CN107199346A - A kind of industrialized process for preparing of nanometer of W/WC composite powder - Google Patents
A kind of industrialized process for preparing of nanometer of W/WC composite powder Download PDFInfo
- Publication number
- CN107199346A CN107199346A CN201710453108.XA CN201710453108A CN107199346A CN 107199346 A CN107199346 A CN 107199346A CN 201710453108 A CN201710453108 A CN 201710453108A CN 107199346 A CN107199346 A CN 107199346A
- Authority
- CN
- China
- Prior art keywords
- powder
- tungsten
- glucose
- ball milling
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 71
- 239000002131 composite material Substances 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 33
- 239000008103 glucose Substances 0.000 claims abstract description 33
- 238000000498 ball milling Methods 0.000 claims abstract description 28
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 25
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 14
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910000428 cobalt oxide Inorganic materials 0.000 claims abstract description 11
- 229910001930 tungsten oxide Inorganic materials 0.000 claims abstract description 11
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 9
- 239000002994 raw material Substances 0.000 claims abstract description 9
- 238000002360 preparation method Methods 0.000 claims abstract description 7
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims abstract description 5
- 238000000713 high-energy ball milling Methods 0.000 claims abstract description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 20
- 239000010937 tungsten Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 9
- 239000010941 cobalt Substances 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 4
- 239000011812 mixed powder Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229960000935 dehydrated alcohol Drugs 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 13
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 abstract description 7
- 238000009826 distribution Methods 0.000 abstract description 5
- 239000011159 matrix material Substances 0.000 abstract description 4
- 239000002114 nanocomposite Substances 0.000 abstract description 3
- 238000004663 powder metallurgy Methods 0.000 abstract description 2
- 239000003870 refractory metal Substances 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 7
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000003763 carbonization Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 229910009043 WC-Co Inorganic materials 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- VVRQVWSVLMGPRN-UHFFFAOYSA-N oxotungsten Chemical class [W]=O VVRQVWSVLMGPRN-UHFFFAOYSA-N 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/20—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Powder Metallurgy (AREA)
Abstract
一种纳米W/WC复合粉末的工业化制备方法,属于难熔金属和粉末冶金技术领域。以钨氧化物、钴氧化物和葡萄糖为原料,按照钴氧化物:钨氧化物:葡萄糖的质量比为1:(10~85):(4.5~43)进行配料,首先对钨氧化物、钴氧化物进行高能球磨;然后加入葡萄糖粉末和无水乙醇进行二次球磨;置于真空炉中进行反应,炉内真空度小于10Pa,首先加热至150~180℃保温15~60min,再升温至350~500℃保温2~4h,最后升温至850~1100℃保温2~5h。最后得到钨粉基体上分布碳化钨粉末的纳米复合粉体。所生成的钨粉平均粒径可达几十纳米以下,且粉末粒径分布均匀。The invention relates to an industrial preparation method of nanometer W/WC composite powder, which belongs to the technical field of refractory metal and powder metallurgy. Using tungsten oxide, cobalt oxide and glucose as raw materials, the mass ratio of cobalt oxide: tungsten oxide: glucose is 1: (10-85): (4.5-43). The oxide is subjected to high-energy ball milling; then glucose powder and absolute ethanol are added for secondary ball milling; the reaction is carried out in a vacuum furnace, the vacuum degree in the furnace is less than 10Pa, firstly heated to 150-180°C and kept for 15-60min, and then heated to 350°C Heat at ~500°C for 2-4 hours, and finally raise the temperature to 850-1100°C for 2-5 hours. Finally, the nanocomposite powder in which the tungsten carbide powder is distributed on the tungsten powder matrix is obtained. The average particle size of the generated tungsten powder can reach less than tens of nanometers, and the particle size distribution of the powder is uniform.
Description
技术领域technical field
本发明涉及一种快速制备纳米尺度的W粉为基体、少量WC粉末弥散分布的W/WC复合粉体的工业化制备方法,属于难熔金属和粉末冶金技术领域。The invention relates to an industrialized preparation method for rapidly preparing W/WC composite powder in which nanoscale W powder is used as a matrix and a small amount of WC powder is dispersedly distributed, and belongs to the technical field of refractory metals and powder metallurgy.
背景技术Background technique
钨因具有高密度、高熔点、低热膨胀系数、优异的导电导热性能以及良好的耐腐蚀性能而被广泛应用于工业领域。以钨或其碳化物为基体的复合材料,如:WC-Co硬质合金、W-Ni-Fe高比重合金、W-Cu合金等已成为许多高科技领域不可或缺的重要材料,如微电子工业、精细化工、表面技术、航空航天等。钨基合金的性能与W粉的性能密切相关。当钨粉的颗粒尺寸降低至超细及纳米级时,以之制备出的钨基合金表现出良好的烧结特性,制备的块体材料具有高的韧性、压缩强度、抗热震性等等。然而,目前我国批量化生产纳米钨粉的技术尚不成熟,而国外仅少数国家的企业可生产纳米钨粉。因此,打破由国外少数生产厂家控制国际纳米钨粉及相关产品市场的局面,制备具有自主知识产权的纳米钨粉是极为重要的研发方向。Tungsten is widely used in industrial fields due to its high density, high melting point, low thermal expansion coefficient, excellent electrical and thermal conductivity, and good corrosion resistance. Composite materials based on tungsten or its carbides, such as: WC-Co cemented carbide, W-Ni-Fe high specific gravity alloy, W-Cu alloy, etc. have become indispensable and important materials in many high-tech fields, such as micro Electronic industry, fine chemical industry, surface technology, aerospace, etc. The properties of tungsten-based alloys are closely related to those of W powder. When the particle size of tungsten powder is reduced to ultra-fine and nano-scale, the tungsten-based alloy prepared by it shows good sintering characteristics, and the prepared bulk material has high toughness, compressive strength, thermal shock resistance and so on. However, the mass production technology of nano-tungsten powder in my country is still immature, while enterprises in a few foreign countries can produce nano-tungsten powder. Therefore, it is an extremely important research and development direction to break the situation that a small number of foreign manufacturers control the international nano-tungsten powder and related product markets, and to prepare nano-tungsten powder with independent intellectual property rights.
此外,由于金属钨的脆性较大,整体强度及耐磨性较差;而钨的稳定碳化物(WC)具有高硬度、高耐磨性、高耐蚀性的优点,因此,在纳米钨粉中弥散分布纳米WC粉末颗粒形成W/WC复合粉体,对于增强钨基合金的室温和高温力学性能、扩大工程应用领域、提高重要装备的使用寿命,具有关键性作用。In addition, due to the high brittleness of metal tungsten, the overall strength and wear resistance are poor; and the stable carbide (WC) of tungsten has the advantages of high hardness, high wear resistance and high corrosion resistance. Therefore, in nano tungsten powder The W/WC composite powder formed by medium-dispersed nano-WC powder particles plays a key role in enhancing the mechanical properties of tungsten-based alloys at room temperature and high temperature, expanding engineering application fields, and improving the service life of important equipment.
发明内容Contents of the invention
本发明即是针对目前纳米钨粉及相关产品在工业生产中的技术问题,提供了一种简单易控、可操作性强的纳米W/WC复合粉末的工业化制备方法。The present invention aims at the technical problems in the current industrial production of nano-tungsten powder and related products, and provides a simple, easy-to-control, and highly operable industrial preparation method of nano-W/WC composite powder.
本发明提供的制备纳米W/WC复合粉末的方法,其特征在于,包括以下步骤:The method for preparing nano W/WC composite powder provided by the present invention is characterized in that it comprises the following steps:
(1)以钨氧化物、钴氧化物和葡萄糖为原料,按照钴氧化物:钨氧化物:葡萄糖的质量比为1:(10~85):(4.5~43)进行配料,首先对钨氧化物、钴氧化物进行高能球磨,磨球与粉末质量比为3:1~10:1,以无水乙醇为研磨介质,研磨介质与物料体积比为1:1,球磨机转速为100~500r/min,球磨时间为60~80h。(1) Using tungsten oxide, cobalt oxide and glucose as raw materials, the mass ratio of cobalt oxide: tungsten oxide: glucose is 1: (10-85): (4.5-43) for batching, first oxidize tungsten The material and cobalt oxide are subjected to high-energy ball milling, the mass ratio of balls to powder is 3:1-10:1, absolute ethanol is used as the grinding medium, the volume ratio of grinding medium to material is 1:1, and the speed of the ball mill is 100-500r/ min, ball milling time is 60~80h.
(2)在步骤(1)得到的混合粉中加入葡萄糖粉末,并配入与葡萄糖等体积比例的无水乙醇进行二次球磨,球磨转速为50~80r/min,球磨时间为10~20h。(2) Glucose powder is added to the mixed powder obtained in step (1), and anhydrous ethanol in an equal volume ratio to the glucose is added to carry out secondary ball milling, the ball milling speed is 50-80r/min, and the ball milling time is 10-20h.
(3)将步骤(2)得到的粉末置于真空炉中进行反应,炉内真空度小于10Pa,首先加热至150~180℃保温15~60min,再升温至350~500℃保温2~4h,最后升温至850~1100℃保温2~5h。(3) Put the powder obtained in step (2) in a vacuum furnace for reaction, the vacuum degree in the furnace is less than 10Pa, first heat to 150-180°C and keep it for 15-60min, then raise the temperature to 350-500°C and keep it for 2-4h, Finally, the temperature was raised to 850-1100°C for 2-5 hours.
一般葡萄糖中碳的摩尔数大于钨氧化物、钴氧化物中氧的摩尔数。Generally, the number of moles of carbon in glucose is greater than the number of moles of oxygen in tungsten oxides and cobalt oxides.
本方法的工艺流程和原理是:以钨氧化物、钴氧化物和葡萄糖粉末为原料,采用分步球磨工艺先将氧化物粉末颗粒充分球磨至纳米级后,在低转速下加入葡萄糖粉末进行球磨混合以避免葡萄糖在高能球磨过程中分解,再将混合粉末置于真空条件下进行原位还原碳化反应。反应过程中首先加热至葡萄糖熔化及分解温度,利用纳米粉末具有很高的表面能,葡萄糖熔化后在纳米氧化物颗粒表面自发包覆;另外,在葡萄糖分解温度保温后,碳源均匀地分布在氧化物粉末颗粒表面。在还原碳化温度下,钨的氧化物和钴的氧化物被还原成钨、钴,并借助钴的加速扩散作用,部分钨被碳化形成碳化钨,最后得到钨粉基体上分布碳化钨粉末的纳米复合粉体。The process and principle of this method are as follows: using tungsten oxide, cobalt oxide and glucose powder as raw materials, the oxide powder particles are fully ball-milled to the nanometer level using a step-by-step ball milling process, and then glucose powder is added at a low speed for ball milling Mix to avoid decomposition of glucose during high-energy ball milling, and then place the mixed powder under vacuum conditions for in-situ reduction carbonization reaction. During the reaction process, it is firstly heated to the melting and decomposition temperature of glucose. Taking advantage of the high surface energy of nano-powders, glucose is coated spontaneously on the surface of nano-oxide particles after melting; in addition, after heat preservation at the decomposition temperature of glucose, the carbon source is evenly distributed in the Oxide powder particle surface. At the reductive carbonization temperature, the oxides of tungsten and cobalt are reduced to tungsten and cobalt, and with the help of the accelerated diffusion of cobalt, part of the tungsten is carbonized to form tungsten carbide, and finally the tungsten carbide powder is distributed on the tungsten powder matrix. Composite powder.
本发明目的在于提供一种简单易控的纳米钨基体上分布碳化钨的复合粉末的制备方法,适用于工业化生产。The purpose of the present invention is to provide a simple and easy-to-control method for preparing composite powder of tungsten carbide distributed on a nano-tungsten substrate, which is suitable for industrial production.
本发明的特色和优势如下:Features and advantages of the present invention are as follows:
目前工业上制备钨粉的方法主要是通过H2、CH4或Co等气体对氧化钨粉末进行高温还原,然而,这些方法所制得的钨粉末粒度粗大,且使用上述还原性气体均存在极大危险性。本发明与这些制备方法相比较,优势在于所生成的钨粉平均粒径可达几十纳米以下,且粉末粒径分布均匀;当葡萄糖达到分解温度时生成碳和水蒸汽,产物安全、环保。利用葡萄糖低温下可发生自身熔化的特点,对氧化物进行包覆,有力促进钨氧化物的还原反应。同时,借助钴对钨碳化的促进作用,在较低温度下(<1000℃)即可生成纳米WC粉末弥散分布在纳米钨粉的复合粉末材料,而钴以少量W-Co-C三元相的形式存在于复合粉中。本方法中钨和碳化钨粉末的粒径、各自所占比例和碳化钨生成率等,均可通过对反应温度和时间、原料粉中葡萄糖含量和氧化钴含量等进行设计而准确调控。At present, the industrial method of preparing tungsten powder is mainly to reduce tungsten oxide powder at high temperature by H 2 , CH 4 or Co and other gases. Great danger. Compared with these preparation methods, the present invention has the advantages that the average particle size of the generated tungsten powder can reach below tens of nanometers, and the particle size distribution of the powder is even; when the glucose reaches the decomposition temperature, carbon and water vapor are generated, and the product is safe and environmentally friendly. Utilizing the characteristic of self-melting of glucose at low temperature, the oxide is coated to effectively promote the reduction reaction of tungsten oxide. At the same time, with the help of cobalt on the promotion of tungsten carbide, a composite powder material in which nano-WC powder is dispersed in nano-tungsten powder can be produced at a relatively low temperature (<1000°C), and cobalt is formed in a small amount of W-Co-C ternary phase The form exists in the composite powder. In this method, the particle size of tungsten and tungsten carbide powder, their respective proportions, and the generation rate of tungsten carbide can be accurately regulated by designing the reaction temperature and time, the content of glucose and cobalt oxide in the raw material powder, etc.
附图说明Description of drawings
图1本发明实施例1中原料球磨混合后所得粉末的形貌图。Fig. 1 is a morphological diagram of the powder obtained after ball milling and mixing raw materials in Example 1 of the present invention.
图2本发明实施例1中原料球磨混合后的粉末经葡萄糖包覆后的形貌图。Fig. 2 is the topography diagram of the powder coated with glucose after ball milling and mixing the raw materials in Example 1 of the present invention.
图3本发明实施例2制备得到的W/WC复合粉末的形貌图及粒径分布图,其中,a为实施例2制备得到的钨基复合粉的显微组织形貌;b为实施例2制备得到的复合粉的颗粒尺寸分布图。Figure 3 is the morphology diagram and particle size distribution diagram of the W/WC composite powder prepared in Example 2 of the present invention, wherein, a is the microstructure morphology of the tungsten-based composite powder prepared in Example 2; b is the embodiment 2 The particle size distribution diagram of the prepared composite powder.
图4本发明实施例3制备得到的钨基复合粉末的物相分析图。Fig. 4 is a phase analysis diagram of the tungsten-based composite powder prepared in Example 3 of the present invention.
具体实施方式detailed description
以下实施例进一步解释了本发明,但本发明并不限于以下实施例。The following examples further illustrate the present invention, but the present invention is not limited to the following examples.
实施例1Example 1
称取1千克WO3,0.012千克Co3O4和0.43千克葡萄糖(C6H12O6),首先将WO2.9、Co3O4和无水乙醇进行球磨混合,磨球与粉末质量比为10:1,无水乙醇与物料体积比为1:1,球磨机转速为100r/min,球磨时间为60小时。在混合后的氧化物粉末中加入葡萄糖粉末,并配入与葡萄糖粉末等体积比的无水乙醇进行二次球磨,球磨转速为70r/min,球磨时间为15h。将上述粉末置于真空炉中进行反应,真空度为10Pa,首先加热至160℃保温30min,再升温至400℃保温3h,最后升温至950℃保温3h,制备得到W基体上分布WC的纳米复合粉末,其中WC的质量比为10%。本实施例中原料粉末球磨混合后的形貌示于图1,球磨混合后的原料粉末经葡萄糖包覆后的形貌示于图2,制备的复合粉末的成分分析结果见表1。Weigh 1 kg of WO 3 , 0.012 kg of Co 3 O 4 and 0.43 kg of glucose (C 6 H 12 O 6 ), firstly mix WO 2.9 , Co 3 O 4 and absolute ethanol by ball milling, the mass ratio of balls to powder is 10:1, the volume ratio of absolute ethanol to material is 1:1, the speed of the ball mill is 100r/min, and the ball milling time is 60 hours. Glucose powder was added to the mixed oxide powder, and anhydrous ethanol having an equal volume ratio to the glucose powder was added for secondary ball milling. The ball milling speed was 70r/min, and the ball milling time was 15h. Place the above powder in a vacuum furnace for reaction with a vacuum degree of 10 Pa. First, heat it to 160°C and keep it for 30 minutes, then raise the temperature to 400°C and keep it for 3 hours, and finally raise the temperature to 950°C and keep it for 3 hours to prepare a nanocomposite with WC distributed on the W matrix. Powder, wherein the mass ratio of WC is 10%. The morphology of the raw material powders mixed by ball milling in this example is shown in Figure 1, the morphology of the raw material powders after ball milling and mixed with glucose coating is shown in Figure 2, and the composition analysis results of the prepared composite powders are shown in Table 1.
实施例2Example 2
称取1千克WO3,0.05千克Co3O4和0.45千克葡萄糖(C6H12O6),首先将WO3、Co3O4和无水乙醇进行混合球磨,磨球与粉末质量比为5:1,无水乙醇与物料体积比为1:1,球磨机转速为300r/min,球磨时间为70小时。在混合后的氧化物粉末中加入葡萄糖粉末,并配入与葡萄糖粉末等体积比的无水乙醇进行二次球磨,球磨转速为80r/min,球磨时间为10h。将上述粉末置于真空炉中进行反应,真空度为0.1Pa,首先加热至180℃保温15min,再升温至500℃保温2h,最后升温至1100℃保温2h,制备得到W基体上分布WC的纳米复合粉末,其中WC的质量比为15%。本实施例制备得到的钨基复合粉末的形貌和粒径分布示于图3,制备的复合粉末的成分分析结果见表1。Weigh 1 kg of WO 3 , 0.05 kg of Co 3 O 4 and 0.45 kg of glucose (C 6 H 12 O 6 ), firstly mix and ball mill WO 3 , Co 3 O 4 and absolute ethanol, and the mass ratio of milling balls to powder is 5:1, the volume ratio of absolute ethanol to material is 1:1, the ball mill speed is 300r/min, and the ball milling time is 70 hours. Glucose powder was added to the mixed oxide powder, and anhydrous ethanol with an equal volume ratio to the glucose powder was added to carry out secondary ball milling. The ball milling speed was 80r/min, and the ball milling time was 10h. Put the above powder in a vacuum furnace for reaction with a vacuum degree of 0.1 Pa. First, heat it to 180°C and keep it for 15 minutes, then raise the temperature to 500°C and keep it for 2 hours, and finally raise the temperature to 1100°C and keep it for 2 hours to prepare WC nano Composite powder, wherein the mass ratio of WC is 15%. The morphology and particle size distribution of the tungsten-based composite powder prepared in this example are shown in Figure 3, and the composition analysis results of the prepared composite powder are shown in Table 1.
实施例3Example 3
称取1千克WO2.9,0.1千克Co3O4和0.5千克葡萄糖(C6H12O6),首先将WO2.9、Co3O4粉末和无水乙醇进行混合球磨,磨球与粉末的质量比为3:1,无水乙醇与物料的体积比为1:1,球磨机转速为500r/min,球磨时间为80小时。在混合后的氧化物粉末中加入葡萄糖粉末,并配入与葡萄糖粉末等体积比的无水乙醇进行二次球磨,球磨转速为50r/min,球磨时间为20h。将上述粉末置于真空炉中进行反应,真空度为0.02Pa,首先加热至150℃保温60min,再升温至350℃保温4h,最后升温至850℃保温5h,制备得到W基体上分布WC的纳米复合粉末,其中WC的质量比为20%。本实施例制备得到的钨基复合粉末的物相检测结果示于图4,本实施例制备得到的钨基复合粉末的成分分析结果见表1。Weigh 1 kg of WO 2.9 , 0.1 kg of Co 3 O 4 and 0.5 kg of glucose (C 6 H 12 O 6 ), first mix and ball mill WO 2.9 , Co 3 O 4 powder and absolute ethanol, the mass of the ball and the powder The ratio is 3:1, the volume ratio of absolute ethanol to material is 1:1, the speed of the ball mill is 500r/min, and the ball milling time is 80 hours. Glucose powder was added to the mixed oxide powder, and anhydrous ethanol having an equal volume ratio to the glucose powder was added for secondary ball milling. The ball milling speed was 50 r/min, and the ball milling time was 20 h. Put the above powder in a vacuum furnace for reaction with a vacuum degree of 0.02 Pa. First, heat it to 150°C and keep it for 60 minutes, then raise the temperature to 350°C and keep it for 4 hours, and finally raise the temperature to 850°C and keep it for 5 hours. Composite powder, wherein the mass ratio of WC is 20%. The phase detection results of the tungsten-based composite powder prepared in this example are shown in FIG. 4 , and the component analysis results of the tungsten-based composite powder prepared in this example are shown in Table 1.
表1不同实施例中制备得到的纳米钨基复合粉末的成分分析结果The compositional analysis results of the nano-tungsten-based composite powders prepared in different examples in table 1
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710453108.XA CN107199346B (en) | 2017-06-15 | 2017-06-15 | A kind of industrialized preparation method of nano W/WC composite powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710453108.XA CN107199346B (en) | 2017-06-15 | 2017-06-15 | A kind of industrialized preparation method of nano W/WC composite powder |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107199346A true CN107199346A (en) | 2017-09-26 |
CN107199346B CN107199346B (en) | 2019-01-22 |
Family
ID=59907651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710453108.XA Active CN107199346B (en) | 2017-06-15 | 2017-06-15 | A kind of industrialized preparation method of nano W/WC composite powder |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107199346B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108262485A (en) * | 2018-02-25 | 2018-07-10 | 北京工业大学 | A kind of industrialization in-situ synthetic method of W base composite powders for adding WC hardening constituents |
CN113441728A (en) * | 2021-06-28 | 2021-09-28 | 北京理工大学 | Preparation method of high-uniformity ultrafine/nano tungsten powder |
CN114713833A (en) * | 2022-03-10 | 2022-07-08 | 崇义章源钨业股份有限公司 | Spherical tungsten-based composite powder based on in-situ reduction and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060216192A9 (en) * | 2004-02-14 | 2006-09-28 | Seoul National University Industry Foundation | Solid-solution powder, method to prepare the solid-solution powder, cermet powder including the solid-solution powder, method to prepare the cermet powder, cermet using the cermet powder and method to prepare the cermet |
CN101624673A (en) * | 2009-08-14 | 2010-01-13 | 北京工业大学 | Industrialized preparation method of WC-Co hard alloy with low cost and high performance |
CN103131999A (en) * | 2013-03-14 | 2013-06-05 | 浙江亚通冶金科技有限公司 | Wolfram carbide-cobalt-carbon composite powder for hot spraying and preparation method thereof |
CN105648383A (en) * | 2016-01-12 | 2016-06-08 | 江西理工大学 | Preparing method for WC-Co composite powder for thermal spraying |
CN106350721A (en) * | 2016-09-05 | 2017-01-25 | 中南大学 | Preparation method of high-performance WC-Co cemented carbide of plate-like grain structure |
-
2017
- 2017-06-15 CN CN201710453108.XA patent/CN107199346B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060216192A9 (en) * | 2004-02-14 | 2006-09-28 | Seoul National University Industry Foundation | Solid-solution powder, method to prepare the solid-solution powder, cermet powder including the solid-solution powder, method to prepare the cermet powder, cermet using the cermet powder and method to prepare the cermet |
CN101624673A (en) * | 2009-08-14 | 2010-01-13 | 北京工业大学 | Industrialized preparation method of WC-Co hard alloy with low cost and high performance |
CN103131999A (en) * | 2013-03-14 | 2013-06-05 | 浙江亚通冶金科技有限公司 | Wolfram carbide-cobalt-carbon composite powder for hot spraying and preparation method thereof |
CN105648383A (en) * | 2016-01-12 | 2016-06-08 | 江西理工大学 | Preparing method for WC-Co composite powder for thermal spraying |
CN106350721A (en) * | 2016-09-05 | 2017-01-25 | 中南大学 | Preparation method of high-performance WC-Co cemented carbide of plate-like grain structure |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108262485A (en) * | 2018-02-25 | 2018-07-10 | 北京工业大学 | A kind of industrialization in-situ synthetic method of W base composite powders for adding WC hardening constituents |
CN113441728A (en) * | 2021-06-28 | 2021-09-28 | 北京理工大学 | Preparation method of high-uniformity ultrafine/nano tungsten powder |
CN114713833A (en) * | 2022-03-10 | 2022-07-08 | 崇义章源钨业股份有限公司 | Spherical tungsten-based composite powder based on in-situ reduction and preparation method thereof |
CN114713833B (en) * | 2022-03-10 | 2024-03-22 | 崇义章源钨业股份有限公司 | Spherical tungsten-based composite powder based on in-situ reduction and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN107199346B (en) | 2019-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101892411B (en) | Novel WC-based hard alloy material and preparation method thereof | |
CN107130126B (en) | A kind of preparation method of carbon nanotube enhancing tungsten-copper composite material | |
CN104313380B (en) | A kind of step sintering prepares the method for high-compactness Nanograin Cemented Carbide | |
CN103924111B (en) | The preparation method of a kind of Wimet nanometer particle size powder and high performance sintered block materials | |
CN106756391B (en) | A kind of WC-Co hard alloy preparation method with duplex grain structure | |
CN101186981A (en) | Preparation method of high-strength and high-toughness ultrafine-grained WC-10Co cemented carbide | |
CN102581292A (en) | A kind of preparation method of TiB2-containing cermet composite powder for thermal spraying piston ring coating | |
CN102071346A (en) | Method for preparing compact nanocrystalline WC-Co hard alloy block material with small grain size | |
CN109576545B (en) | A Ti(C,N)-based cermet with mixed crystal structure and preparation method thereof | |
CN108356260A (en) | A kind of 3D printing manufacturing method of hard alloy special-shaped product | |
CN106011581A (en) | Vanadium-containing non-magnetic Ti(C, N)-based metal ceramic and preparation method thereof | |
CN105624447A (en) | Superfine crystal hard alloy grain refinement and size distribution uniformization method | |
CN114807725B (en) | High-entropy alloy-based nano superhard composite material enhanced by inlaid particles and preparation method thereof | |
CN110227826A (en) | A method of preparing high-purity nm molybdenum powder | |
KR20140081149A (en) | Manufacturing method of super hard metal containing carbon nanotube, the super hard metal manufactured using the same and cutting tools comprising the super hard metal | |
CN113337746A (en) | Preparation method of carbide-reinforced high-entropy alloy composite material | |
CN107199346A (en) | A kind of industrialized process for preparing of nanometer of W/WC composite powder | |
CN115747552B (en) | Preparation method of nano-copper modified carbon nano-tube reinforced titanium-based composite material | |
CN103433488B (en) | Preparation method of titanium nitride-ferrous metal ceramics | |
CN102674844A (en) | Method for preparing nanometer vanadium/chromium carbide composite powder by reduction with microwave method | |
CN114807656A (en) | A kind of preparation method of nano-scale carbon material reinforced metal matrix composite material and product thereof | |
CN105018818B (en) | TiC-base metal ceramic using Ni3Al as binding agent and preparing method thereof | |
CN106756168B (en) | The method that one kind prepares Ti (C, N) based ceramic metal based on carbon thermal reduction molybdenum trioxide | |
CN110229989B (en) | A kind of multi-component cemented carbide and preparation method thereof | |
CN117845121A (en) | Novel oscillation sintering Al 2 O 3 /Ti 3 SiC 2 Composite reinforced Cu-based composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210202 Address after: No. 300, kejingshe, Haicang District, Xiamen City, Fujian Province, 361000 Patentee after: XIAMEN TUNGSTEN Co.,Ltd. Address before: 100124 No. 100 Chaoyang District Ping Tian Park, Beijing Patentee before: Beijing University of Technology |