CN107227352A - 基于eGFP的GPR120基因表达的检测方法及应用 - Google Patents
基于eGFP的GPR120基因表达的检测方法及应用 Download PDFInfo
- Publication number
- CN107227352A CN107227352A CN201710443881.8A CN201710443881A CN107227352A CN 107227352 A CN107227352 A CN 107227352A CN 201710443881 A CN201710443881 A CN 201710443881A CN 107227352 A CN107227352 A CN 107227352A
- Authority
- CN
- China
- Prior art keywords
- egfp
- gpr120
- gene expression
- fluorescence
- mouse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6897—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Plant Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开的基于eGFP的GPR120基因表达的检测方法,通过CRISPR/Cas9技术将eGFP片段定点插入到GPR120基因的终止密码子TAA处,获得eGFP标记GPR120阳性细胞的转基因模型小鼠;随后应用荧光分析仪激发对小鼠的阳性细胞荧光强度进行测定。本发明通过实时监测GPR120基因表达,控制和减少组间误差,保证结果的可靠性,弥补和克服了现有检测方法对不同组织细胞进行组间比较而产生的变异性、不能在活细胞水平监测基因表达的变化的问题;本发明在收取细胞后即刻确定GPR120基因表达水平,省去了RNA提取和反转录、PCR等操作和反应过程,使GPR120基因表达检测更加简便。
Description
技术领域
本发明属于eGFP生物应用技术领域,具体涉及一种基于eGFP的GPR120基因表达的检测方法,本发明还涉及一种基于eGFP在GPR120基因表达检测中的应用。
背景技术
GPR120(G-protein coupled receptor 120;又名free fatty acid receptor 4,FFAR4)是脂肪酸受体家族一员,属于G蛋白偶联受体(GPCR),可被长链脂肪酸激活,尤以n-3不饱和脂肪酸激活能力最强。GPR120在脑、垂体、肺、舌、胃肠、脂肪组织等许多组织表达,主要分布于胃肠多种内分泌细胞、脂肪细胞、巨噬细胞、成骨和破骨细胞以及味蕾细胞。GPR120激活可刺激GLP-1、CCK、GIP等胃肠激素分泌,影响机体的内分泌代谢活动,与肥胖等代谢异常密切相关。
GPR120表达水平高低显著影响其细胞调节作用,GPR120表达调控的研究将促进对GPR120功能的认识和发现可能的代谢调节靶分子,为GPR120靶点药物的研发提供一定的依据。基因表达研究所常用技术手段目前有反转录聚合酶链式反应(RT-PCR)和Northern印迹杂交(Northern Blot),这两种方法虽然技术成熟,广泛应用于基因表达水平的检测,但是也存在一定的缺点:一是实验过程较为繁琐,二是不能在活细胞水平监测基因表达的变化。
发明内容
本发明的目的是提供一种基于eGFP的GPR120基因表达水平的检测方法及其应用,解决了现有GPR120基因表达水平的检测中实验步骤繁琐、不能在活细胞水平监测基因表达的变化的问题,为GPR120基因表达水平的检测提供了新思路。
本发明所采用的技术方案是,eGFP在GPR120基因表达水平的检测中的应用。
本发明的特征在于,
eGFP与GPR120基因表达水平的呈线性关系,即随着eGFP荧光平均强度值的增加,GPR120基因表达水平增加。
本发明所采用的另一个技术方案是,基于eGFP的GPR120基因表达水平的检测方法:
步骤1,首先通过CRISPR/Cas9技术将eGFP片段定点插入到GPR120基因的终止密码子TAA处,使eGFP随GPR120表达而表达,获得eGFP标记GPR120阳性细胞的转基因模型小鼠;
步骤2,随后应用荧光分析仪在488nm激光激发下对小鼠的阳性细胞荧光强度进行测定。
本发明的特征在于,
步骤2的荧光强度通过单细胞平均荧光强度进行表达。
步骤2的具体步骤:
步骤2.1,使用没有被eGFP标定的小鼠细胞进行荧光分析仪的激光强度指标校正;
步骤2.2,收取步骤1中转基因模型小鼠的不同组织的eGFP阳性细胞,通过经步骤2.1校正后的荧光分析仪进行荧光强度测定,获取eGFP与GPR120基因表达水平之间的关系;同时通过RT-PCR方法检测eGFP阳性细胞中GPR120的基因表达水平,验证eGFP与GPR120基因表达水平之间的关系。
本发明有益效果是:
a)本发明通过实时监测GPR120基因表达,做到自身前后对照,控制组内误差,减少组间误差,保证测定结果更为可靠,从而弥补和克服了RT-PCR和Northern Blot等方法对不同组织细胞进行组间比较而产生的变异性、不能在活细胞水平监测基因表达的变化的问题;
b)本发明收取细胞后即刻确定GPR120基因表达水平,省去了RNA提取、RNA反转录和PCR等操作和反应过程,使GPR120基因表达检测更加简便快捷。
附图说明
图1是GPR120-ires-eGFP转基因小鼠的组织细胞中eGFP荧光阳性细胞,其中,图1A为GPR120-ires-eGFP转基因小鼠组织在488nm激光激发下eGFP荧光阳性细胞图,图1B为图1A的组织的普通光镜图,图1C为野生型小鼠组织在488nm激光激发下细胞图,图1D为图1C的组织的普通光镜图;
图2是小鼠组织中的扩增曲线图,其中,图2A为GPR120-ires-eGFP转基因小鼠的组织中GPR120的RT-PCR小扩增曲线,图 2B为GPR120-ires-eGFP转基因小鼠的组织中eGFP的RT-PCR小扩增曲线,图2C为野生型小鼠组织中GPR120的RT-PCR小扩增曲线,图2D为野生型小鼠组织中eGFP的RT-PCR小扩增曲线;
图3是GPR120-ires-eGFP转基因小鼠不同组织细胞中eGFP荧光强度和GPR120基因表达水平之间的关系;
图4是GPR120-ires-eGFP转基因小鼠腹腔巨噬细胞在体外经脂多糖处理后eGFP荧光强度和GPR120基因表达水平之间的关系图,其中,图4A是GPR120基因表达水平在对照组和经脂多糖处理组的关系图,图4B是eGFP荧光强度均值在对照组和经脂多糖处理组的关系图,图4C是GPR120基因表达水平与细胞eGFP荧光强度均值的关系图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明以eGFP标记GPR120阳性细胞的模型小鼠为对象,利用荧光显微镜技术测定小鼠eGFP阳性细胞的荧光强度,与eGFP阳性细胞的GPR120基因表达水平进行相关性分析,确定eGFP阳性细胞的荧光强度与GPR120基因表达水平之间的线性关系,使eGFP荧光强度作为GPR120基因表达水平的一个可靠的检测指标提供了依据。
基于eGFP的GPR120基因表达水平的检测方法:
步骤1,首先通过CRISPR/Cas9技术将eGFP片段定点插入到GPR120基因的终止密码子TAA处,使eGFP随GPR120表达而表达,获得eGFP标记GPR120阳性细胞的转基因模型小鼠,这样eGFP随GPR120表达而表达,并且在mRNA水平,eGFP和GPR120相互分离,保证了GPR120蛋白的功能和代谢过程不受影响;
步骤2,随后应用荧光分析仪在488nm激光激发下对小鼠的阳性细胞荧光强度进行测定,并通过单细胞平均荧光强度表达,
步骤2.1,使用没有被eGFP标定的小鼠细胞进行荧光分析仪的激光强度指标校正;
步骤2.2,收取步骤1中转基因模型小鼠的不同组织的eGFP阳性细胞,通过经步骤2.1校正后的荧光分析仪进行荧光强度测定,获取eGFP与GPR120基因表达水平之间的关系;同时通过RT-PCR方法检测eGFP阳性细胞中GPR120的基因表达水平,验证eGFP与GPR120基因表达水平之间的关系。
1.实验对象
制备的eGFP标记GPR120的模型小鼠,细胞组织中能见eGFP阳性细胞,在488nm激光激发下发出绿色荧光,具体如图1所示:图1A为GPR120-ires-eGFP转基因小鼠组织的荧光阳性细胞图,可见阳性细胞,图1B为图1A的组织的普通光镜图,图1C为野生型小鼠组织的细胞图,未见荧光阳性细胞,图1D为图1C的组织的普通光镜图。
2.细胞内RNA提取和反转录
在eGFP标记GPR120的模型小鼠和野生型小鼠,分别提取小鼠的胃粘膜、十二指肠粘膜、空肠粘膜、结肠粘膜、脂肪组织、垂体、肺脏等组织器官的RNA提取并进行反转录,具体如下:取上述组织各1-2mg,每样加入350μL裂解液RL,使用组织破裂仪破裂组织,再将所有溶液转移至过滤柱CS中以12000rpm速度离心2min,收集滤液;再向滤液中加入350μL 70%的乙醇溶液,混匀后转入吸附柱CR3中以12000rpm速度离心1min,倒掉收集管中的废液,将吸附柱CR3放回收集管中;向吸附柱CR3中加入350μL去蛋白液RW1,以12000rpm速度离心1min,倒掉收集管中的废液,将吸附柱CR3放回收集管中;向吸附柱CR3中加入80μL DNaseI工作液,室温放置15min;向吸附柱CR3中加入350μL去蛋白液RW1,以12000rpm速度离心1min,倒掉收集管中的废液,将吸附柱CR3放回收集管中;向吸附柱CR3中加入500μL漂洗液RW,室温静置2min,以12000rpm速度离心1min,倒掉收集管中的废液,将吸附柱CR3放回收集管中;重复向吸附柱CR3中加入500μL漂洗液RW,室温静置2min,以12000rpm速度离心2min,倒掉收集管中的废液,将吸附柱CR3置于室温放置5min以彻底晾干残余的漂洗液;将吸附柱CR3转入RNase-Free离心管中,加入50μL Rnase-Free ddH2O,室温放置2min,以12000rpm速度离心2min,得到RNA溶液。
酶标仪检测RNA浓度与纯度,琼脂糖凝胶电泳检测RNA质量。在八连管中依次加入2μL 5x gDNA Eraser Buffer,再分别加入1μL gDNA Eraser,再分别加入1μg Total RNA,最后用RNase Free dH2O补足至10μL,混匀,室温反应5min。在各管中分别加入以下试剂,4μL5x PrimeScript Buffer2、4μLRNase Free dH2O、1μL PrimeScript RT Enzyme Mix I和1μL RT Primer Mix,总反应体系为20μL,混匀。反应条件为37℃、15min,85℃、5s。反应完成后将cDNA存于4℃备用,长期保存时转入-20℃。
3.GPR120和eGFP基因表达水平的检测
采用定量PCR方法对GPR120和eGFP的基因表达进行检测。在八连管中依次加入6μLdH2O,2μL模板cDNA,2μL FAS引物,10μL SYBR PremixEx TaqII(2x),总反应体系为20μL,混匀。
反应条件是:第一步是94℃、5min,第二步是94℃、30s,56℃、30s,72℃、1min循环进行40次,第三步是加温溶解扩增产物,获得溶解曲线。
其中,总反应体系中小鼠GPR120引物序列是:
上游引物:5’-GTG CCG GGA CTG GTC ATT GTG-3’;
下游引物:5’-TTG TTG GGA CAC TCG GAT CTG G-3’。
总反应体系中eGFP引物序列是:
上游引物:5’-TCT TCT TCA AGG ACG ACG GCA ACT-3’;
下游引物:5’-CCT TGA TGC CGT TCT TCT GCT TGT-3’。
以beta-actin基因表达为内对照,总反应体系中beta-actin引物序列是:
上游引物:5’-CGT TGG CAT CCA CGA AAC TA-3’;
下游引物:5’-GGT GCT GGG AGG TAC AGG G-3’。
对实验结果表达水平分析得到如图2所示的扩增曲线。如图2A表示转基因小鼠的组织中GPR120的RT-PCR小扩增曲线,如图2B表示转基因小鼠的组织中eGFP的RT-PCR小扩增曲线,在一定阶段内两者均随着扩增循环次数的增大而升高。如图2C表示野生型小鼠组织中GPR120的RT-PCR小扩增曲线,在一定阶段内两者均随着扩增循环次数的增大而升高,如图2D表示野生型小鼠组织中eGFP的RT-PCR小扩增曲线,曲线结果无表达。
以beta-actin基因表达为内对照,对各个不同组织中的GPR120基因表达水平进行分析,并应用荧光显微镜对各个组织中eGFP标记的细胞的绿色荧光强度进行测量。结果表明,组织中GPR120表达水平与组织中绿色荧光细胞的荧光强度之间呈显著正相关,结果如图3所示。
实施例
培养eGFP标记的GPR120的模型小鼠的肺泡巨噬细胞,具体方法如下:体外培养采用颈部脱臼法处死eGFP标记GPR120的模型小鼠,用75%的酒精对小鼠进行消毒处理;用10ml注射器吸取PBS缓冲液6ml左右,除去气泡备用;用眼科剪剪开颈部至胸腔外表皮,分离颈部气管穿线备用,剪开胸腔使肺部暴露,用镊子夹住气管前端,剪短气管将注射器针尖插入气管并用线扎紧;缓慢注入PBS缓冲液2-3ml使肺部充满,吸出肺内溶液再缓慢注入,循环3-5次,吸取肺内PBS缓冲液注入离心管,所得为含肺巨噬细胞的溶液;将离心管配平于低温水平离心机离心6min,转速为1200rpm;吸去上清液,底物即为肺巨噬细胞。
向肺巨噬细胞中加入细胞培养液,充分混匀,种于培养皿,使每组培养皿内细胞数均匀,标上日期及名称,置37℃的CO2培养箱中培养。培养8小时后,细胞分组,一组加入200ng/ml的脂多糖(LPS)处理24小时,另外一组为对照组。
随后,应用荧光显微镜对各个组织中eGFP标记的细胞的荧光强度进行测量,测量荧光强度之后,收集细胞的RNA,反转录之后应用定量PCR方法观察GPR120基因表达水平。结果显示,如图4A所示,肺泡巨噬细胞的GPR120基因表达与LPS处理组比较,对照组显著升高;如图4B所示,同时肺泡巨噬细胞的eGFP荧光强度均值与LPS处理组比较,对照组也显著升高;如图4C所示,GPR120基因表达与细胞eGFP荧光强度均值之间存在显著正相关关系,随着eGFP荧光强度均值的增大,GPR120基因表达水平升高。
Claims (5)
1.eGFP在GPR120基因表达水平的检测中的应用。
2.根据权利要求1所述的应用,其特征在于,所述eGFP与GPR120基因表达水平的呈线性关系,即随着eGFP荧光平均强度值的增加,GPR120基因表达水平增加。
3.基于eGFP的GPR120基因表达水平的检测方法,具体步骤如下:
步骤1,首先通过CRISPR/Cas9技术将eGFP片段定点插入到GPR120基因的终止密码子TAA处,使eGFP随GPR120表达而表达,获得eGFP标记GPR120阳性细胞的转基因模型小鼠;
步骤2,随后应用荧光分析仪在488nm激光激发下对小鼠的阳性细胞荧光强度进行测定。
4.根据权利要求3所述的检测方法,其特征在于,所述步骤2的荧光强度通过单细胞平均荧光强度进行表达。
5.根据权利要求3所述的检测方法,其特征在于,所述的步骤2的具体步骤:
步骤2.1,使用没有被eGFP标定的小鼠细胞进行荧光分析仪的激光强度指标校正;
步骤2.2,收取步骤1中转基因模型小鼠的不同组织的eGFP阳性细胞,通过经步骤2.1校正后的荧光分析仪进行荧光强度测定,获取eGFP与GPR120基因表达水平之间的关系;同时通过RT-PCR方法检测eGFP阳性细胞中GPR120的基因表达水平,验证eGFP与GPR120基因表达水平之间的关系。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710443881.8A CN107227352A (zh) | 2017-06-13 | 2017-06-13 | 基于eGFP的GPR120基因表达的检测方法及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710443881.8A CN107227352A (zh) | 2017-06-13 | 2017-06-13 | 基于eGFP的GPR120基因表达的检测方法及应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107227352A true CN107227352A (zh) | 2017-10-03 |
Family
ID=59936472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710443881.8A Pending CN107227352A (zh) | 2017-06-13 | 2017-06-13 | 基于eGFP的GPR120基因表达的检测方法及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107227352A (zh) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106086072A (zh) * | 2016-06-14 | 2016-11-09 | 西安医学院 | eGFP标记GPR120阳性细胞的小鼠模型构建方法 |
-
2017
- 2017-06-13 CN CN201710443881.8A patent/CN107227352A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106086072A (zh) * | 2016-06-14 | 2016-11-09 | 西安医学院 | eGFP标记GPR120阳性细胞的小鼠模型构建方法 |
Non-Patent Citations (3)
Title |
---|
AKIRA HIRASAWA等: "Free fatty acids regulate gut incretin glucagon-like", 《NATURE MEDICINE》 * |
王春梅等: "《激光扫描共聚焦显微镜基本原理》", 31 July 2004 * |
白占涛等: "《细胞生物学实验》", 30 June 2014 * |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107227352A (zh) | 基于eGFP的GPR120基因表达的检测方法及应用 | |
CN105112549B (zh) | 一种快速检测母猪卵母细胞质量的microRNA分子标记miR-23a及其应用 | |
CN107828914B (zh) | 传染性皮下及造血组织坏死病毒(ihhnv)的raa恒温荧光检测方法及试剂 | |
CN109097478A (zh) | 一种人类微卫星不稳定性状态msi检测试剂盒及其检测方法 | |
CN106591471B (zh) | 通过检测hurp1基因表达分析对虾是否受缺氧胁迫的方法 | |
CN105176980B (zh) | 一种可同步检测7种鱼类病毒的多重pcr方法 | |
JP7090357B2 (ja) | チョウザメの性別を同定するための、プライマーセット、キット、ならびにマイクロrna血清マーカー及びプライマーセットの使用 | |
CN110396558B (zh) | 一种同时检测养殖对虾五种典型病原的多重巢式pcr扩增引物及试剂盒 | |
CN103173450B (zh) | 与食管癌术后早期复发及预后相关的miRNA标志物及其应用 | |
CN1324146C (zh) | BCR-ABL融合基因(P210bcr/abl)mRNA荧光定量RT-PCR检测试剂盒 | |
CN103805698B (zh) | 检测aml1-eto融合基因相对表达量的引物和方法 | |
CN104630214B (zh) | Sry基因引物对与探针的组合和sry多位点检测试剂盒 | |
CN103173449B (zh) | 与食管癌术后早期复发和预后相关的miRNA标志物及其应用 | |
CN117723755A (zh) | 血清tRNA-ValTAC-3作为肝癌诊断生物标志物的应用 | |
CN111118170A (zh) | chi-miR-450-5p作为山羊卵泡成熟miRNA标志物的应用 | |
CN108893547A (zh) | 一种用于雏鸽快速雌雄鉴别的引物对、试剂盒及快速雌雄鉴别方法 | |
CN109097454A (zh) | 一种HEK293 gDNA残留量的检测方法 | |
CN103114092B (zh) | 一种与食管癌术后早期复发及预后相关的miRNA标志物及其应用 | |
CN103667457B (zh) | 检测白血病BCR/ABL b3a2,b2a2融合基因相对表达量的引物和方法 | |
CN106435030B (zh) | 一种联合检测禽流感h7n9和h9n2的四通道荧光定量pcr检测方法及试剂盒 | |
CN1712547A (zh) | 甲胎蛋白(AFP)mRNA荧光定量RT-PCR检测试剂盒 | |
WO2022217125A2 (en) | Isothermal amplification-based detection of shrimp pathogens | |
CN111662965A (zh) | 一种荧光定量pcr无创鉴别中华鳖伪雌鳖的方法 | |
CN103160509B (zh) | 一种与食管癌术后早期复发和预后相关的miRNA标志物及其应用 | |
CN1693479A (zh) | 细胞角蛋白19(CK19)mRNA荧光定量RT-PCR检测试剂盒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171003 |