[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN107159295B - 一种可见光催化降解有机污染物的反蛋白石材料及其制备方法 - Google Patents

一种可见光催化降解有机污染物的反蛋白石材料及其制备方法 Download PDF

Info

Publication number
CN107159295B
CN107159295B CN201710405712.5A CN201710405712A CN107159295B CN 107159295 B CN107159295 B CN 107159295B CN 201710405712 A CN201710405712 A CN 201710405712A CN 107159295 B CN107159295 B CN 107159295B
Authority
CN
China
Prior art keywords
titanium dioxide
nitrogen
doped titanium
inverse opal
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710405712.5A
Other languages
English (en)
Other versions
CN107159295A (zh
Inventor
路建美
李娜君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201710405712.5A priority Critical patent/CN107159295B/zh
Publication of CN107159295A publication Critical patent/CN107159295A/zh
Priority to US15/993,541 priority patent/US10730759B2/en
Application granted granted Critical
Publication of CN107159295B publication Critical patent/CN107159295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/08Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by cooling of the solution
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种可见光催化降解有机污染物的反蛋白石材料及其制备方法,可以对水体中有机污染物(如罗丹明B)有效去除。首先使用垂直沉积法得到聚苯乙烯蛋白石,通过一步法合成氮掺杂二氧化钛反蛋白石(N‑TiO2 IO),并复合窄带隙半导体CdSe,得到硒化镉复合氮掺杂二氧化钛反蛋白石(CdSe/N‑TiO2 IO)。本发明先制备了氮掺杂二氧化钛反蛋白石,具有三维周期性孔洞结构及光子带隙的特征,使其相对于普通多级分孔材料,在光催化方面表现出更好的催化效果;再对N‑TiO2 IO复合硒化镉,利用氮掺杂与CdSe复合的协同效应,增强光捕获效率,得到吸收可见光的复合材料,可以有效降解污染物,并且可以循环使用,有利于提高材料的处理能力,降低使用成本。

Description

一种可见光催化降解有机污染物的反蛋白石材料及其制备 方法
技术领域
本发明属于无机复合材料技术领域,具体涉及一种可见光催化降解有机污染物的反蛋白石材料及其制备方法,可以对水体中染料有效去除。
背景技术
随着科技发展,染料与人类日常生活联系日益紧密。如今,合成染料广泛应用于食品、印染、化妆品和医药等行业。纵观全世界每年使用的染料大约有12%在其加工制造和操作处理中流失,其中又有20%通过废水进入环境,造成水环境污染。可见,染料废水严重危害水环境。这些染料通常具有生物毒性和致癌性,且在环境中依靠微生物较难降解完全。因此,寻找廉价、高效、节能的方法降解染料废水,已成为环境研究的热点问题。
自1972年Honda等利用TiO2电极光解水制氢,基于半导体光催化剂的材料研究迅速发展。光催化是指半导体在光的照射下,半导体材料发生光生载流子的分离,光生电子和空穴再与离子或分子结合,生成具有氧化性或还原性的活性自由基,这种活性自由基能将有机物大分子降解为二氧化碳或其他小分子有机物以及水的过程。因此,光催化技术具有效率高及成本低等优点。
如今,针对ZnO、TiO2、CdS和SnO2等半导体光催化性能研究日益深入。其中,二氧化钛具有较好的光催化活性、高稳定性、耐酸碱性、光照后不发生阳极光腐蚀、对生物无毒性、来源丰富和低成本等优点,因此最常被用来进行光催化研究。但是,二氧化钛在光催化领域的应用受到了下列因素限制:(1)光生电子空穴复合导致较低量子产率(~10%);(2)二氧化钛带隙较宽(3.2 eV),仅吸收5%太阳能,需要在紫外光激发下才具有光催化活性;(3)二氧化钛与污染物之间质量传输速率较低。
发明内容
本发明的目的是提供一种可见光催化降解有机污染物的反蛋白石材料及其制备方法,可以对水体中染料有效去除。
为达到上述目的,本发明具体技术方案如下:
一种可见光催化降解有机污染物的反蛋白石材料的制备方法,包括以下步骤:
(1)在氮源存在下,以二氧化钛前驱体为原料,一步法制备氮掺杂二氧化钛反蛋白石(N-TiO2 IO);
(2)在还原剂存在下,以氮掺杂二氧化钛反蛋白石、硒前驱体、镉前驱体为原料,制备硒化镉复合氮掺杂二氧化钛反蛋白石(CdSe/N-TiO2 IO)。
上述技术方案中,氮源为尿素;二氧化钛前驱体为四氯化钛,钛酸四正丁酯或钛酸四异丙酯;还原剂为硼氢化钠,亚硫酸氢钠或亚硫酸钠;硒前驱体为硒;镉前驱体为氯化镉。
上述技术方案中,步骤(1)为,将聚合物微球模板浸泡于二氧化钛前驱体溶液以及氮源溶液的混合液中,然后干燥、煅烧,得到氮掺杂二氧化钛反蛋白石;步骤(2)为,将还原剂、氮掺杂二氧化钛反蛋白石、硒前驱体、镉前驱体、溶剂混合后加热反应,然后冷却,再经过清洗、干燥,得到硒化镉复合氮掺杂二氧化钛反蛋白石。
上述技术方案中,聚合物微球为粒径为200~600 nm的聚苯乙烯小球;二氧化钛前驱体溶液包括乙醇、络合剂(比如乙酰丙酮,二乙醇胺或三乙胺);氮源溶液的溶剂为乙醇;溶剂为水,乙二醇或乙醇。
上述技术方案中,步骤(1)中,干燥温度为50~70 ℃,煅烧温度为400~500 ℃;步骤(2)中,反应温度为180~200 ℃,反应时间为8~10 h,干燥温度为60~80 ℃。
上述技术方案中,氮源的质量为二氧化钛前驱体的0.2~0.6倍;硒前驱体、镉前驱体、还原剂的质量分别为氮掺杂二氧化钛反蛋白石质量的0.1~0.3倍、0.2~0.7倍、0.2~0.5倍。
本发明的制备方法举例具体如下:
1. 一步法制备氮掺杂二氧化钛反蛋白石薄膜光催化剂(N-TiO2 IO),包括以下步骤:(1)制备粒径约200~600 nm的聚苯乙烯小球,并使用FTO玻璃利用垂直沉积法制备聚苯乙烯蛋白石模板;(2)向乙醇中滴加络合剂,室温搅拌10~20 min,向上述溶液中滴加前驱体,室温搅拌2~5 h,即为二氧化钛前驱体溶液,记为溶液A;另取尿素溶于乙醇,记为溶液B;取1~3 mL溶液A和1~3 mL溶液B混合均匀,将制备好的聚苯乙烯蛋白石模板浸泡在混合溶液,置于50~70 ℃烘箱干燥,将干燥好的前驱体模板使用管式炉400~500℃煅烧2 h,升温速率1~2 ℃/min,得到氮掺杂二氧化钛反蛋白石(N-TiO2 IO)。
2. 制备硒化镉复合氮掺杂二氧化钛反蛋白石(CdSe/ N-TiO2 IO),包括以下步骤:向水热反应釜加入组装好氮掺杂二氧化钛反蛋白石的FTO玻璃,取0.1~0.2 g CdCl2,0.05~0.1 g Se,0.2~0.3 g还原剂和35 mL溶剂,振荡均匀,转移至反应釜,180~200 ℃加热8~10h;自然冷却,取出FTO玻璃,去离子水冲洗,干燥,即为硒化镉复合氮掺杂二氧化钛反蛋白石(CdSe/N-TiO2 IO)。
本发明还公开了根据所述制备方法制备的可见光催化降解有机污染物的反蛋白石材料。
本发明还公开了一种氮掺杂二氧化钛反蛋白石的制备方法,将聚合物微球模板浸泡于二氧化钛前驱体溶液以及氮源溶液的混合液中,然后干燥、煅烧,得到氮掺杂二氧化钛反蛋白石。
本发明还公开了一种降解有机污染物的方法,包括以下步骤:
(1)在氮源存在下,以二氧化钛前驱体为原料,一步法制备氮掺杂二氧化钛反蛋白石(N-TiO2 IO);
(2)在还原剂存在下,以氮掺杂二氧化钛反蛋白石、硒前驱体、镉前驱体为原料,制备硒化镉复合氮掺杂二氧化钛反蛋白石(CdSe/N-TiO2 IO);
(3)将氮掺杂二氧化钛反蛋白石或者硒化镉复合氮掺杂二氧化钛反蛋白石加入有机污染物溶液中,实现有机污染物的降解。
由于上述技术方案的运用,本发明与现有技术相比具有下列优点:
1. 本发明的二氧化钛反蛋白石(TiO2 IO)是在毛细管力辅助下将前驱体填充到蛋白石模板的空隙中,通过刻蚀或者烧结的方法将模板去除,从而得到的三维孔洞结构;二氧化钛反蛋白石是一种多孔纳米材料,较传统二氧化钛纳米粒子比表面积大,有较好的传质性能,有利于反应物在光催化反应中迅速扩散;二氧化钛反蛋白石的三维孔洞结构有较高的光吸收效率,可以增加可见光散射,增强光子与材料的反应程度,进而使有机物更快地降解,更为有效地提高光催化效率;
2. 本发明的氮掺杂二氧化钛反蛋白石(N-TiO2 IO)中N取代少量晶格氧(Ti-N)进入二氧化钛晶格,由于氮的部分掺杂,改变了二氧化钛晶体原有的原子轨道价态,形成N(2p)态和O(2p)态的混合态,从而使二氧化钛带隙变窄,将二氧化钛的吸收光谱拓展到可见光区。
3. 本发明中,CdSe是一种窄禁带半导体,具有较宽的光吸收范围,复合CdSe能有效提高TiO2的光催化活性,提高TiO2光生电荷分离效率,并拓展其光吸收范围至可见光区域。因此,氮掺杂与CdSe复合的协同效应可以显著提高TiO2反蛋白石光催化活性。
附图说明
图1为实施例二中氮掺杂二氧化钛反蛋白石(CdSe/N-TiO2 IO)的扫描电镜图;
图2为实施例三中硒化镉复合氮掺杂二氧化钛反蛋白石(CdSe/N-TiO2 IO)的扫描电镜图;
图3为实施例三CdSe/N-TiO2 IO的氮气吸附-脱附等温线图。
具体实施方式
下面结合实施例对本发明作进一步描述。
实施例一
氮掺杂二氧化钛反蛋白石薄膜光催化剂(N-TiO2 IO)的制备:向15 g无水乙醇滴加0.25 g二乙醇胺,室温搅拌20 min,向溶液加入0.5 g钛酸四正丁酯,搅拌2 h,得到TiO2前驱体溶液,记为溶液A;取0.29 g尿素溶于30 mL乙醇,记为溶液B。取1 mL溶液A和1 mL溶液B混合均匀,将制备好的聚苯乙烯(粒径为280~320 nm)蛋白石模板浸泡在混合溶液,置于60℃烘箱干燥,将干燥好的前驱体模板使用管式炉500 ℃煅烧2 h,升温速率1 ℃/min,得到氮掺杂二氧化钛反蛋白石(N-TiO2 IO)。
实施例二
氮掺杂二氧化钛反蛋白石薄膜光催化剂(N-TiO2 IO)的制备:向17.5 g无水乙醇滴加0.125 g乙酰丙酮,室温搅拌10 min,向溶液加入0.5 g钛酸四正丁酯,搅拌2 h,得到TiO2前驱体溶液,记为溶液A;取0.29 g尿素溶于30 mL乙醇,记为溶液B。取1 mL溶液A和1 mL溶液B混合均匀,将制备好的聚苯乙烯(粒径为280~320 nm)蛋白石模板浸泡在混合溶液,置于60 ℃烘箱干燥,将干燥好的前驱体模板使用管式炉500 ℃煅烧2 h,升温速率1 ℃/min,得到氮掺杂二氧化钛反蛋白石(N-TiO2 IO)。从附图1中可以看出,N-TiO2 IO呈现面心立方排布,孔洞均匀。
实施例三
硒化镉复合氮掺杂二氧化钛反蛋白石(CdSe/N-TiO2 IO)的制备:向水热反应釜加入3块组装好氮掺杂二氧化钛反蛋白石(20 mg)的FTO玻璃,取0.1830 g CdCl2,0.0796 gSe,0.2520 g Na2SO3和35 mL去离子水,3000 rpm振荡均匀,转移至水热反应釜,于180℃反应8 h。自然冷却,取出FTO玻璃,去离子水冲洗,干燥,得到硒化镉复合氮掺杂二氧化钛反蛋白石(CdSe/ N-TiO2 IO)。从附图2中可以看出,CdSe均匀地分布在N-TiO2 IO骨架上,且未堵塞反蛋白石三维孔洞。CdSe/N-TiO2 IO的氮气吸附-脱附等温线如附图3所示,吸附等温线为ΙΙΙ型等温线,在低压区吸附量少,相对压力越高,吸附量越多。
实施例四
硒化镉复合氮掺杂二氧化钛反蛋白石(CdSe/N-TiO2 IO)的制备:向水热反应釜加入3块组装好氮掺杂二氧化钛反蛋白石(20 mg)的FTO玻璃,取0.1830 g CdCl2,0.0796 gSe,0.208 g NaHSO3和35 mL去离子水,将混合物振荡均匀,转移至水热反应釜,于180 ℃反应8 h。自然冷却,取出FTO玻璃,去离子水冲洗,干燥,得到硒化镉复合氮掺杂二氧化钛反蛋白石(CdSe/ N-TiO2 IO)。CdSe均匀修饰在反蛋白石骨架上,且未堵塞孔洞。
实施例五
N-TiO2 IO对罗丹明 B的光催化降解实验:称取50 mg上述实施例二中所得光催化剂N-TiO2 IO,置于50 mL浓度为5 mg/L 的罗丹明 B水溶液。避光搅拌半小时,达到吸附-解吸平衡,此时罗丹明B的去除率约50%。平衡后,使用300 W氙灯照射催化剂,每10分钟取样3mL,使用紫外-可见分光光度计测试水样在554 nm波长下的吸光度,并参照标准曲线,得到相应水样中罗丹明 B的浓度。光照50 min,罗丹明B浓度较起始值降低明显,去除率约80%,光照80 min后,水溶液中罗丹明 B去除率约82%。
实施例六
CdSe/N-TiO2 IO对罗丹明 B的光催化降解实验:称取50 mg上述实施例三中所得光催化剂CdSe/N-TiO2 IO,置于50 mL 浓度为5 mg/L 的罗丹明 B水溶液。避光搅拌半小时,达到吸附-解吸平衡,此时罗丹明B的去除率约40%。平衡后,使用300 W氙灯照射催化剂,每10分钟取样3 mL,使用紫外-可见分光光度计测试水样在554 nm波长下的吸光度,并参照标准曲线,得到相应水样中罗丹明 B的浓度。在加入CdSe/N-TiO2 IO光催化剂且施加光照的条件下,10分钟内约有60%的染料分子从水体中吸附并降解去除。延长光照时间,罗丹明B浓度降低明显,光照60 min,水溶液中罗丹明 B几乎完全降解,光照时间为80 min时,罗丹明B去除率达到98%。该实验中,由于氮掺杂与和硒化镉敏化的协同作用,使得光催化剂对水体中罗丹明 B的降解效率大幅提高。
实施例七
CdSe/N-TiO2 IO对罗丹明 B的光催化降解实验:称取50 mg上述实施例三中所得光催化剂CdSe/N-TiO2 IO,置于50 mL 浓度为10 mg/L 的罗丹明 B水溶液。避光搅拌半小时,达到吸附-解吸平衡,此时罗丹明B的去除率约35%。平衡后,使用300 W氙灯照射催化剂,每10分钟取样3 mL,使用紫外-可见分光光度计测试水样在554 nm波长下的吸光度,并参照标准曲线,得到相应水样中罗丹明 B的浓度。在加入CdSe/N-TiO2 IO光催化剂且施加光照的条件下,30分钟内约有55%的染料分子从水体中吸附并降解去除。延长光照时间,罗丹明B浓度降低明显,光照120 min,水溶液中罗丹明 B几乎完全降解,光照时间为150 min时,罗丹明B去除率达到98.5%。
实施例八
CdSe/N-TiO2 IO对罗丹明 B的循环降解实验:上述实施例六中光照80 min后回收的复合材料依次用去离子水和95%乙醇洗涤,烘干,置于新鲜的50 mL 5 mg/L 的罗丹明 B溶液中,使用氙灯模拟太阳光照射80 min,每10分钟取样3 mL,使用紫外-可见分光光度计测试水样在554 nm波长下的吸光度,并参照标准曲线,得到相应水样中罗丹明 B的浓度。依照上述步骤,重复3次,测试并记录数据。
在上述三次重复使用过程中,复合材料始终保持优良的光催化性能,照射80 min,水溶液中罗丹明 B染料分子的最终去除效率分别为97%、97%、95%。因此,该催化剂可以重复使用,具有良好的稳定性。
本发明通过掺杂非金属元素和复合窄带隙半导体对二氧化钛纳米材料进行改性,采用一步法制备氮掺杂二氧化钛反蛋白石(N-TiO2 IO)并对其复合窄带隙半导体CdSe,得到硒化镉复合氮掺杂二氧化钛反蛋白石(CdSe/N-TiO2 IO)。氮掺杂与硒化镉敏化的协同效应可以有效提高二氧化钛反蛋白石的光催化性能;改性后的催化剂具有催化活性高、可回收等优点。

Claims (3)

1.一种硒化镉复合氮掺杂二氧化钛反蛋白石在可见光催化降解罗丹明 B中的应用,其特征在于,所述硒化镉复合氮掺杂二氧化钛反蛋白石的制备方法为以下步骤:
(1)向17.5 g无水乙醇滴加0.125 g乙酰丙酮,室温搅拌10 min,向溶液加入0.5 g钛酸四正丁酯,搅拌2 h,得到TiO2前驱体溶液,记为溶液A;取0.29 g尿素溶于30 mL乙醇,记为溶液B;取1 mL溶液A和1 mL溶液B混合均匀,将制备好的聚苯乙烯蛋白石模板浸泡在混合溶液,置于60℃烘箱干燥,将干燥好的前驱体模板使用管式炉500 ℃煅烧2 h,升温速率1 ℃/min,得到氮掺杂二氧化钛反蛋白石;
(2)向水热反应釜加入20 mg组装好氮掺杂二氧化钛反蛋白石的FTO玻璃,取0.1830 gCdCl2,0.0796 g Se,0.2520 g Na2SO3和35 mL去离子水,3000 rpm振荡均匀,转移至水热反应釜,于180℃反应8h;自然冷却,取出FTO玻璃,去离子水冲洗,干燥,得到硒化镉复合氮掺杂二氧化钛反蛋白石。
2.根据权利要求1所述应用,其特征在于,聚苯乙烯为粒径为280~320 nm的聚苯乙烯小球。
3.根据权利要求1所述应用,其特征在于,采用垂直沉积法制备聚苯乙烯蛋白石模板。
CN201710405712.5A 2017-06-01 2017-06-01 一种可见光催化降解有机污染物的反蛋白石材料及其制备方法 Active CN107159295B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710405712.5A CN107159295B (zh) 2017-06-01 2017-06-01 一种可见光催化降解有机污染物的反蛋白石材料及其制备方法
US15/993,541 US10730759B2 (en) 2017-06-01 2018-05-30 Inverse opal material for visible-light driven photocatalytic degradation of organic pollutants, and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710405712.5A CN107159295B (zh) 2017-06-01 2017-06-01 一种可见光催化降解有机污染物的反蛋白石材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107159295A CN107159295A (zh) 2017-09-15
CN107159295B true CN107159295B (zh) 2022-08-12

Family

ID=59821529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710405712.5A Active CN107159295B (zh) 2017-06-01 2017-06-01 一种可见光催化降解有机污染物的反蛋白石材料及其制备方法

Country Status (2)

Country Link
US (1) US10730759B2 (zh)
CN (1) CN107159295B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107711533B (zh) * 2017-10-31 2019-11-05 于谦 蛋白土复合型多功能除味猫砂及其制备方法
CN108031437B (zh) * 2017-12-07 2020-08-14 苏州大学 吸附有机污染物的复合材料及其制备方法与应用
CN108654645B (zh) * 2018-04-27 2020-08-14 苏州大学 一种负载型多功能催化复合材料、其制备方法及在水污染物催化去除中的应用
CN108579779B (zh) * 2018-04-28 2020-08-04 苏州大学 一种三维复合材料、其制备方法及在水污染物可见光催化降解去除中的应用
CN110743541B (zh) * 2019-10-10 2022-09-09 苏州大学 铑掺杂钛酸锶反蛋白石材料及其制备方法与其在压电协同光催化去除有机污染物中的应用
CN110787815B (zh) * 2019-11-13 2022-07-29 南京工程学院 一种TiO2/MoS2核壳结构三维光子晶体复合材料及其制备方法
CN111229194A (zh) * 2020-03-10 2020-06-05 陕西科技大学 一种(TiO2-ZrO2-SiO2)@反蛋白石结构SiO2催化剂的制备及应用
CN111437806B (zh) * 2020-04-07 2023-04-07 陕西科技大学 一种SiO2-TiO2复合超材料结构光催化剂及其制备方法
CN113649026A (zh) * 2021-07-27 2021-11-16 南昌大学 一种三维有序大孔硫化镉光催化材料的通用合成方法
CN113649590A (zh) * 2021-08-23 2021-11-16 合肥学院 一种用于联吡啶除草剂检测的纳米银反蛋白石sers探针的制备方法
CN113737281B (zh) * 2021-08-31 2024-04-26 武汉理工大学 一种反蛋白石结构的氧化物球形光子晶体及其简易制备方法和其应用
CN113908875B (zh) * 2021-10-18 2023-09-08 深圳市康弘智能健康科技股份有限公司 一种可见光催化材料的制备方法、以及降解空气污染物的方法
CN114394616B (zh) * 2021-12-31 2022-09-13 华南农业大学 一种钙掺杂硫化镉纳米片及其制备方法和应用
CN115368879B (zh) * 2022-09-22 2024-01-30 南京工程学院 一种高导热薄膜材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1555913A (zh) * 2003-12-30 2004-12-22 上海交通大学 光催化活性氮掺杂二氧化钛纳米材料的制备方法
CN103537302A (zh) * 2013-10-01 2014-01-29 大连理工大学 一种用CdSe量子点制备复合纳米光催化剂的方法
CN105717098A (zh) * 2016-02-25 2016-06-29 济南大学 一种基于氮掺杂二氧化钛纳米片的电致化学发光双酚a生物传感器的制备方法及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327953C (zh) * 2004-08-30 2007-07-25 中国科学院上海硅酸盐研究所 硒化镉改性的纳米氧化钛光催化剂及制备方法
CN103143379A (zh) * 2013-03-06 2013-06-12 北京化工大学 一步法制备氮掺杂二氧化钛反蛋白石薄膜光催化剂的方法
CN104971746A (zh) * 2015-03-25 2015-10-14 江苏大学 一种掺杂量子点负载还原氧化石墨烯光催化剂及其应用
CN106378157A (zh) * 2016-09-09 2017-02-08 武汉理工大学 一种TiO2‑Au‑CdS三元光子晶体结构光催化剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1555913A (zh) * 2003-12-30 2004-12-22 上海交通大学 光催化活性氮掺杂二氧化钛纳米材料的制备方法
CN103537302A (zh) * 2013-10-01 2014-01-29 大连理工大学 一种用CdSe量子点制备复合纳米光催化剂的方法
CN105717098A (zh) * 2016-02-25 2016-06-29 济南大学 一种基于氮掺杂二氧化钛纳米片的电致化学发光双酚a生物传感器的制备方法及应用

Also Published As

Publication number Publication date
US20180346343A1 (en) 2018-12-06
US10730759B2 (en) 2020-08-04
CN107159295A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
CN107159295B (zh) 一种可见光催化降解有机污染物的反蛋白石材料及其制备方法
CN108940338B (zh) 钾元素掺杂多孔氮化碳光催化剂及其制备方法和应用
CN108579779B (zh) 一种三维复合材料、其制备方法及在水污染物可见光催化降解去除中的应用
CN106732524B (zh) 一种α/β-氧化铋相异质结光催化剂及其制法和用途
CN101195094B (zh) 可见光活化的二氧化钛卟啉纳米复合催化剂及其制备方法
CN108160042B (zh) 利用钴离子掺杂金属有机骨架材料处理抗生素废水的方法
CN107051548B (zh) 一种简易制备六边形CdO/CdS异质结纳米复合材料的方法
CN106964339A (zh) 碳掺杂超薄钨酸铋纳米片光催化材料及其制备方法
CN107774285A (zh) 一种高活性非整比BiOBr光催化材料的制备方法及其应用
CN112108141A (zh) 一种氧化锌微米棒压电催化剂及其制备方法与应用
CN110624595A (zh) 一种钙铟硫/碳化钛光催化复合材料及其制备方法
CN106693996B (zh) 硫化铋-铁酸铋复合可见光催化剂的制备方法及其应用
KR101749673B1 (ko) 중형기공 아나타제 구형 티타늄 다이옥사이드 광촉매의 제조방법
CN108940281B (zh) 一种新型纳米光催化材料Ag2MoO4-WO3异质结的制备方法
CN108704645B (zh) 一种铜-氧化钛复合光催化剂及其制备方法与应用
CN108579768B (zh) 少层MoS2修饰Ag-TiO2纳米复合薄膜的制备方法
CN111001400B (zh) 一种二氧化钛材料及其制备方法
CN103922382B (zh) 可见光响应微纳米分级多孔氧化铈的合成方法及应用
CN108786872B (zh) 一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用
CN108940349B (zh) 利用铬酸银/硫掺氮化碳z型光催化剂去除染料污染物的方法
CN108940348B (zh) 铬酸银/硫掺氮化碳z型光催化剂及其制备方法
CN115301225A (zh) 一种中空微球结构的铋/二氧化钛光催化降解材料的制备方法及其应用
CN111558382B (zh) 一种硫化铋/钼酸铋氧缺陷空心球复合光催化剂的制备方法及应用
CN106076422B (zh) 一种海泡石负载卟啉敏化Bi2WO6可见光催化剂的制备方法
CN113578363A (zh) 一种可见光响应的含氮缺陷g-C3N4/MoS2二元复合光催化剂、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant