrating device of inertial measurement combination dynamic navigation performance | |
WO2020184575A1 (en) | Measurement system and measurement method | |
JP2001066135A (en) | Inspecting method of house and reflector used for it | |
CN113820720A (en) | Three-dimensional laser center ranging method, system and terminal based on multiple reference base points | |
Teng et al. | Orientation Parameters Compensation Method of Distributed Measurement Systems | |
JPH03167404A (en) | Method for measuring size of large object | |
Guo et al. | A Globe Calibration Method for Optical Multisensor in 3D Complex Surface Measurement System | |
CN112222798B (en) | Automatic installation method and device for large-scale component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201019 Address after: 261031 north of Yuqing street, east of Dongming Road, high tech Zone, Weifang City, Shandong Province (Room 502, Geer electronic office building) Patentee after: GoerTek Optical Technology Co.,Ltd. Address before: 261031 No. 268 Dongfang Road, Weifang hi tech Industrial Development Zone, Shandong, Weifang Patentee before: GOERTEK Inc. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221123 Address after: 266104 No. 500, Songling Road, Laoshan District, Qingdao, Shandong Patentee after: GOERTEK TECHNOLOGY Co.,Ltd. Address before: 261031 north of Yuqing street, east of Dongming Road, high tech Zone, Weifang City, Shandong Province (Room 502, Geer electronics office building) Patentee before: GoerTek Optical Technology Co.,Ltd. |