CN107209116B - 包括考虑样本内的光学路径长度的变化的光学检查系统和方法 - Google Patents
包括考虑样本内的光学路径长度的变化的光学检查系统和方法 Download PDFInfo
- Publication number
- CN107209116B CN107209116B CN201580065101.XA CN201580065101A CN107209116B CN 107209116 B CN107209116 B CN 107209116B CN 201580065101 A CN201580065101 A CN 201580065101A CN 107209116 B CN107209116 B CN 107209116B
- Authority
- CN
- China
- Prior art keywords
- sample
- ray
- rays
- inspection system
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/178—Methods for obtaining spatial resolution of the property being measured
- G01N2021/1782—In-depth resolution
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N2021/4704—Angular selective
- G01N2021/4709—Backscatter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N2021/4704—Angular selective
- G01N2021/4711—Multiangle measurement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/066—Modifiable path; multiple paths in one sample
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/069—Supply of sources
- G01N2201/0691—Modulated (not pulsed supply)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/069—Supply of sources
- G01N2201/0696—Pulsed
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
照明器/收集器组件(104)可将入射光(106)递送到样本(102)并且收集从样本(102)返回的返回光(112)。传感器(114)可根据所收集的返回光(112)的光线位置和光线角度来测量光线强度。光线选择器可从传感器(114)处的所收集的返回光(112)选择满足第一选择标准的第一子组光线。在一些示例中,该光线选择器可将光线强度聚合成箱,每个箱对应于所收集的返回光(112)中的在样本(102)内穿过相应光学路径长度范围内的估计光学路径长度的光线。表征器可基于第一子组光线的光线强度、光线位置和光线角度来确定样本(102)的物理属性诸如吸收率。考虑在样本内穿过的光学路径长度的变化可改善准确性。
Description
相关申请的交叉引用
本申请要求标题为“OPTICAL INSPECTION SYSTEM AND METHOD INCLUDINGACCOUNTING FOR VARIATIONS OF OPTICAL PATH LENGTH WITHIN A SAMPLE”并且提交于2014年12月23日的美国临时专利申请62/096,276的权益,该美国临时专利申请据此全文以引用方式并入本文。
技术领域
本公开涉及一种用于对样本进行光学表征的光学检查系统,其能够考虑到样本内的光学路径长度的变化。
背景技术
许多光学检查系统将光递送到样本,收集从样本反射或散射的光,并且使用所收集的光来分析样本的一部分。可能期望改善这些光学检查系统。
发明内容
照明器/收集器组件可将入射光递送到样本并且收集从样本返回的返回光。传感器诸如Shack-Hartmann传感器可根据所收集的返回光的光线位置和光线角度来测量光线强度。光线选择器可从传感器处的所收集的返回光选择满足第一选择标准的第一子组光线。在一些示例中,光线选择器可将光线聚合成分箱信号,每个分箱信号对应于所收集的返回光中的在样本内穿过相应光学路径长度范围内的估计光学路径长度的光线。表征器可基于第一子组光线的光线强度、光线位置和光线角度来确定样本的物理属性诸如吸收率。考虑在样本内穿过的光学路径长度的变化可改善准确性。
附图说明
在附图中,相同标号可在不同视图中描述类似部件,其中附图未必按比例绘制。具有不同字母后缀的相同标号可表示类似部件的不同示例。附图通过举例而不是通过限制来大体示出本文档中所论述的各种示例。
图1示出根据一些实施方案的用于对样本进行光学表征的光学检查系统的示例。
图2示出根据一些实施方案的光学检查系统的示例中的入射光学路径的一部分。
图3示出根据一些实施方案的光学检查系统的示例中的返回光学路径的一部分。
图4A、4B和4C是根据一些实施方案的图3的返回光学路径中的三条光线的各个视图。
图5示出根据一些实施方案的从照明器/收集器组件追踪到微透镜阵列再到检测器的图4A、4B和4C的光线。
图6示出根据一些实施方案的来自图5的检测器的端视图。
图7示出根据一些实施方案的邻近图6的检测器设置的遮罩的示例的端视图。
图8示出根据一些实施方案的用于对样本进行光学表征的方法的示例的流程图。
具体实施方式
光学检查系统可将光递送到样本,收集从样本反射或散射的光,使用所收集的光来确定样本的物理属性,诸如吸收率或折射率。对于高吸收或散射性样本,高吸收或散射可降低传播穿过样本的一部分的光线的强度。强度的这种降低可明显取决于在样本内穿过的光学路径长度。
例如,在将光递送到样本并且收集从样本反射的光的一些配置中,作为光锥来递送朝向样本表面处或下方的特定位置会聚的照明光。类似地,从光锥取回远离样本中的特定位置发散的所收集的光。对于这些光锥,锥体的不同部分可在样本内穿过不同的光学路径长度。例如,位于锥体的中心处的光线可在样本内穿过比位于锥体的边缘处的光线短的光学路径。
光学检查系统可根据所收集的光内的光线位置和角度来考虑在样本内穿过的光学路径长度的差异。对于一些样本,入射光线有可能由样本内的单个散射事件重定向,诸如从样本内的特定粒子或从样本内的两个内部结构之间的界面反射或重定向。
对于这些样本,光学检查系统可使用单个散射事件的几何学来确定检测器上的在样本内穿过的光学路径长度能够相对准确地被确定的区域。对于这些区域,撞击该区域的光线可在样本内具有已知的光学路径长度,或可在样本内具有相对紧凑的光学路径长度分布。例如,这些区域可描述检测器上的由于样本内的单个散射事件而产生的从样本返回的光线的位置。对于一些示例,这些检测器区域可在确定样本的物理属性时被相对较强地加权。这些检测器区域可根据样本类型来选择,以便最好地使用检测器像素的可用动态范围,等等。
类似地,检测器可具有无法准确地确定在样本内穿过的光学路径长度的区域。对于这些区域,撞击该区域的光线可在样本内具有许多光学路径长度中的一个光学路径长度,或可在样本内具有相对宽广的光学路径长度分布。例如,这些区域可描述检测器上的由于样本内的多个连续散射事件而产生的从样本返回的光线的位置。对于这些多次散射光线,可能在样本内存在许多可能的路径。对于一些示例,这些检测器区域可在确定样本的物理属性时被相对较弱地加权或被排除在外。
图1示出根据一些实施方案的用于对样本102进行光学表征的光学检查系统100的示例。样本102不是光学检查系统100的一部分。图1的光学检查系统100仅是一个示例;还可使用其他合适的光学检查系统。
光学检查系统100包括照明器/收集器组件104。在一些示例中,照明器/收集器组件104是单个物镜。在其他示例中,照明器/收集器组件104包括独立的照明光学器件和收集光学器件。
照明器/收集器组件104将入射光106递送到样本102。入射光106可在样本102处具有某个传播角度范围。在一些示例中,该范围可具有小于或等于20度的角宽度。在其他示例中,该范围可具有小于或等于10度的角宽度。在这些示例中的一些示例中,入射光106可为准直的,其中范围具有实际上为零的角宽度。在取样界面处展现折射的示例中,由于折射率不同,取样界面处的角宽度可在具有较大角度范围的介质中进行界定。在一些示例中,入射光106同时包括多于一个波长,诸如多个离散波长或相对较宽频谱。在一些示例中,入射光106一次包括一个波长,但波长可随时间选择性地移位。在另外其他示例中,入射光106包括随时间依序移位的相对较宽频谱。在另外其他示例中,入射光106包括全部一起随时间移位的多个相对较宽的非重叠频谱区域。在一些示例中,入射光106可以一个或多个指定频率进行脉动或调制。在一些示例中,入射光106可包括多个频谱区域,其中每个频谱区域以其自身的独特频率进行脉动或调制。在一些示例中,照明器/收集器组件104可包括一个或多个光源,诸如单个半导体激光器、具有相同波长的多个半导体激光器、具有不同波长的多个半导体激光器、单个发光二极管、具有相同波长的多个发光二极管、具有不同波长的多个发光二极管、一个或多个量子级联激光器、一个或多个超发光光源、一个或多个放大自发辐射源、以上各项的任何组合、或其他合适光源。在一些示例中,照明器/收集器组件104还可包括可使该一个或多个光源所产生的光准直且/或聚焦的一个或多个准直和/或聚焦光学器件,诸如透镜。在一些示例中,照明器/收集器组件104还可包括可反射入射射束并且透射所收集的射束或者可透射入射射束并且反射所收集的射束的一个或多个射束转向元件,诸如分束器。
照明器/收集器组件104可穿过取样界面108将入射光106递送到样本102。在图1的特定示例中,取样界面108是物镜的表面,该表面面向样本102。在一些示例中,取样界面108可为设备的被放置成在操作期间与样本102接触的面向外侧的表面。在一些示例中,取样界面108可为被放置成在操作期间与样本102接触的盖玻片。在一些示例中,取样界面108可为在空气或另一种入射介质中与样本102间隔开的透镜表面或光学表面。在一些示例中,取样界面108可包括独立的第一表面和第二表面,其中入射光穿过第一表面,并且返回光穿过第二表面。
照明器/收集器组件104可穿过取样界面108收集从样本102返回的返回光110,以形成所收集的返回光112。在一些示例中,入射光106和返回光110穿过相同取样界面108。
传感器114可接收所收集的返回光112。不同于在很大程度上对光线角度不敏感的常规多像素检测器,传感器114可根据所收集的返回光112的光线位置和光线角度来测量光线强度。在图1的示例中,传感器114是包括微透镜阵列116和位于微透镜阵列116的焦平面处或附近的多像素检测器118的Shack-Hartmann传感器。合适的传感器114的另一个示例是针孔阵列,其中多像素检测器在光学路径中被设置在针孔阵列之后。这些仅是两个示例;还可使用其他合适的传感器。
传感器114可产生与所测得的光线强度对应的多个信号120。在一些示例中,信号120是电学的。在其他示例中,信号120是光学的,诸如在光纤中具有光学强度。在一些示例中,来自多像素检测器118的每个像素可产生其自身的信号120。在其他示例中,一个或多个群组的像素可光学或电学地耦接在一起,以形成信号120。
计算机122可从传感器114接收该多个信号120。在一些示例中,计算机122可将至少一些所接收的信号聚合成多个分箱信号。每个分箱信号可由撞击传感器114的对应光线形成。对应光线中的每个对应光线在样本102内穿过相应的光学路径长度。在图1的示例中,入射光106的光线在样本102内穿过的光学路径长度由量A表示,并且返回光110的光线在样本内穿过的光学路径长度由量B表示,使得在样本内穿过的总光学路径长度由量A+B表示。在一些示例中,可能有利的是量A+B等于或近似于样本102的预期吸收系数的倒数;附录详细论述了这一点。对于这些分箱信号,每个分箱信号可对应于所收集的返回光112中的在样本102内穿过相应光学路径长度范围内的估计光学路径长度的光线。在一些示例中,光学路径长度范围可为邻接的。
计算机122可包括被配置为基于第一子组光线的光线强度、光线位置和光线角度来确定样本102的物理属性124的表征器。信号120可向计算机122供应光线强度、光线位置和光线角度。在一些示例中,表征器可在确定样本102的物理属性124时使用第一子组光线来执行第一操作集并且使用第二子组光线来执行第二操作集。这些子组由光线选择器确定(下文论述)。
在一些示例中,表征器可将这些信号中的一个或多个信号拟合到比尔定律计算。在这些示例中的一些示例中,表征器可基于比尔定律计算来确定样本102的吸收率。在这些示例中的一些示例中,表征器可在确定样本102的吸收率时向信号应用不同的权重。比尔定律描述多少光透射穿过吸收性或散射性样本。用于比尔定律的配置的一个示例是T(λ)=exp(-L×c×a(λ)),其中λ是光的波长,L是光在样本内穿过的光学路径长度,a(λ)是样本内的物质的波长相依吸收率,c是样本内的物质的浓度,并且T(λ)是离开样本的光的分数。还可使用比尔定律的其他合适的配置。在一些示例中,吸收率是来自光学检查系统100的输出量。在其他示例中,输出量可在功能上等效于吸收率,诸如透射率或复折射率。在其他示例中,吸收率可为由光学检查系统100在内部用于计算样本102的一个或多个其他物理属性诸如分析物浓度或其他合适的物理属性的中间量。
光学检查系统可包括光线选择器。光线选择器可从传感器114处的所收集的返回光112选择满足第一选择标准的第一子组光线。在一些示例中,第一选择标准可包括第一估计路径长度范围诸如在样本102内穿过的路径长度,或路径长度分布诸如在样本102内穿过的路径长度的分布。在其他示例中,第一选择标准可包括样本102内的第一估计光线穿透深度范围。在一些示例中,光线选择器116可另外从所收集的返回光112选择满足第二选择标准的第二子组光线。对于这些示例,第一选择标准和第二选择标准可包括第一估计路径长度范围或第一路径长度分布范围和第二估计路径长度范围或第二路径长度分布范围。在其他示例中,光线选择器116可选择多于两个子组光线,其中每个子组具有对应的选择标准。此类子组光线可被称为箱或分箱光线。
在一些示例中,光线选择器可全部以软件进行操作。例如,计算机122可包括将多像素检测器118处的每个像素匹配于在样本内穿过的对应光学路径的查找表。样本内的对应光学路径可包括在样本102处的或在样本102处或附近的合适纵向位置处的光线位置和光线角度。此类查找表可通过追踪穿过照明器/收集器组件104的几何结构并且穿过样本102与传感器114之间的任何附加元件的光线来制备。此类光线追踪可被执行一次,其中结果被存储在查找表中并且能够由计算机122访问。根据查找表,计算机122可将检测器像素分组为箱,其中每个箱对应于在样本102内穿过的指定光学路径长度范围。在一些示例中,光线选择器可从检测器118的对应像素接收信号,对这些信号的第一子组求平均以形成第一分箱信号,对这些信号的第二子组求平均以形成第二分箱信号,并且对这些信号的附加子组求平均以形成附加分箱信号。在一些示例中,计算机122被配置为将来自多像素检测器118的信号聚合成分箱信号,每个分箱信号对应于所收集的返回光中的在样本内穿过相应光学路径长度范围内的估计光学路径长度的光线。在这些示例中的一些示例中,光学路径长度范围可彼此邻接。
在其他示例中,光线选择器可至少部分地以硬件进行操作。对于这些示例,至少一些分箱可在硬件层级处发生。例如,代替在检测器处使用像素网格,可改为将检测器区域分割成与上文论述的箱对应的形状。在该示例中,每个检测器区域可接收在样本内穿过指定光学路径长度范围内的光学路径长度的光线。在这些示例中的一些示例中,每个检测器区域可产生被引导到计算机122的相应信号120。在一些示例中,光线选择器可包括传感器的第一像素和第二像素,其中第一像素和第二像素的形状和大小被设置成测量第一子组光线和第二子组光线内的光线的光线强度。对于这些示例,第一像素和第二像素可分别输出第一分箱信号和第二分箱信号。又如,检测器可使用像素网格,并且每个像素可产生其自身的信号,但这些信号在硬件中进行组合,之后在计算机122处进行递送。
在另外其他示例中,光线选择器可以软件和硬件的组合进行操作,其中一些分箱在传感器114处和/或在信号级别处发生,并且一些分箱在计算机122处发生。
对于检测器118处的每个位置,有可能计算在样本内穿过的对应估计光学路径。然而,计算的可靠性可在检测器处的不同位置处有所不同。对于一些几何学诸如与单个散射事件(下文详细论述)相关联的几何学,计算可相对可靠。
在一些示例中,光学检查系统100可为可靠性设置指定阈值。来自超过阈值的检测器位置的信号可用于随后计算,并且来自低于阈值的检测器位置的信号可被排除在对随后计算的使用之外。对于这些示例中的一些示例,光学检查系统100可包括被定位在微透镜阵列116与多像素检测器118之间的任选的遮罩126。遮罩126可阻断光学检查系统100无法可靠地确定在样品内穿过的光学路径长度的光线。在一些示例中,遮罩126可直接靠近多像素检测器118、与多像素检测器118接触、或沉积在多像素检测器118上。遮罩126可包括阻断所收集的返回光112中的指定光线的至少一个阻断部分。遮罩126可阻断多像素检测器124上的特定像素。在一些示例中,遮罩126为随时间静止的。例如,遮罩126可被形成为光学表面上的涂层,其中该涂层包括不随时间改变的反射性部分、透射性部分、和/或吸收性部分。在其他示例中,遮罩126可为能够随时间重新配置的。例如,遮罩126可被形成为能够重新配置的面板,诸如微反射镜阵列,其可选择性地将所收集的返回光112的部分朝向检测器118或远离检测器118,并且可根据需要来改变将哪些部分朝向检测器118或远离检测器118。另选地,可与计算机122组合或全部通过计算机122以软件来执行阈值处理。
在一些示例中,光学检查系统100可向分箱信号指派相对权重,而不是使用单个阈值。每个权重可表示样本102内的光学路径长度对于对应箱内的所有光线为相同的或属于指定范围的置信度水平。在一些示例中,相对权重与分箱信号的相应光学路径长度的估计分布的宽度成反比变化。在这些示例中,术语“反比”意在表示相对权重与分布宽度之间的单调关系而不需要数学比例关系。例如,随着估计分布的宽度减小,相对权重可增大。又如,随着估计分布的宽度增大,相对权重可减小。在一些示例中,对应光线中的每个对应光线在通过照明器/收集器组件104向后追踪时与入射光内的对应入射光线分开相应距离,并且相对权重与相应距离成反比变化。在一些示例中,每个分箱信号的权重对应于生成该分箱信号的光起源于样本中的单个散射事件的概率。图2至图7和以下附随论述讨论单个散射事件的几何学。
计算机122可被包括在包含硬件、固件和软件的计算机系统中。对电信号进行分箱、向分箱电信号指派相对权重、确定物理属性、以及一些中间计算任务诸如追踪光线和表征可以软件执行或以数字电子硬件执行,其中光线追踪和表征被硬连线到硬件中;对于本文档,此类硬连线数字电子硬件被视为执行光线追踪软件和/或表征器。示例还可被实现为被存储在计算机可读存储设备上的可由至少一个处理器读取并执行以执行本文所述的操作的指令。计算机可读存储设备可包括用于以机器(例如,计算机)可读的形式存储信息的任何非暂态机构。例如,计算机可读存储设备可包括只读存储器(ROM)、随机存取存储器(RAM)、磁盘存储介质、光学存储介质、闪存存储器设备、以及其他存储设备和介质。在一些示例中,计算机系统可包括任选地连接到网络并且可配置有被存储在计算机可读存储设备上的指令的一个或多个处理器。
图2至图7讨论与样本中的单个散射事件相关联的特定几何学。对于满足这个几何学的光线,可以相对较高的置信度来确定在样本内穿过的光学路径。详细探索单个散射事件几何学具有指导意义。
图2示出根据一些实施方案的光学检查系统200的示例中的入射光学路径的一部分。来自光源204的任选地由反射镜重定向的入射光208撞击照明器/收集器组件206的光瞳的中心部分,并且在样本202内大体上与照明器/收集器组件206的中心轴线210重合地传播。图2中示出的入射光208穿过三个散射事件212A,212B,212C。实际上,散射事件212A,212B,212C中的每个散射事件可将入射光208的一部分重定向成相应重定向光线,其中剩余部分继续沿中心轴线210远离照明器/收集器组件206传播。应当理解,图2的配置以及三个离散散射事件的使用仅是一个示例,并且还可使用其他配置。还应当理解的是,入射光学路径不一定必须与光轴重合。
图3示出根据一些实施方案的光学检查系统的示例中的返回光学路径的一部分。图3中标号为300-312的元件在结构和功能上与图2中的类似标号的元件200-212相同。光线314A,314B,314C由相应散射事件312A,312B,312C产生。照明器/收集器306收集并重定向光线314A,314B,314C,以形成返回光线316A,316B,316C。
图4A、4B和4C是根据一些实施方案的图3的返回光学路径中的三条光线的各个视图。因为光线416A,416B,416C起源于沿照明器/收集器组件406的中心轴线410的点,所以光线416A,416B,416C在相应平面418A,418B,418C内传播,所有这些平面均包括照明器/收集器406的中心轴线410。
图5示出根据一些实施方案的从照明器/收集器组件506追踪到微透镜522的阵列520再到检测器528的图4A、4B和4C的光线。检测器528可包括与微透镜522的阵列520成一一对应关系的多个区530。每个区530可具有与相应微透镜522的中心524对应的中心532。微透镜522的阵列520重定向光线516A,516B,516C,以形成在位置534A,534B,534C处撞击检测器528的光线526A,526B,526C。
图6示出根据一些实施方案的来自图5的检测器628的端视图。每个区630可包括相应区域636,在该处从样本传播到Shack-Hartmann传感器的光线在包括照明器/收集器组件的中心轴线的平面中传播。区域636可为线性的,可相对于照明器/收集器组件的中心轴线或检测器628的中心638呈放射状取向,并且可包括相应区630的中心632。光线526A,526B,526C(图5)在相应位置634A,634B,634C处撞击检测器628。当Shack-Hartmann传感器被定位成使得微透镜阵列位于照明器/收集器的傅里叶平面或前焦平面处时,远离区中心632的距离可与光线516,516B,516C(图5)的传播角度成比例(或近似成比例,或以1∶1对应关系相关)。其他可能的布置包括在某个方向上传播的输入光,该方向不与光学检查系统的中心轴线重合。
在另选的配置中,其中入射光具有稍微较大的占据面积并且延伸经过可包括中心轴线的区域,光线可通过照明器/收集器组件向后追踪,并且可与入射光内的对应入射光线相交。对于这些配置中的一些配置,入射光可在取样界面处具有传播角度范围,其中该范围可具有小于或等于20度或优选地小于或等于10度的角宽度。随着角范围增大,准确地确定在样本内穿过的光学路径长度变得较难。
对于驻留在包括照明器/收集器组件的中心轴线的平面中(或足够接近)的光线,光线路径可用于计算在样本内穿过的相应光学路径长度。光线强度可与光学路径长度相互关联。相关性可用于确定样本的物理属性,诸如吸收率、透射率、折射率、以及其他物理属性。对于不驻留在所述平面中(或足够接近)的其他光线,无法轻易计算出光学路径长度。
所收集的返回光中的特定光线诸如310(图3)或410(图4)的传播角度和位置可确定该特定光线是否驻留在包括中心轴线(或另选地,入射光学路径的方向)的平面中。如果光线的传播角度和位置示出光线驻留在所述平面中的一个平面中,则来自该光线的贡献可被相对较重加权用于在下游计算样本的物理属性。如果光线的传播角度和位置示出光线不驻留在所述平面中的一个平面中,则来自该特定光线的贡献可被相对较轻地加权用于在下游计算样本的物理属性。
用于确定特定光线是否驻留在包括中心轴线的平面中的一种方式是通过照明器/收集器组件向后追踪光线到达样本。将存在特定纵向位置,在该处所追踪的光线与中心轴线具有最小距离。针对每个追踪光线的这个最小距离可用于确定权重,诸如相对权重,其指示能够确定该追踪光线在样本中穿过的光学路径长度的置信度有多少。如果追踪光线与中心轴线相交,则最小距离为零,并且加权因子可为其最大值。如果追踪光线变得相对靠近中心轴线,则加权因子可相对较高。如果追踪光线相对远离中心轴线,则加权因子可相对较低。在一些示例中,用于追踪光线的加权因子可与追踪光线和中心轴线之间的最小距离成反比变化。
在一些示例中,可能有利的是识别一个或多个检测器区域,其中可能难以针对撞击所识别区域的光线来可靠地确定在样本内穿过的估计光学路径长度。例如,所识别的一个或多个区域可对应于一个或多个检测器区域,在该处估计光学路径长度的置信度水平下降到低于阈值。还可使用用于确定所识别的检测器区域的其他合适的方式。
在一些示例中,该一个或多个所识别的检测器区域中的光线可在确定样本的物理属性时比在所识别的检测器区域外部的光线更轻地加权。例如,每个检测器像素或合适群组的检测器像素可被指派相对权重。在一些示例中,相对权重可表示样本内的光学路径长度相同的置信度水平。在一些示例中,相对权重可表示光学路径长度类似或几乎相同或跨越宽度属于被包括在相应箱中的所有光线在样本内穿过的平均光学路径长度的指定百分比内的范围的置信度水平。在其他示例中,相对权重可与样本内的相应光学路径长度的估计分布的宽度成反比变化。在另外其他示例中,所收集的光中的每个光线在通过照明器/收集器组件向后追踪时与入射光内的对应入射光线离开相应距离,并且相对权重可与该相应距离成反比变化。在另外其他示例中,相对权重可对应于对应光线起源于样本中的单个散射事件的概率。其他加权方案也是可能的。
在一些示例中,该一个或多个所识别的检测器区域中的光线可在确定样本的物理属性时被完全排除在外。可将这种排除视为极端加权,其中所排除的光线被指派零权重。在一些示例中,该排除可以软件诸如通过计算机诸如122(图1)来执行。在其他示例中,该排除可完全以硬件诸如使用遮罩诸如126(图1)来执行。
图7示出根据一些实施方案的在Shack-Hartmann传感器中邻近图6的检测器设置的遮罩700的示例的端视图。遮罩700阻断部分1002并且将部分1004透射到检测器。在图7的示例中,遮罩700仅传递在通过照明器/收集器组件向后追踪时在照明器/收集器组件的中心轴线的阈值距离内穿过的光线。对于该示例,存在两个箱。与落在透射部分704内的光线对应的一个箱用于计算样本的物理属性。这个箱可具有100%相对权重或另一个合适的量度。与落在阻断部分702内的光线对应的另一个箱不用于计算样本的物理属性。这个箱可具有0%相对权重或另一个合适的量度。
在图7的示例中,检测器可为多像素检测器,其中像素被布置成矩形图案,并且每个像素产生对应电信号。另选地,检测器可为多元素检测器,其中区域具有任何合适的大小和形状,并且每个区域产生对应电信号。作为另一个另选方案,检测器可为产生单个电信号的单元素检测器。
图8示出根据一些实施方案的用于对样本进行光学表征的方法800的示例的流程图。方法800可在光学检查系统诸如100(图1)上执行。方法800只是一个示例;还可使用用于对样本进行光学检查的其他合适的方法。
在802处,方法800利用入射光来照射样本。在804处,方法800收集从样本返回的返回光,以形成所收集的返回光。在806处,方法800根据所收集的返回光的光线位置和光线角度来测量光线强度。在808处,方法800将电信号中的至少一些电信号被聚合成多个分箱信号。聚合成箱可仅以软件、仅以硬件或以软件与硬件的组合来执行。在810处,方法800基于分箱信号来确定样本的物理属性。在一些示例中,每个分箱信号可对应于所收集的返回光中的在样本内穿过相应光学路径长度范围内的估计光学路径长度的光线。在一些示例中,方法800还可包括将分箱信号拟合到比尔定律计算;并且基于比尔定律计算来确定样本的吸收率。
附录
特定类型的样本诸如人体组织的光学属性可在各个样本之间不同,但经常落在明确定义的数值范围内。例如,特定样本的散射系数通常落在特定散射系数范围内,其中该范围可表示与特定样本相同类型的一组样本的散射系数的值分布。该范围可以所谓的预期值诸如预期散射系数为中心。在一些示例中,预期值可在设计光学检查系统的几何学时使用,其中预期大部分实际测量值将相对接近但不同于预期值。
在被设计为检查特定类型的不透明样本以使得穿过样本传播的光在传播时散射和/或被样本吸收的光学检查系统中,样本的散射量和/或吸收量可影响到达光学检查系统中的检测器的光的量。换句话说,样本间散射和/或吸收系数的变化可引起到达检测器的样本间光学功率的变化。此类样本间变化可为不合需要的,并且可能不能充分利用检测器的整个动态范围。有可能的是将光学检查系统设计为使所检测的光学功率对散射系数的样本间变化的敏感性减小。
光学检查系统的分析模型可假设光线在输入点处进入样本,在散射位置处发生单次散射,在散射位置处仅一次改变方向,并且在输出点处离开样本。在从输入点传播到散射位置时,输入射束被衰减一个因子exp[-A(μs+μa)],其中量μs和μa分别是样本的散射系数和吸收系数,并且量A是输入点与散射位置之间的光学路径长度。在散射位置处,剩余输入射束的部分γμs被朝向输出散射,其中因子γ说明散射相位函数。朝向输出位置散射的光在离开样本之前被进一步衰减某个量exp[-B(μs+μa)],其中量B是散射位置与输出点之间的光学路径长度。在输出位置处离开样本的一部分光学功率除以在输入位置处进入样本的光学功率被给予量γμs exp[-L(μs+μa)],其中量L等于量A+B,并且是在样本内穿过的总光学路径长度。
离开样本的那部分光学功率当其导数等于零时例如当在样本内穿过的总光学路径长度L等于样本的散射系数的倒数1/μs时相对较不敏感。当L=1/μs时,到达检测器的光学功率被最大化,这是有利的,并且对散射量的样本间变化相对较不敏感,这也是有利的。
为了利用这个相对不敏感性,光学检查系统可被设计为使得在样本内穿过的总光学路径长度可等于或可相对接近样本的预期散射系数的倒数。例如,在样本内穿过的总光学路径长度可在样本的预期散射系数的倒数的0.1%、1%、10%或50%内。还可使用其他合适的值。预期散射系数可表示与特定样本诸如人体组织具有相同类型的一组样本的散射系数的值分布。
以上分析对样本内的单个散射事件进行假设。对于检测器元件接收大部分受到单个高角度散射事件影响的光的几何学,以上分析还适用于多个散射事件以及有限的位置和角度分辨率。以上分析还可应用于具有窄准直输入和角度受限输出的共焦检测。
以上具体实施方式和附录意在为示例性的而不是限制性的。例如,上述示例(或其一个或多个方面)可彼此组合使用。诸如本领域的技术人员在审阅以上描述之后可使用其他实施方案。提供发明摘要以允许阅读者快速确定技术公开内容的性质。认为其将不用于解释或限制权利要求书的范围或意义。另外,在以上具体实施方式中,各种特征可被分组在一起以精简本公开。这不应被解释为意指未要求的公开特征对任何权利要求为必不可少的。而是,发明主题可能比特定公开实施方案的全部特征少。因此,以下权利要求据此作为示例或实施方案并入到具体实施方式中,其中每条权利要求独立作为单独实施方案,并且希望此类实施方案可以各种组合或排列彼此进行组合。应当参考所附权利要求书连同此类权利要求所具有的等效物的完整范围来确定本发明的范围。
Claims (20)
1.一种用于对样本进行光学表征的光学检查系统,包括:
照明器/收集器组件,所述照明器/收集器组件被配置为将多个入射光线递送到所述样本并且收集从所述样本返回的多个返回光线;
传感器,所述传感器包括多个区,每个区根据所收集的相应返回光线的光线位置和光线角度来测量光线强度;
光线选择器,所述光线选择器被配置为从所述传感器处的所收集的多个返回光线选择满足第一选择标准的第一子组光线,其中所述第一子组光线由所述样本内的单个散射事件重定向;和
计算机,所述计算机包括表征器,所述表征器被配置为基于所述第一子组光线的所述光线强度、所述光线位置和所述光线角度来确定所述样本的物理属性。
2.根据权利要求1所述的光学检查系统,其中所述第一选择标准包括在所述样本内穿过的第一估计路径长度范围、在所述样本内穿过的第一路径长度分布范围、或在所述样本内穿过的第一估计光线穿透深度范围。
3.根据权利要求1所述的光学检查系统,其中所述光线选择器被进一步配置为从所收集的返回光线选择满足第二选择标准的第二子组光线;并且
其中所述表征器被配置为基于所述第一子组光线和所述第二子组光线的所述光线强度、所述光线位置和所述光线角度来确定所述物理属性。
4.根据权利要求3所述的光学检查系统,其中所述第一选择标准包括第一估计路径长度范围或第一路径长度分布范围,并且所述第二选择标准包括第二估计路径长度范围或第二路径长度分布范围。
5.根据权利要求3所述的光学检查系统,
其中所述第一选择标准包括在所述样本内穿过第一光学路径长度范围内的估计光学路径长度,
其中所述第二选择标准包括在所述样本内穿过第二光学路径长度范围内的估计光学路径长度,并且
其中所述第二光学路径长度范围不与所述第一光学路径长度范围重叠。
6.根据权利要求5所述的光学检查系统,
其中所述第一子组光线的所述光线强度被聚合成第一分箱信号,
其中所述第二子组光线的所述光线强度被聚合成第二分箱信号,并且
其中所述表征器基于所述第一分箱信号和所述第二分箱信号来确定所述样本的所述物理属性。
7.根据权利要求6所述的光学检查系统,其中所述光线选择器包括所述传感器的第一像素和所述传感器的第二像素,所述第一像素和所述第二像素各自的形状和大小分别被配置用于测量所述第一子组光线和所述第二子组光线内的光线的所述光线强度,
其中所述第一像素和所述第二像素被配置为分别输出所述第一分箱信号和所述第二分箱信号。
8.根据权利要求6所述的光学检查系统,其中所述光线选择器被进一步配置为:
从所述传感器的对应像素接收信号,
对所述信号的第一子组求平均以形成所述第一分箱信号,并且
对所述信号的第二子组求平均以形成所述第二分箱信号。
9.根据权利要求8所述的光学检查系统,其中以硬件来对所述信号的所述第一子组和所述第二子组求平均。
10.根据权利要求8所述的光学检查系统,其中以软件来对所述信号的所述第一子组和所述第二子组求平均。
11.根据权利要求6所述的光学检查系统,其中所述表征器被进一步配置为:
将所述第一分箱信号和所述第二分箱信号拟合到比尔定律计算,并且
基于所述比尔定律计算来确定所述样本的吸收率。
12.根据权利要求11所述的光学检查系统,其中所述表征器在确定所述样本的所述吸收率时对所述第一分箱信号和所述第二分箱信号以不同方式进行加权。
13.根据权利要求3所述的光学检查系统,其中所述计算机被配置为在确定所述样本的所述物理属性过程中使用所述第一子组光线来执行第一操作集并且使用所述第二子组光线来执行第二操作集。
14.根据权利要求1所述的光学检查系统,其中所述传感器包括多个微透镜和被定位在所述多个微透镜的焦平面处的检测器。
15.根据权利要求14所述的光学检查系统,还包括被设置在所述多个微透镜和所述检测器之间的遮罩,所述遮罩包括被配置为阻断所收集的返回光线中的指定光线的至少一个阻断部分。
16.根据权利要求1所述的光学检查系统,其中所述计算机被配置为:
将所述光线强度聚合成分箱信号,每个分箱信号对应于所收集的返回光线中的在所述样本内穿过相应光学路径长度范围内的估计光学路径长度的光线,
其中所述表征器被进一步配置为基于所述分箱信号来确定所述样本的所述物理属性。
17.根据权利要求16所述的光学检查系统,其中所述计算机被进一步配置为:
将所述分箱信号拟合到比尔定律计算;并且
基于所述比尔定律计算来确定所述样本的吸收率。
18.一种用于对样本进行光学表征的方法,包括:
使用照明器利用入射光来照射所述样本;
收集从所述样本返回的多个返回光线;
使用传感器根据所收集的相应返回光线的光线位置和光线传播角度来测量光线强度;
将所述光线强度中的至少一些光线强度聚合成多个分箱信号;并且
基于所述多个分箱信号来确定所述样本的物理属性。
19.根据权利要求18所述的方法,其中每个分箱信号对应于在所述样本内穿过相应光学路径长度范围内的估计光学路径长度的所收集的返回光线。
20.根据权利要求18所述的方法,还包括:
将所述多个分箱信号拟合到比尔定律计算;并且
基于所述比尔定律计算来确定所述样本的吸收率。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010795936.3A CN111929280A (zh) | 2014-12-23 | 2015-12-22 | 包括考虑样本内光学路径长度变化的光学检查系统和方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462096276P | 2014-12-23 | 2014-12-23 | |
US62/096,276 | 2014-12-23 | ||
PCT/US2015/067463 WO2016109355A1 (en) | 2014-12-23 | 2015-12-22 | Optical inspection system and method including accounting for variations of optical path length within a sample |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010795936.3A Division CN111929280A (zh) | 2014-12-23 | 2015-12-22 | 包括考虑样本内光学路径长度变化的光学检查系统和方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107209116A CN107209116A (zh) | 2017-09-26 |
CN107209116B true CN107209116B (zh) | 2020-08-07 |
Family
ID=55174713
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580065101.XA Active CN107209116B (zh) | 2014-12-23 | 2015-12-22 | 包括考虑样本内的光学路径长度的变化的光学检查系统和方法 |
CN202010795936.3A Pending CN111929280A (zh) | 2014-12-23 | 2015-12-22 | 包括考虑样本内光学路径长度变化的光学检查系统和方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010795936.3A Pending CN111929280A (zh) | 2014-12-23 | 2015-12-22 | 包括考虑样本内光学路径长度变化的光学检查系统和方法 |
Country Status (6)
Country | Link |
---|---|
US (4) | US10274426B2 (zh) |
EP (3) | EP3588061B1 (zh) |
KR (1) | KR101982950B1 (zh) |
CN (2) | CN107209116B (zh) |
AU (2) | AU2015374335B2 (zh) |
WO (1) | WO2016109355A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016106350A1 (en) | 2014-12-23 | 2016-06-30 | Bribbla Dynamics Llc | Confocal inspection system having non-overlapping annular illumination and collection regions |
WO2016106368A1 (en) | 2014-12-23 | 2016-06-30 | Bribbla Dynamics Llc | Confocal inspection system having averaged illumination and averaged collection paths |
WO2016109355A1 (en) | 2014-12-23 | 2016-07-07 | Bribbla Dynamics Llc | Optical inspection system and method including accounting for variations of optical path length within a sample |
EP4148416A1 (en) | 2015-09-01 | 2023-03-15 | Apple Inc. | System for taking a measurement and method for taking a measurement of a sample using a device |
EP3446084A1 (en) | 2016-04-21 | 2019-02-27 | Apple Inc. | Optical system for reference switching |
WO2019067796A2 (en) * | 2017-09-29 | 2019-04-04 | Masseta Technologies Llc | OPTICAL SAMPLING ARCHITECTURES OF RESOLUTION PATH |
CN109842758B (zh) * | 2017-11-29 | 2022-06-07 | 超威半导体公司 | 计算传感器 |
WO2019160949A1 (en) | 2018-02-13 | 2019-08-22 | Masseta Technologies Llc | Integrated photonics device having integrated edge outcouplers |
KR20220023979A (ko) | 2019-06-21 | 2022-03-03 | 주식회사 소니 인터랙티브 엔터테인먼트 | 위치 검출 시스템, 화상 처리 장치, 위치 검출 방법 및 위치 검출 프로그램 |
KR20230043191A (ko) | 2020-09-09 | 2023-03-30 | 애플 인크. | 노이즈 완화를 위한 광학 시스템 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006086566A2 (en) * | 2005-02-09 | 2006-08-17 | Inlight Solutions, Inc. | Methods and apparatuses for noninvasive determinations of analytes |
US20110184260A1 (en) * | 2005-02-09 | 2011-07-28 | Robinson M Ries | Methods and Apparatuses for Noninvasive Determinations of Analytes |
CN105067489A (zh) * | 2015-08-07 | 2015-11-18 | 中国科学院计算技术研究所 | 一种基于动态光散射技术的悬浮颗粒粒径测量装置及方法 |
Family Cites Families (182)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3013467A (en) | 1957-11-07 | 1961-12-19 | Minsky Marvin | Microscopy apparatus |
US3861788A (en) | 1972-08-24 | 1975-01-21 | Neotec Corp | Optical analyzer for agricultural products |
US3805074A (en) | 1973-01-02 | 1974-04-16 | Texas Instruments Inc | Spectral scan air monitor |
US4082464A (en) | 1976-10-07 | 1978-04-04 | Neotec Corporation | Optical analysis system having rotating filters |
US4195311A (en) * | 1978-08-28 | 1980-03-25 | The United States Of America As Represented By The Secretary Of The Navy | Coherence length gated optical imaging system |
DE2853458C3 (de) | 1978-09-29 | 1981-04-02 | Gebrüder Bühler AG, 9240 Uzwil | Verfahren und Vorrichtung zur Messung der relativen Helligkeit einer Probe |
US4236076A (en) | 1979-02-26 | 1980-11-25 | Technicon Instruments Corporation | Infrared analyzer |
US4286327A (en) | 1979-09-10 | 1981-08-25 | Trebor Industries, Inc. | Apparatus for near infrared quantitative analysis |
US4300167A (en) * | 1980-02-07 | 1981-11-10 | Circon Corporation | Automatic iris control system |
HU192395B (en) | 1984-02-13 | 1987-06-29 | Gabor Kemeny | Optical reflexion concentration meter |
GB8415709D0 (en) | 1984-06-20 | 1984-07-25 | Dubilier Scient Ltd | Scanning microscope |
US4810077A (en) | 1986-02-13 | 1989-03-07 | Spectra-Tech, Inc. | Grazing angle microscope |
US4956796A (en) * | 1986-06-20 | 1990-09-11 | The University Of Michigan | Multiple sensor position locating system |
US4827125A (en) | 1987-04-29 | 1989-05-02 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Confocal scanning laser microscope having no moving parts |
US4975581A (en) * | 1989-06-21 | 1990-12-04 | University Of New Mexico | Method of and apparatus for determining the similarity of a biological analyte from a model constructed from known biological fluids |
US5065008A (en) | 1989-10-18 | 1991-11-12 | Fuji Photo Film Co., Ltd. | Scanning microscope and scanning mechanism for the same |
US5220403A (en) | 1991-03-11 | 1993-06-15 | International Business Machines Corporation | Apparatus and a method for high numerical aperture microscopic examination of materials |
US5483261A (en) | 1992-02-14 | 1996-01-09 | Itu Research, Inc. | Graphical input controller and method with rear screen image detection |
US5488204A (en) | 1992-06-08 | 1996-01-30 | Synaptics, Incorporated | Paintbrush stylus for capacitive touch sensor pad |
US5880411A (en) | 1992-06-08 | 1999-03-09 | Synaptics, Incorporated | Object position detector with edge motion feature and gesture recognition |
US5430787A (en) * | 1992-12-03 | 1995-07-04 | The United States Of America As Represented By The Secretary Of Commerce | Compton scattering tomography |
JP3484543B2 (ja) | 1993-03-24 | 2004-01-06 | 富士通株式会社 | 光結合部材の製造方法及び光装置 |
US5475235A (en) * | 1993-08-09 | 1995-12-12 | Wyatt Technoloy Corporation | Control of laser light power output for use in light scattering instruments by inducing mode hopping and averaging result |
JP3375203B2 (ja) * | 1994-08-08 | 2003-02-10 | シスメックス株式会社 | 細胞分析装置 |
US5737084A (en) | 1995-09-29 | 1998-04-07 | Takaoka Electric Mtg. Co., Ltd. | Three-dimensional shape measuring apparatus |
JP3422398B2 (ja) * | 1995-12-07 | 2003-06-30 | 富士通株式会社 | 重心波長モニタ方法及び装置、光増幅器並びに光通信システム |
US5825352A (en) | 1996-01-04 | 1998-10-20 | Logitech, Inc. | Multiple fingers contact sensing method for emulating mouse buttons and mouse operations on a touch sensor pad |
US5835079A (en) | 1996-06-13 | 1998-11-10 | International Business Machines Corporation | Virtual pointing device for touchscreens |
US5652654A (en) | 1996-08-12 | 1997-07-29 | Asimopoulos; George | Dual beam spectrophotometer |
JP3660761B2 (ja) * | 1996-10-03 | 2005-06-15 | 技術研究組合医療福祉機器研究所 | 散乱体の吸収情報の計測方法及び装置 |
US5936739A (en) * | 1997-01-29 | 1999-08-10 | Sandia Corporation | Gated frequency-resolved optical imaging with an optical parametric amplifier |
US6122042A (en) | 1997-02-07 | 2000-09-19 | Wunderman; Irwin | Devices and methods for optically identifying characteristics of material objects |
US6198531B1 (en) * | 1997-07-11 | 2001-03-06 | University Of South Carolina | Optical computational system |
US6310610B1 (en) | 1997-12-04 | 2001-10-30 | Nortel Networks Limited | Intelligent touch display |
US7663607B2 (en) | 2004-05-06 | 2010-02-16 | Apple Inc. | Multipoint touchscreen |
US8479122B2 (en) | 2004-07-30 | 2013-07-02 | Apple Inc. | Gestures for touch sensitive input devices |
EP1717678B1 (en) | 1998-01-26 | 2017-11-22 | Apple Inc. | Method for integrating manual input |
DE19811202C2 (de) | 1998-03-09 | 2002-01-17 | Gf Mestechnik Gmbh | Konfokales Scanmikroskop |
US6248988B1 (en) | 1998-05-05 | 2001-06-19 | Kla-Tencor Corporation | Conventional and confocal multi-spot scanning optical microscope |
US6188391B1 (en) | 1998-07-09 | 2001-02-13 | Synaptics, Inc. | Two-layer capacitive touchpad and method of making same |
US6236459B1 (en) * | 1998-11-05 | 2001-05-22 | University Of Miami | Thin film measuring device and method |
US6048755A (en) | 1998-11-12 | 2000-04-11 | Micron Technology, Inc. | Method for fabricating BGA package using substrate with patterned solder mask open in die attach area |
US6999183B2 (en) * | 1998-11-18 | 2006-02-14 | Kla-Tencor Corporation | Detection system for nanometer scale topographic measurements of reflective surfaces |
US6353226B1 (en) | 1998-11-23 | 2002-03-05 | Abbott Laboratories | Non-invasive sensor capable of determining optical parameters in a sample having multiple layers |
JP4542637B2 (ja) | 1998-11-25 | 2010-09-15 | セイコーエプソン株式会社 | 携帯情報機器及び情報記憶媒体 |
US6424416B1 (en) | 1999-10-25 | 2002-07-23 | Textron Systems Corporation | Integrated optics probe for spectral analysis |
WO2001014929A1 (en) | 1999-08-23 | 2001-03-01 | The Arizona Board Of Regents Acting On Behalf Of The University Of Arizona | Integrated hybrid optoelectronic devices |
EP1182486B1 (en) | 2000-03-06 | 2007-07-18 | Olympus Corporation | Confocal microscope comprising pattern forming rotation disk |
US6587703B2 (en) | 2000-09-18 | 2003-07-01 | Photonify Technologies, Inc. | System and method for measuring absolute oxygen saturation |
AU2001279817A1 (en) | 2000-08-24 | 2002-03-04 | Thomson Licensing S.A. | Method for generating a corrected error signal, and corresponding apparatus |
US6826424B1 (en) | 2000-12-19 | 2004-11-30 | Haishan Zeng | Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices |
JP3800984B2 (ja) | 2001-05-21 | 2006-07-26 | ソニー株式会社 | ユーザ入力装置 |
WO2002099397A2 (en) | 2001-06-06 | 2002-12-12 | Digital Optical Imaging Corporation | Light modulated microarray reader and methods relating thereto |
US6519033B1 (en) * | 2001-11-19 | 2003-02-11 | Point Source Technologies, Llc | Identification of particles in fluid |
US6594090B2 (en) | 2001-08-27 | 2003-07-15 | Eastman Kodak Company | Laser projection display system |
JP2003173237A (ja) | 2001-09-28 | 2003-06-20 | Ricoh Co Ltd | 情報入出力システム、プログラム及び記憶媒体 |
US20030108821A1 (en) | 2001-12-06 | 2003-06-12 | Wenhui Mei | Microlens array fabrication |
EP2420872A3 (en) | 2001-12-14 | 2012-05-02 | QUALCOMM MEMS Technologies, Inc. | Uniform illumination system |
US6690387B2 (en) | 2001-12-28 | 2004-02-10 | Koninklijke Philips Electronics N.V. | Touch-screen image scrolling system and method |
US7129508B2 (en) | 2002-01-18 | 2006-10-31 | Honeywell International Inc. | Compact VCSEL sensor with multiple sensing capabilities |
US8140147B2 (en) | 2002-04-04 | 2012-03-20 | Veralight, Inc. | Determination of a measure of a glycation end-product or disease state using a flexible probe to determine tissue fluorescence of various sites |
GB0208100D0 (en) | 2002-04-09 | 2002-05-22 | Univ Strathclyde | Semiconductor diode laser spectrometer arrangement |
DE10216043A1 (de) | 2002-04-11 | 2003-10-23 | Kabelschlepp Gmbh | Leitungsführungseinheit zur aktiven Führung von Leitungen, Kabeln oder dergleichen |
US6844554B2 (en) | 2002-06-28 | 2005-01-18 | Instrumentarium Corp. | Method and arrangement for determining the concentration of a gas component in a gas mixture |
US11275405B2 (en) | 2005-03-04 | 2022-03-15 | Apple Inc. | Multi-functional hand-held device |
US7282723B2 (en) * | 2002-07-09 | 2007-10-16 | Medispectra, Inc. | Methods and apparatus for processing spectral data for use in tissue characterization |
US6794671B2 (en) * | 2002-07-17 | 2004-09-21 | Particle Sizing Systems, Inc. | Sensors and methods for high-sensitivity optical particle counting and sizing |
EP1403985A1 (en) | 2002-09-25 | 2004-03-31 | Agilent Technologies, Inc. - a Delaware corporation - | An optoelectronic assembly |
US6963683B2 (en) | 2002-09-30 | 2005-11-08 | Intel Corporation | System and method for a packaging a monitor photodiode with a laser in an optical subassembly |
US6892449B1 (en) | 2002-10-09 | 2005-05-17 | Cypress Semiconductor Corp. | Method of manufacturing electro-optical devices |
US7170598B2 (en) | 2002-10-17 | 2007-01-30 | Direvo Biotech Ag | Multi-parameter fluorimetric analysis in a massively parallel multi-focal arrangement and the use thereof |
US7339148B2 (en) | 2002-12-16 | 2008-03-04 | Olympus America Inc. | Confocal microscope |
JP2004198719A (ja) | 2002-12-18 | 2004-07-15 | Tdk Corp | 光モジュール及びその製造方法 |
US7245374B2 (en) | 2002-12-19 | 2007-07-17 | Koninklijke Philips Electronics N.V. | Optical analysis system |
GB2399220B (en) | 2003-03-06 | 2005-07-13 | Toshiba Res Europ Ltd | Photonic quantum information system using unpolarised light |
US7372985B2 (en) | 2003-08-15 | 2008-05-13 | Massachusetts Institute Of Technology | Systems and methods for volumetric tissue scanning microscopy |
US6963400B1 (en) * | 2003-08-19 | 2005-11-08 | The United States Of America As Represented By The Secretary Of The Army | Systems and methods for analyzing particle systems using polarized scattered light |
US7061623B2 (en) | 2003-08-25 | 2006-06-13 | Spectel Research Corporation | Interferometric back focal plane scatterometry with Koehler illumination |
US20050063431A1 (en) | 2003-09-19 | 2005-03-24 | Gallup Kendra J. | Integrated optics and electronics |
US7433042B1 (en) * | 2003-12-05 | 2008-10-07 | Surface Optics Corporation | Spatially corrected full-cubed hyperspectral imager |
US7720291B2 (en) * | 2004-02-17 | 2010-05-18 | Corel Corporation | Iterative fisher linear discriminant analysis |
US10620105B2 (en) | 2004-03-06 | 2020-04-14 | Michael Trainer | Methods and apparatus for determining characteristics of particles from scattered light |
US8634072B2 (en) * | 2004-03-06 | 2014-01-21 | Michael Trainer | Methods and apparatus for determining characteristics of particles |
JP2005257455A (ja) | 2004-03-11 | 2005-09-22 | Fuji Photo Film Co Ltd | 測定装置および測定ユニット |
US7075046B2 (en) | 2004-07-28 | 2006-07-11 | University Of Vermont And State Agricultural College | Objective lens reference system and method |
US8498681B2 (en) | 2004-10-05 | 2013-07-30 | Tomophase Corporation | Cross-sectional mapping of spectral absorbance features |
KR101006422B1 (ko) | 2005-01-20 | 2011-01-06 | 지고 코포레이션 | 객체 표면의 특성을 결정하기 위한 간섭계 |
US9597024B2 (en) * | 2005-02-09 | 2017-03-21 | Medici Instruments Llc | Methods and apparatuses for noninvasive determinations of analytes |
CA2597254A1 (en) * | 2005-02-09 | 2006-08-17 | Inlight Solutions, Inc. | Methods and apparatus for noninvasive determinations of analytes |
US20060285110A1 (en) * | 2005-02-25 | 2006-12-21 | Accent Optical Technologies, Inc. | Apparatus and method for enhanced critical dimension scatterometry |
EP2703871A3 (en) | 2005-05-25 | 2014-09-03 | Massachusetts Institute Of Technology | Multifocal scanning microscopy systems and methods |
US7203426B2 (en) | 2005-06-04 | 2007-04-10 | National Taiwan University | Optical subassembly of optical transceiver |
CN2831098Y (zh) * | 2005-09-29 | 2006-10-25 | 公安部沈阳消防研究所 | 一种粒子计式烟雾探测装置 |
US8537366B2 (en) * | 2005-10-11 | 2013-09-17 | Duke University | Systems and methods for endoscopic angle-resolved low coherence interferometry |
US7440659B2 (en) | 2006-02-27 | 2008-10-21 | Wisconsin Alumni Research Foundation | Depth-resolved reflectance instrument and method for its use |
KR100786397B1 (ko) | 2006-03-09 | 2007-12-17 | 김경철 | 레이저 빔을 이용한 면적 센서 시스템 |
US7623233B2 (en) | 2006-03-10 | 2009-11-24 | Ometric Corporation | Optical analysis systems and methods for dynamic, high-speed detection and real-time multivariate optical computing |
WO2007120745A2 (en) | 2006-04-11 | 2007-10-25 | Optiscan Biomedical Corporation | Noise reduction for analyte detection system |
WO2007121593A1 (en) | 2006-04-26 | 2007-11-01 | Abb Research Ltd | Method for measurement and determination of concentration within a mixed medium |
US7460248B2 (en) | 2006-05-15 | 2008-12-02 | Carestream Health, Inc. | Tissue imaging system |
KR101265625B1 (ko) | 2006-09-11 | 2013-05-22 | 엘지전자 주식회사 | 멀티 채널을 정의하는 방송 신호를 처리하는 방송 수신기 및 그 제어방법 |
US20090087925A1 (en) | 2007-10-01 | 2009-04-02 | Zyomyx, Inc. | Devices and methods for analysis of samples with depletion of analyte content |
TW200823595A (en) | 2006-11-28 | 2008-06-01 | Univ Nat Taiwan | Image capture device using programmable aperture |
US8179526B2 (en) | 2007-01-25 | 2012-05-15 | Renishaw Plc | Spectroscopic apparatus with dispersive device for collecting sample data in synchronism with relative movement of a focus |
KR101440762B1 (ko) | 2007-02-06 | 2014-09-17 | 칼 짜이스 에스엠테 게엠베하 | 마이크로리소그래피 투영 노광 장치의 조명 시스템 내의 다수의 미러 어레이들을 감시하는 방법 및 장치 |
ATE506627T1 (de) | 2007-02-26 | 2011-05-15 | Koninkl Philips Electronics Nv | Verfahren und vorrichtung zur optischen gewebeanalyse |
US8597190B2 (en) | 2007-05-18 | 2013-12-03 | Optiscan Biomedical Corporation | Monitoring systems and methods with fast initialization |
US8098372B2 (en) * | 2007-07-23 | 2012-01-17 | Applied Materials South East Asia Pte. Ltd. | Optical inspection tool featuring multiple speed modes |
DE102007053574B4 (de) | 2007-11-09 | 2019-05-02 | Byk Gardner Gmbh | Farbmessgerät |
CN101199413B (zh) | 2007-12-21 | 2010-04-14 | 北京高光科技有限公司 | 光学相干层析成像方法及其装置 |
US8228601B2 (en) | 2008-05-13 | 2012-07-24 | Applied Materials Israel, Ltd. | Scanning microscopy using inhomogeneous polarization |
JP5473265B2 (ja) | 2008-07-09 | 2014-04-16 | キヤノン株式会社 | 多層構造計測方法および多層構造計測装置 |
WO2010073249A1 (en) | 2008-12-24 | 2010-07-01 | Glusense, Ltd. | Implantable optical glucose sensing |
JP4935914B2 (ja) | 2009-03-05 | 2012-05-23 | 横河電機株式会社 | 成分測定装置 |
EP2244484B1 (en) | 2009-04-22 | 2012-03-28 | Raytrix GmbH | Digital imaging method for synthesizing an image using data recorded with a plenoptic camera |
JP5645445B2 (ja) | 2009-05-22 | 2014-12-24 | キヤノン株式会社 | 撮像装置及び撮像方法 |
WO2010150167A1 (en) | 2009-06-24 | 2010-12-29 | Koninklijke Philips Electronics N.V. | Optical biosensor with focusing optics |
US8928877B2 (en) | 2011-07-06 | 2015-01-06 | Optiscan Biomedical Corporation | Sample cell for fluid analysis system |
WO2011011462A1 (en) | 2009-07-20 | 2011-01-27 | Optiscan Biomedical Corporation | Adjustable connector and dead space reduction |
EP2464952B1 (en) | 2009-08-11 | 2018-10-10 | Koninklijke Philips N.V. | Multi-spectral imaging |
TWI412940B (zh) * | 2009-10-06 | 2013-10-21 | Univ Nat Chiao Tung | Image reconstruction method, device and computer program for diffuse optical tomography |
DE102009049387B4 (de) | 2009-10-14 | 2016-05-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung, Bildverarbeitungsvorrichtung und Verfahren zur optischen Abbildung |
JP4902721B2 (ja) | 2009-10-23 | 2012-03-21 | キヤノン株式会社 | 光断層画像生成装置及び光断層画像生成方法 |
US8436296B2 (en) | 2009-11-06 | 2013-05-07 | Precision Energy Services, Inc. | Filter wheel assembly for downhole spectroscopy |
JP4973751B2 (ja) | 2009-11-26 | 2012-07-11 | 横河電機株式会社 | 生体成分測定装置 |
US8619237B2 (en) | 2009-12-04 | 2013-12-31 | The Trustees Of Columbia University In The City Of New York | Laser-scanning intersecting plane tomography such as for high speed volumetric optical imaging |
KR101112144B1 (ko) | 2009-12-30 | 2012-02-14 | 부산대학교 산학협력단 | 부분 반사를 이용한 간섭 시스템 및 측정 시스템 |
US8518643B2 (en) * | 2010-02-04 | 2013-08-27 | Pacific Biosciences Of California, Inc. | Method to improve single molecule analyses |
US7884933B1 (en) | 2010-05-05 | 2011-02-08 | Revolutionary Business Concepts, Inc. | Apparatus and method for determining analyte concentrations |
US8951472B2 (en) | 2010-07-19 | 2015-02-10 | Andalyze, Inc. | Portable fluorimetric apparatus, method and system |
TWI418774B (zh) | 2010-08-06 | 2013-12-11 | 大區域光學檢測裝置及其運作方法 | |
US10292589B2 (en) | 2010-09-20 | 2019-05-21 | California Institute Of Technology | Acoustic-assisted iterative wave form optimization for deep tissue focusing |
JP5621973B2 (ja) * | 2010-09-30 | 2014-11-12 | 国立大学法人名古屋大学 | ナノ構造体を利用した検出方法及び検出システム |
US8866107B2 (en) | 2011-01-19 | 2014-10-21 | Howard Hughes Medical Institute | Wavefront compensation for deep tissue optical microscopy |
GB201107556D0 (en) | 2011-05-06 | 2011-06-22 | Sheblee Jafer | Spatial resolution enhancements in multibeam confocal scanning systems |
CN103748441B (zh) | 2011-06-07 | 2016-12-28 | 精量电子(美国)有限公司 | 用于流体传感的光学传感装置和光学传感方法 |
FR2978255B1 (fr) | 2011-07-22 | 2014-02-21 | Horiba Jobin Yvon Sas | Dispositif optique d'eclairage conoscopique a cone creux pour microscope optique et procede de microscopie optique en conoscopie |
JP5882674B2 (ja) | 2011-10-24 | 2016-03-09 | キヤノン株式会社 | 多波長干渉計、計測装置および計測方法 |
JP2014532873A (ja) | 2011-11-03 | 2014-12-08 | ベリフード リミテッド | エンドユーザ食品分析のための低費用分光分析システム |
JP5948836B2 (ja) * | 2011-12-09 | 2016-07-06 | ソニー株式会社 | 測定装置、測定方法、プログラム及び記録媒体 |
CN102519976A (zh) | 2011-12-26 | 2012-06-27 | 上海大学 | 光学元件亚表面缺陷数字全息检测装置 |
EP2629050B2 (de) | 2012-02-16 | 2017-02-15 | Sick AG | Triangulationslichttaster |
US9024252B2 (en) | 2012-02-21 | 2015-05-05 | Entegris-Jetalon Solutions, Inc. | Optical sensor apparatus to detect light based on the refractive index of a sample |
WO2013165888A2 (en) | 2012-04-30 | 2013-11-07 | Mayo Foundation For Medical Education And Research | Spectrometric systems and methods for improved focus localization of time-and space-varying measurements |
US9075015B2 (en) * | 2012-06-04 | 2015-07-07 | Frederick W. Shapiro | Universal tool for automated gem and mineral identification and measurement |
JP2014016235A (ja) * | 2012-07-09 | 2014-01-30 | Seiko Epson Corp | 光吸収係数分布推定装置、濃度測定装置及び光吸収係数分布推定装置の制御方法 |
US9585604B2 (en) | 2012-07-16 | 2017-03-07 | Zyomed Corp. | Multiplexed pathlength resolved noninvasive analyzer apparatus with dynamic optical paths and method of use thereof |
US20150018646A1 (en) | 2013-07-12 | 2015-01-15 | Sandeep Gulati | Dynamic sample mapping noninvasive analyzer apparatus and method of use thereof |
JP6212312B2 (ja) * | 2012-08-13 | 2017-10-11 | パナソニック株式会社 | 物体内部推定装置およびその方法 |
JP2014075780A (ja) * | 2012-09-14 | 2014-04-24 | Ricoh Co Ltd | 撮像装置及び撮像システム |
JP2014095688A (ja) * | 2012-10-09 | 2014-05-22 | Ricoh Co Ltd | 撮像装置及び撮像システム |
JP6091176B2 (ja) * | 2012-11-19 | 2017-03-08 | キヤノン株式会社 | 画像処理方法、画像処理プログラム、画像処理装置および撮像装置 |
JP6112909B2 (ja) * | 2013-02-27 | 2017-04-12 | キヤノン株式会社 | シャック・ハルトマンセンサーを用いた形状計測装置、形状計測方法 |
AU2013327811B2 (en) | 2013-05-10 | 2016-01-28 | Zhejiang University | One-dimensional global rainbow measurement device and measurement method |
JP6270214B2 (ja) * | 2013-11-25 | 2018-01-31 | 株式会社リガク | X線分析装置の光軸調整方法及びx線分析装置 |
JP2015119067A (ja) | 2013-12-19 | 2015-06-25 | ソニー株式会社 | 固体撮像装置、光検出器、および電子機器 |
JP2017505901A (ja) | 2014-01-03 | 2017-02-23 | ベリフード, リミテッドVerifood, Ltd. | 分光システム、方法、および用途 |
US9647419B2 (en) | 2014-04-16 | 2017-05-09 | Apple Inc. | Active silicon optical bench |
US9494535B2 (en) * | 2014-04-21 | 2016-11-15 | Kla-Tencor Corporation | Scatterometry-based imaging and critical dimension metrology |
US9804027B2 (en) | 2014-09-29 | 2017-10-31 | Aurrion, Inc. | Heterogeneous spectroscopic transceiving photonic integrated circuit sensor |
WO2016054079A1 (en) | 2014-09-29 | 2016-04-07 | Zyomed Corp. | Systems and methods for blood glucose and other analyte detection and measurement using collision computing |
WO2016109355A1 (en) | 2014-12-23 | 2016-07-07 | Bribbla Dynamics Llc | Optical inspection system and method including accounting for variations of optical path length within a sample |
WO2016106368A1 (en) | 2014-12-23 | 2016-06-30 | Bribbla Dynamics Llc | Confocal inspection system having averaged illumination and averaged collection paths |
WO2016106350A1 (en) | 2014-12-23 | 2016-06-30 | Bribbla Dynamics Llc | Confocal inspection system having non-overlapping annular illumination and collection regions |
US9395293B1 (en) | 2015-01-12 | 2016-07-19 | Verily Life Sciences Llc | High-throughput hyperspectral imaging with superior resolution and optical sectioning |
CN104614084A (zh) | 2015-01-20 | 2015-05-13 | 顾樵 | 一种光子探测装置及其使用方法 |
US10132996B2 (en) | 2015-04-20 | 2018-11-20 | Skorpios Technologies, Inc. | Back side via vertical output couplers |
JP2017017537A (ja) | 2015-07-01 | 2017-01-19 | キヤノン株式会社 | 電子機器及び表示制御方法 |
EP4148416A1 (en) | 2015-09-01 | 2023-03-15 | Apple Inc. | System for taking a measurement and method for taking a measurement of a sample using a device |
CN105223163A (zh) | 2015-09-30 | 2016-01-06 | 上海理工大学 | 一种基于古依相移π反转检测物体精细结构的装置 |
CN105438912B (zh) | 2016-01-28 | 2018-07-13 | 中国人民解放军信息工程大学 | 一种位置监控方法及系统 |
JP6961603B2 (ja) | 2016-02-12 | 2021-11-05 | マサチューセッツ インスティテュート オブ テクノロジー | 切断されていない組織検体を撮像するための方法及び装置 |
WO2017151416A2 (en) | 2016-03-02 | 2017-09-08 | Corning Optical Communications LLC | Interposer assemblies and arrangements for coupling at least one optical fiber to at least one optoelectronic device |
WO2017184423A1 (en) | 2016-04-21 | 2017-10-26 | Bribbla Dynamics Llc | Multiplexing and encoding for reference switching |
EP3446084A1 (en) | 2016-04-21 | 2019-02-27 | Apple Inc. | Optical system for reference switching |
WO2019067796A2 (en) | 2017-09-29 | 2019-04-04 | Masseta Technologies Llc | OPTICAL SAMPLING ARCHITECTURES OF RESOLUTION PATH |
WO2019160949A1 (en) | 2018-02-13 | 2019-08-22 | Masseta Technologies Llc | Integrated photonics device having integrated edge outcouplers |
US11206985B2 (en) * | 2018-04-13 | 2021-12-28 | Hi Llc | Non-invasive optical detection systems and methods in highly scattering medium |
US11378808B2 (en) | 2018-07-18 | 2022-07-05 | Idex Health & Science Llc | Laser systems and optical devices for laser beam shaping |
DE112019004773T5 (de) * | 2018-09-24 | 2021-08-12 | Ams Sensors Asia Pte. Ltd. | Erzeugung von beleuchtungsstrahlen mit mikrolinsen-arrays |
KR20230043191A (ko) | 2020-09-09 | 2023-03-30 | 애플 인크. | 노이즈 완화를 위한 광학 시스템 |
KR20220046168A (ko) * | 2020-10-07 | 2022-04-14 | 삼성전자주식회사 | 분석 물질의 농도 추정 장치 및 방법과, 신호 측정 장치 |
-
2015
- 2015-12-22 WO PCT/US2015/067463 patent/WO2016109355A1/en active Application Filing
- 2015-12-22 EP EP19186560.9A patent/EP3588061B1/en active Active
- 2015-12-22 EP EP23165899.8A patent/EP4220134A1/en active Pending
- 2015-12-22 AU AU2015374335A patent/AU2015374335B2/en active Active
- 2015-12-22 CN CN201580065101.XA patent/CN107209116B/zh active Active
- 2015-12-22 EP EP15825998.6A patent/EP3213053B1/en active Active
- 2015-12-22 CN CN202010795936.3A patent/CN111929280A/zh active Pending
- 2015-12-22 KR KR1020177014847A patent/KR101982950B1/ko active IP Right Grant
-
2017
- 2017-09-27 US US15/717,651 patent/US10274426B2/en active Active
-
2018
- 2018-06-20 AU AU2018204450A patent/AU2018204450B2/en active Active
-
2019
- 2019-03-07 US US16/296,010 patent/US11035793B2/en active Active
-
2021
- 2021-06-14 US US17/346,390 patent/US11726036B2/en active Active
-
2023
- 2023-06-04 US US18/205,551 patent/US20230314321A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006086566A2 (en) * | 2005-02-09 | 2006-08-17 | Inlight Solutions, Inc. | Methods and apparatuses for noninvasive determinations of analytes |
CN101151513A (zh) * | 2005-02-09 | 2008-03-26 | 音莱特解决方案有限公司 | 分析物无创检测的方法和装置 |
US20110184260A1 (en) * | 2005-02-09 | 2011-07-28 | Robinson M Ries | Methods and Apparatuses for Noninvasive Determinations of Analytes |
CN105067489A (zh) * | 2015-08-07 | 2015-11-18 | 中国科学院计算技术研究所 | 一种基于动态光散射技术的悬浮颗粒粒径测量装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4220134A1 (en) | 2023-08-02 |
US20180017491A1 (en) | 2018-01-18 |
US20210302313A1 (en) | 2021-09-30 |
US20230314321A1 (en) | 2023-10-05 |
EP3588061B1 (en) | 2023-04-19 |
KR101982950B1 (ko) | 2019-05-27 |
US10274426B2 (en) | 2019-04-30 |
CN111929280A (zh) | 2020-11-13 |
CN107209116A (zh) | 2017-09-26 |
AU2015374335A1 (en) | 2017-07-06 |
AU2015374335B2 (en) | 2018-03-29 |
US20190204221A1 (en) | 2019-07-04 |
EP3213053B1 (en) | 2019-08-28 |
AU2018204450A1 (en) | 2018-07-12 |
AU2018204450B2 (en) | 2019-07-18 |
WO2016109355A1 (en) | 2016-07-07 |
US11035793B2 (en) | 2021-06-15 |
US11726036B2 (en) | 2023-08-15 |
EP3213053A1 (en) | 2017-09-06 |
KR20170080646A (ko) | 2017-07-10 |
EP3588061A1 (en) | 2020-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107209116B (zh) | 包括考虑样本内的光学路径长度的变化的光学检查系统和方法 | |
CN108449957B (zh) | 用于非接触式感测物质的基准开关架构 | |
US10551605B2 (en) | Confocal inspection system having non-overlapping annular illumination and collection regions | |
CN107430263B (zh) | 具有平均照明路径和平均收集路径的共焦检查系统 | |
JP6691043B2 (ja) | 粒子特性評価装置 | |
JP2019512701A (ja) | 粒子特性評価 | |
KR20180000015A (ko) | 고정확 실시간 미세 입자 크기 및 개수 측정 장치 | |
JPH038686B2 (zh) | ||
CN105675615B (zh) | 一种高速大范围高分辨率成像系统 | |
CA3174990A1 (en) | Systems and method for correction of positionally dependent electromagnetic radiation detected from objects within a fluid column | |
US9952150B2 (en) | Device for measuring the scattering of a sample | |
WO2019025771A1 (en) | METHOD AND APPARATUS FOR BACTERIAL ANALYSIS | |
WO2016200802A1 (en) | Backscatter reductant anamorphic beam sampler | |
CN115307736B (zh) | 一种分光色度计集光系统 | |
JPH03214038A (ja) | 空気中に散布されたエアロゾルと粉麈などの測定装置 | |
US11709124B2 (en) | Particle sensor sample area qualification without a physical slit | |
RU83138U1 (ru) | Анализатор фертильности спермы | |
CN106645173A (zh) | 一种检测表面缺陷的散射光高效收集装置及收集方法 | |
JPH0213829A (ja) | 粒子測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |