[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN107093550A - The manufacture method of n-type diffusion layer formation composition, the manufacture method of n-type diffusion layer and solar cell device - Google Patents

The manufacture method of n-type diffusion layer formation composition, the manufacture method of n-type diffusion layer and solar cell device Download PDF

Info

Publication number
CN107093550A
CN107093550A CN201610917021.9A CN201610917021A CN107093550A CN 107093550 A CN107093550 A CN 107093550A CN 201610917021 A CN201610917021 A CN 201610917021A CN 107093550 A CN107093550 A CN 107093550A
Authority
CN
China
Prior art keywords
diffusion layer
type diffusion
layer
type
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610917021.9A
Other languages
Chinese (zh)
Inventor
佐藤铁也
吉田诚人
野尻刚
冈庭香
町井洋
町井洋一
岩室光则
木泽桂子
织田明博
足立修郎
足立修一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of CN107093550A publication Critical patent/CN107093550A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/14Photovoltaic cells having only PN homojunction potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/121The active layers comprising only Group IV materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种n型扩散层形成用组合物,其包括:含有施主元素且软化温度为500℃以上且900℃以下,平均粒径为5μm以下的玻璃粉末;以及分散介质。The present invention provides a composition for forming an n-type diffusion layer, comprising: a glass powder containing a donor element, having a softening temperature of 500° C. to 900° C., and an average particle diameter of 5 μm or less; and a dispersion medium.

Description

n型扩散层形成用组合物、n型扩散层的制造方法以及太阳能 电池元件的制造方法Composition for forming n-type diffused layer, method for producing n-type diffused layer, and solar energy Manufacturing method of battery element

本发明是申请号为201280031501.5的发明专利的分案申请,母案申请日为2012年7月3日,母案发明名称与上述名称相同。This invention is a divisional application of the invention patent with application number 201280031501.5. The filing date of the parent application is July 3, 2012, and the invention name of the parent application is the same as the above-mentioned name.

技术领域technical field

本发明涉及一种太阳能电池元件的n型扩散层形成用组合物、n型扩散层的制造方法以及太阳能电池元件的制造方法,更详细而言,本发明涉及一种可在作为半导体基板的硅的特定区域形成n型扩散层的技术。The present invention relates to a composition for forming an n-type diffused layer of a solar cell element, a method for manufacturing an n-type diffused layer, and a method for manufacturing a solar cell element. A technique for forming an n-type diffusion layer in a specific area.

背景技术Background technique

对以往的硅太阳能电池元件的制造工序进行说明。The manufacturing process of the conventional silicon solar cell element is demonstrated.

首先,为了促进光陷落效应来谋求高效率化,准备在受光面形成有纹理结构的p型硅基板,接下来,在作为含施主元素的化合物的氧氯化磷(POCl3)、氮气、氧气的混合气体环境下,以800℃~900℃进行几十分钟的处理而同样地形成n型扩散层。在该以往的方法中,因使用混合气体来进行磷的扩散,所以不仅在表面形成n型扩散层,而且在侧面、背面也形成n型扩散层。因此,需要用于去除侧面的n型扩散层的侧蚀工序。另外,背面的n型扩散层必须转换成p+型扩散层,在背面的n型扩散层上赋予铝糊剂,通过铝的扩散而由n型扩散层转换成p+型扩散层。First, a p-type silicon substrate with a textured structure formed on the light-receiving surface is prepared in order to promote the light trapping effect and achieve high efficiency. Next, phosphorous oxychloride (POCl 3 ), nitrogen, and oxygen In a mixed gas atmosphere, the n-type diffusion layer is similarly formed by performing treatment at 800° C. to 900° C. for several tens of minutes. In this conventional method, since phosphorus is diffused using a mixed gas, an n-type diffusion layer is formed not only on the surface but also on the side surface and the rear surface. Therefore, a side etching process for removing the n-type diffusion layer on the side surface is required. In addition, the n-type diffused layer on the back must be converted to a p + -type diffused layer, and an aluminum paste is applied to the n-type diffused layer on the back, and the n-type diffused layer is converted to a p + -type diffused layer by the diffusion of aluminum.

另一方面,在半导体的制造领域中,提出了如下的方法:作为含施主元素的化合物,涂布含有五氧化二磷(P2O5)或磷酸二氢铵(NH4H2PO4)等磷酸盐的溶液,由此形成n型扩散层(例如参照日本特开2002-75894号公报)。另外,为了形成扩散层,将含有磷作为施主元素的糊剂作为扩散源涂布于硅基板表面上,并进行热扩散来形成扩散层的技术也为人所知(例如参照日本专利第4073968号公报)。On the other hand, in the field of semiconductor manufacturing, a method has been proposed in which a compound containing phosphorus pentoxide (P 2 O 5 ) or ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) is coated as a compound containing a donor element. A phosphate solution is used to form an n-type diffusion layer (for example, refer to Japanese Patent Application Laid-Open No. 2002-75894). In addition, in order to form a diffusion layer, a paste containing phosphorus as a donor element is coated on the surface of a silicon substrate as a diffusion source and thermally diffused to form a diffusion layer. ).

发明内容Contents of the invention

发明所要解决的课题The problem to be solved by the invention

但是,在这些方法中,施主元素或含有其的化合物从作为扩散源的溶液、或糊剂中飞散,因此与使用上述混合气体的气相反应法相同,在形成扩散层时磷也扩散至侧面及背面,因而在所涂布的部分以外也形成n型扩散层。另外,通常在太阳能电池中所使用的硅基板等半导体基板的上表面,具有凸部与凹部的高低差为5μm左右的纹理结构。由于涂布于这样的纹理结构的面上,所以有时n型扩散层形成得不均匀。However, in these methods, the donor element or a compound containing it scatters from the solution or paste used as a diffusion source, so phosphorus also diffuses to the sides and On the back side, an n-type diffused layer is also formed outside the coated portion. In addition, generally, the upper surface of a semiconductor substrate such as a silicon substrate used in a solar cell has a textured structure in which a difference in height between a convex portion and a concave portion is about 5 μm. Since the coating is applied on a surface with such a textured structure, the n-type diffusion layer may not be uniformly formed.

这样,当形成n型扩散层时,在使用氧氯化磷的气相反应中,不仅在原本需要n型扩散层的一面(通常为受光面或表面)形成n型扩散层,而且在另一面(非受光面或背面)或侧面也形成n型扩散层。另外,在涂布包含含有磷的化合物的溶液、或糊剂并进行热扩散的方法中,与气相反应法相同,在表面以外也形成n型扩散层。因此,为使元件具有pn结结构,必须在侧面进行蚀刻,在背面将n型扩散层转换成p型扩散层。通常,在背面涂布作为第13族元素的铝的糊剂,并进行烧成,从而将n型扩散层转换成p型扩散层。另外,在涂布溶液时磷不均匀地扩散,而形成不均匀的n型扩散层,导致太阳能电池整体的转换效率下降。进而,在先前为人所知的将含有磷等施主元素的糊剂作为扩散源进行涂布的方法中,含有施主元素的化合物挥散气化,也朝需要扩散的区域以外扩散,因此难以选择性地在特定的区域形成扩散层。In this way, when forming an n-type diffusion layer, in the gas phase reaction using phosphorus oxychloride, not only an n-type diffusion layer is formed on the side (usually the light-receiving side or surface) that originally needs an n-type diffusion layer, but also on the other side ( The n-type diffusion layer is also formed on the non-light-receiving surface or the back) or the side. In addition, in the method of applying a solution or paste containing a phosphorus-containing compound and performing thermal diffusion, an n-type diffusion layer is also formed on the surface as in the gas phase reaction method. Therefore, in order to make the element have a pn junction structure, it is necessary to etch on the side and convert the n-type diffusion layer into a p-type diffusion layer on the back. Usually, a paste of aluminum, which is a Group 13 element, is applied on the back surface and fired to convert the n-type diffusion layer into a p-type diffusion layer. In addition, when the solution is applied, phosphorus diffuses non-uniformly to form a non-uniform n-type diffusion layer, resulting in a decrease in the conversion efficiency of the solar cell as a whole. Furthermore, in the previously known method of applying a paste containing a donor element such as phosphorus as a diffusion source, the compound containing the donor element volatilizes and vaporizes, and also diffuses outside the area where diffusion is required, so it is difficult to selectively to form a diffusion layer in a specific area.

本发明是鉴于以上的以往的问题点而完成的发明,其课题在于提供一种n型扩散层形成用组合物、n型扩散层的制造方法以及太阳能电池元件的制造方法,上述n型扩散层形成用组合物可应用于使用半导体基板的太阳能电池元件,不在不需要的区域形成n型扩散层,且可在特定的区域在短时间内形成均匀的n型扩散层。The present invention has been made in view of the above conventional problems, and its object is to provide a composition for forming an n-type diffused layer, a method for manufacturing an n-type diffused layer, and a method for manufacturing a solar cell element, wherein the n-type diffused layer The forming composition can be applied to a solar cell element using a semiconductor substrate, and can form a uniform n-type diffused layer in a specific region in a short time without forming an n-type diffused layer in an unnecessary region.

用于解决课题的手段means to solve the problem

解决上述课题的技术方案如下。Means for solving the above-mentioned problems are as follows.

<1>一种n型扩散层形成用组合物,其包括:含有施主元素且软化温度为500℃以上且900℃以下,平均粒径为5μm以下的玻璃粉末;以及分散介质。<1> A composition for forming an n-type diffusion layer, comprising: a glass powder containing a donor element, having a softening temperature of 500° C. to 900° C., and an average particle diameter of 5 μm or less; and a dispersion medium.

<2>如上述<1>所述的n型扩散层形成用组合物,其中,上述玻璃粉末的d90为20μm以下。<2> The composition for forming an n-type diffused layer according to the above <1>, wherein d90 of the glass powder is 20 μm or less.

<3>如<1>或<2>所述的n型扩散层形成用组合物,其中,上述施主元素为选自P(磷)及Sb(锑)中的至少1种。<3> The composition for forming an n-type diffusion layer according to <1> or <2>, wherein the donor element is at least one selected from P (phosphorus) and Sb (antimony).

<4>如<1>~<3>中任一项所述的n型扩散层形成用组合物,其中,含有上述施主元素的玻璃粉末包含:选自由P2O3、P2O5及Sb2O3所组成的组中的至少1种含施主元素的物质,以及选自由SiO2、K2O、Na2O、Li2O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2及MoO3所组成的组中的至少1种玻璃成分物质。<4> The composition for forming an n - type diffused layer according to any one of < 1 > to < 3 >, wherein the glass powder containing the above - mentioned donor element contains: At least one donor element-containing substance from the group consisting of Sb 2 O 3 , and a substance selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, and PbO , CdO, SnO, ZrO 2 and MoO 3 at least one glass component substance in the group consisting of.

<5>一种n型扩散层的制造方法,其包括:在半导体基板上赋予<1>~<4>中任一项所述的n型扩散层形成用组合物的工序;以及对上述赋予后的半导体基板实施热扩散处理的工序。<5> A method for producing an n-type diffused layer, comprising: applying the composition for forming an n-type diffused layer according to any one of <1> to <4> on a semiconductor substrate; The subsequent semiconductor substrate is subjected to a process of thermal diffusion treatment.

<6>一种太阳能电池元件的制造方法,其包括:在半导体基板上赋予<1>~<4>中任一项所述的n型扩散层形成用组合物的工序;对上述赋予后的半导体基板实施热扩散处理,而形成n型扩散层的工序;以及在所形成的上述n型扩散层上形成电极的工序。<6> A method for producing a solar cell element, comprising: applying the composition for forming an n-type diffusion layer according to any one of <1> to <4> on a semiconductor substrate; a step of forming an n-type diffusion layer by performing thermal diffusion treatment on the semiconductor substrate; and a step of forming an electrode on the formed n-type diffusion layer.

<7><1>~<4>中任一项所述的n型扩散层形成用组合物在制造n型扩散层中的应用。<7> Use of the composition for forming an n-type diffused layer according to any one of <1> to <4> for producing an n-type diffused layer.

<8><1>~<4>中任一项所述的n型扩散层形成用组合物在制造包括半导体基板、n型扩散层、以及电极的太阳能电池元件中的应用。<8> Use of the composition for forming an n-type diffused layer according to any one of <1> to <4> to manufacture a solar cell element including a semiconductor substrate, an n-type diffused layer, and an electrode.

发明的效果The effect of the invention

根据本发明,可提供一种n型扩散层形成用组合物、n型扩散层的制造方法以及太阳能电池元件的制造方法,上述n型扩散层形成用组合物可应用于使用半导体基板的太阳能电池元件,其在不需要的区域不形成n型扩散层,且可在特定的区域在短时间内形成均匀的n型扩散层。According to the present invention, there can be provided a composition for forming an n-type diffused layer, a method for producing an n-type diffused layer, and a method for producing a solar cell element, wherein the composition for forming an n-type diffused layer can be applied to a solar cell using a semiconductor substrate. An element that does not form an n-type diffusion layer in an unnecessary region, and can form a uniform n-type diffusion layer in a specific region in a short time.

附图说明Description of drawings

图1是概念性地表示本发明的太阳能电池元件的制造工序的一例的剖面图。FIG. 1 is a cross-sectional view conceptually showing an example of the manufacturing process of the solar cell element of the present invention.

图2A是自表面所观察到的太阳能电池元件的平面图。Fig. 2A is a plan view of the solar cell element viewed from the surface.

图2B是将图2A的一部分放大表示的立体图。FIG. 2B is an enlarged perspective view showing part of FIG. 2A .

具体实施方式detailed description

首先,对本发明的n型扩散层形成用组合物进行说明,然后对使用n型扩散层形成用组合物的n型扩散层及太阳能电池元件的制造方法进行说明。First, the composition for forming an n-type diffused layer of the present invention will be described, and then an n-type diffused layer and a method for producing a solar cell element using the composition for forming an n-type diffused layer will be described.

此外,在本说明书中,“工序”这一用语不仅是指独立的工序,当无法与其他工序明确地加以区分时,只要达成该工序的预期的作用,则也包含在本用语中。另外,在本说明书中,“~”表示包括其前后所记载的数值分别作为最小值及最大值的范围。进而,在本说明书中,就组合物中的各成分的量而言,当在组合物中存在多种相当于各成分的物质时,只要事先无特别说明,则表示组合物中所存在的该多种物质的合计量。In addition, in this specification, the term "process" does not only refer to an independent process, but when it cannot be clearly distinguished from other processes, as long as the intended function of the process is achieved, it is also included in this term. In addition, in this specification, "-" shows the range which includes the numerical value described before and after that as a minimum value and a maximum value, respectively. Furthermore, in this specification, in terms of the amount of each component in the composition, when there are a plurality of substances corresponding to each component in the composition, unless otherwise specified, it means that the amount of each component present in the composition The total amount of multiple substances.

本发明的n型扩散层形成用组合物包括至少含有施主元素且软化温度为500℃以上且900℃以下、平均粒径为5μm以下的玻璃粉末(以下,有时仅称为“玻璃粉末”),以及分散介质;进而考虑组合物的赋予适应性(涂布性)等,根据需要也可含有其他添加剂。The composition for forming an n-type diffused layer of the present invention includes a glass powder (hereinafter, sometimes simply referred to as "glass powder") containing at least a donor element, having a softening temperature of 500° C. to 900° C., and an average particle diameter of 5 μm or less. and a dispersion medium; furthermore, other additives may be contained as necessary in consideration of imparting adaptability (coatability) of the composition, and the like.

这里,所谓n型扩散层形成用组合物,是指如下的材料:包括含有施主元素且软化温度为500℃以上且900℃以下,平均粒径为5μm以下的玻璃粉末,将其赋予至半导体基板上后使该施主元素热扩散,由此可形成n型扩散层。Here, the composition for forming an n-type diffusion layer refers to a material that includes a donor element, has a softening temperature of 500° C. to 900° C., and an average particle diameter of 5 μm or less glass powder, which is applied to a semiconductor substrate. Then, the donor element is thermally diffused to form an n-type diffusion layer.

通过使用包括含有施主元素且软化温度为500℃以上且900℃以下,平均粒径为5μm以下的玻璃粉末的n型扩散层形成用组合物,从而使热扩散处理时的玻璃的粘度不会变得过低,另外,使玻璃粉末在短时间内熔融。由此,在所期望的部位形成n型扩散层,而不在背面或侧面形成不需要的n型扩散层。Viscosity of the glass during thermal diffusion treatment is not changed by using a composition for forming an n-type diffused layer containing a donor element, having a softening temperature of 500° C. to 900° C., and glass powder having an average particle diameter of 5 μm or less. In addition, the glass powder is melted in a short time. Thereby, an n-type diffused layer is formed in a desired position, and an unnecessary n-type diffused layer is not formed on the back surface or the side surface.

因此,若应用本发明的n型扩散层形成用组合物,则不需要先前广泛采用的气相反应法中所必需的侧蚀工序,从而使工序简单化。另外,也不需要将形成在背面的n型扩散层转换成p+型扩散层的工序。因此,背面的p+型扩散层的形成方法,或者背面电极的材质、形状及厚度并无限制,所应用的制造方法或材质、形状的选择自由度扩大。另外,由背面电极的厚度所引起的半导体基板内的内部应力的产生得到抑制,半导体基板的翘曲也得到抑制,详细情况将后述。Therefore, when the composition for forming an n-type diffused layer of the present invention is applied, the side etching process required in the conventional gas phase reaction method widely used is unnecessary, and the process can be simplified. Also, there is no need for a step of converting the n-type diffusion layer formed on the rear surface into a p + -type diffusion layer. Therefore, the method of forming the p + -type diffusion layer on the back surface, or the material, shape, and thickness of the back electrode are not limited, and the freedom of selection of the manufacturing method, material, and shape to be applied is expanded. In addition, generation of internal stress in the semiconductor substrate due to the thickness of the back electrode is suppressed, and warping of the semiconductor substrate is also suppressed, details of which will be described later.

此外,通过烧成而使本发明的n型扩散层形成用组合物中所含有的玻璃粉末熔融,从而在n型扩散层上形成玻璃层。但是,在先前的气相反应法或者赋予含有磷酸盐的溶液或糊剂的方法中,也在n型扩散层上形成玻璃层,因此,本发明中所生成的玻璃层可与先前的方法同样地通过蚀刻来去除。因此,即使与先前的方法相比,本发明的n型扩散层形成用组合物也不产生不需要的产物,也不增加工序。In addition, the glass powder contained in the n-type diffused layer-forming composition of the present invention is melted by firing to form a glass layer on the n-type diffused layer. However, in the conventional gas phase reaction method or the method of applying a phosphate-containing solution or paste, a glass layer is also formed on the n-type diffusion layer, so the glass layer produced in the present invention can be formed in the same manner as the conventional method. removed by etching. Therefore, the composition for forming an n-type diffusion layer of the present invention does not generate unnecessary products and does not increase the number of steps even when compared with the conventional methods.

另外,玻璃粉末中的施主成分在烧成中也不易挥散,因此n型扩散层因挥散气体的产生而不仅形成在表面且还形成在背面或侧面的情况得以抑制。In addition, the donor component in the glass powder is also less likely to volatilize during firing, so that the n-type diffused layer is suppressed from being formed not only on the surface but also on the back or side surfaces due to the generation of volatilized gas.

作为其理由,可认为施主成分在玻璃中与作为构成元素的其他元素牢固地结合,因此不易挥发。The reason for this is considered to be that the donor component is strongly bonded to other constituent elements in the glass, so that it does not volatilize easily.

这样,本发明的n型扩散层形成用组合物可在所期望的部位形成所期望的浓度的n型扩散层,因此可形成n型施主元素(掺杂剂)的浓度高的选择性的区域。另一方面,通过作为n型扩散层的一般的方法的气相反应法、或单独使用含有磷酸盐的溶液的方法来形成n型施主元素的浓度高的选择性的区域一般而言是困难的。In this way, the composition for forming an n-type diffused layer of the present invention can form an n-type diffused layer at a desired concentration at a desired location, and thus can form a selective region with a high concentration of n-type donor elements (dopants). . On the other hand, it is generally difficult to form a selective region with a high concentration of n-type donor elements by a gas phase reaction method, which is a general method for n-type diffusion layers, or by using a solution containing phosphate alone.

对本发明的含有施主元素的玻璃粉末进行详细说明。The donor element-containing glass powder of the present invention will be described in detail.

所谓施主元素,是指通过使其在半导体基板中扩散(掺杂)而能够形成n型扩散层的元素。作为施主元素,可使用第15族的元素,例如可举出P(磷)、Sb(锑)、Bi(铋)及As(砷)等。从安全性、玻璃化的容易性等的观点出发,合适的是P或Sb。The term "donor element" refers to an element capable of forming an n-type diffusion layer by diffusing (doping) in the semiconductor substrate. As the donor element, an element of Group 15 can be used, and examples thereof include P (phosphorus), Sb (antimony), Bi (bismuth), and As (arsenic). From the viewpoint of safety, easiness of vitrification, etc., P or Sb is suitable.

作为用于将施主元素导入至玻璃粉末中的含施主元素的物质,可举出P2O3、P2O5、Sb2O3、Bi2O3及As2O3,优选为使用选自由P2O3、P2O5及Sb2O3所组成的组中的至少1种。Examples of the donor element-containing substance for introducing the donor element into the glass powder include P 2 O 3 , P 2 O 5 , Sb 2 O 3 , Bi 2 O 3 and As 2 O 3 . At least one selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb 2 O 3 .

另外,含有施主元素的玻璃粉末可根据需要而调整成分比率,由此能控制熔融温度、软化温度、玻璃化转变温度、化学耐久性等。优选还包含以下所述的玻璃成分物质。In addition, the glass powder containing the donor element can adjust the component ratio as needed, thereby controlling the melting temperature, softening temperature, glass transition temperature, chemical durability, and the like. It is preferable to further contain glass component substances described below.

作为玻璃成分物质,可举出SiO2、K2O、Na2O、Li2O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2、WO3、MoO3、MnO、La2O3、Nb2O5、Ta2O5、Y2O3、TiO2、ZrO2、GeO2、TeO2及Lu2O3等,优选使用选自由SiO2、K2O、Na2O、Li2O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2、WO3、MoO3及MnO所组成的组中的至少1种,更优选使用选自由SiO2、K2O、Na2O、Li2O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2及MoO3所组成的组中的至少1种。Examples of glass components include SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 , WO 3 , MoO 3 , MnO, La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , TiO 2 , ZrO 2 , GeO 2 , TeO 2 and Lu 2 O 3 , etc., preferably used selected from SiO 2 , K 2 O , Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 , WO 3 , MoO 3 , and MnO, more preferably At least one selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 and MoO 3 .

作为含有施主元素的玻璃粉末的具体例,可举出包括上述含施主元素的物质与上述玻璃成分物质这两者的体系,可举出:P2O5-SiO2系(以含施主元素的物质-玻璃成分物质的顺序记载,以下同)、P2O5-K2O系、P2O5-Na2O系、P2O5-Li2O系、P2O5-BaO系、P2O5-SrO系、P2O5-CaO系、P2O5-MgO系、P2O5-BeO系、P2O5-ZnO系、P2O5-CdO系、P2O5-PbO系、P2O5-SnO系、P2O5-GeO2系、P2O5-TeO2系等包含P2O5作为含施主元素的物质的体系,代替上述包含P2O5的体系的P2O5而包含Sb2O3来作为含施主元素的物质的体系的玻璃粉末。Specific examples of the glass powder containing the donor element include a system including both the above-mentioned donor element-containing substance and the above-mentioned glass component substance, such as: P 2 O 5 -SiO 2 system (based on the donor element-containing Substance-Glass components are described in the order of substances, the same below), P 2 O 5 -K 2 O system, P 2 O 5 -Na 2 O system, P 2 O 5 -Li 2 O system, P 2 O 5 -BaO system , P 2 O 5 -SrO system, P 2 O 5 -CaO system, P 2 O 5 -MgO system, P 2 O 5 -BeO system, P 2 O 5 -ZnO system, P 2 O 5 -CdO system, P 2 O 5 -PbO system, P 2 O 5 -SnO system, P 2 O 5 -GeO 2 system, P 2 O 5 -TeO 2 system, etc. containing P 2 O 5 as a donor element-containing system, instead of the above-mentioned A glass powder of a P 2 O 5 system containing Sb 2 O 3 as a donor element - containing substance.

此外,也可为如P2O5-Sb2O3系、P2O5-As2O3系等这样的、包含2种以上含施主元素的物质的玻璃粉末。In addition, glass powders containing two or more kinds of donor element-containing substances such as P 2 O 5 -Sb 2 O 3 systems and P 2 O 5 -As 2 O 3 systems may be used.

在上述中例示了包含两种成分的复合玻璃,但也可为P2O5-SiO2-CaO等根据需要包含三种成分以上的物质的玻璃粉末。In the above, the composite glass containing two components was exemplified, but glass powder containing three or more components as needed, such as P 2 O 5 -SiO 2 -CaO, may also be used.

玻璃粉末中的玻璃成分物质的含有比率理想的是考虑熔融温度、软化温度、玻璃化转变温度、化学耐久性而适当设定,一般而言,优选为0.1质量%以上且95质量%以下,更优选为0.5质量%以上且90质量%以下。The content ratio of the glass component substance in the glass powder is desirably set appropriately in consideration of melting temperature, softening temperature, glass transition temperature, and chemical durability, and generally, it is preferably 0.1 mass % or more and 95 mass % or less, and more Preferably it is 0.5 mass % or more and 90 mass % or less.

具体而言,玻璃粉末中含有SiO2时的SiO2的含有比率优选为10质量%以上且90质量%以下的范围。Specifically, when SiO 2 is contained in the glass powder, the content ratio of SiO 2 is preferably in the range of not less than 10% by mass and not more than 90% by mass.

从扩散处理时的扩散性、滴液的观点出发,玻璃粉末的软化温度必须为500℃以上且900℃以下。另外,优选为600℃以上且800℃以下,更优选为700℃以上且800℃以下。在软化温度低于500℃的情况下,扩散处理时玻璃的粘度变得过低,且产生滴液,因此有时在特定的部分以外也形成n型扩散层。另外,在软化温度高于900℃的情况下,有时玻璃粉末不完全熔融,因而不能形成均匀的n型扩散层。The softening temperature of the glass powder must be 500° C. or higher and 900° C. or lower from the viewpoint of diffusibility and dripping during the diffusion treatment. Moreover, it is preferably 600°C or more and 800°C or less, and more preferably 700°C or more and 800°C or less. When the softening temperature is lower than 500° C., the viscosity of the glass becomes too low during the diffusion treatment and dripping occurs, so that an n-type diffusion layer may be formed also in other than specific portions. In addition, when the softening temperature is higher than 900° C., the glass powder may not be completely melted, so that a uniform n-type diffusion layer may not be formed.

若玻璃粉末的软化温度为500℃以上且900℃以下的范围内,则如上所述也不会产生滴液,因此在扩散处理后,可朝特定的区域将n型扩散层形成为所期望的形状。例如以aμm宽的线状图案来赋予n型扩散层形成用组合物时,可保持扩散处理后的线宽b为b<1.5a μm的范围的线状图案。If the softening temperature of the glass powder is in the range of 500°C to 900°C, dripping will not occur as described above, so after the diffusion treatment, the n-type diffusion layer can be formed in a desired area. shape. For example, when the composition for forming an n-type diffusion layer is provided as a linear pattern having a width of a μm, the linear pattern whose line width b after the diffusion treatment is in the range of b<1.5 a μm can be maintained.

玻璃粉末的软化温度可使用岛津制作所(株)制造的DTG-60H型差示热·热重量同时测定装置,并通过差示热(DTA)曲线等来求出。The softening temperature of the glass powder can be determined from a differential thermal (DTA) curve or the like using a DTG-60H differential thermal/thermogravimetric simultaneous measuring device manufactured by Shimadzu Corporation.

作为玻璃粉末的形状,可举出大致球状、扁平状、块状、板状及鳞片状等,从制成n型扩散层形成用组合物时的对于基板的涂布性(赋予适应性)或均匀扩散性的观点出发,理想的是大致球状、扁平状或板状。As the shape of the glass powder, there are roughly spherical, flat, massive, plate-like, and scaly shapes, etc., from the coatability (imparting adaptability) to the substrate when it is made into an n-type diffusion layer-forming composition or From the viewpoint of uniform diffusibility, it is preferably approximately spherical, flat or plate-shaped.

玻璃粉末的平均粒径需要为5μm以下。另外,优选为0.1μm~5μm,更优选为0.5μm~4μm。The average particle diameter of the glass powder needs to be 5 μm or less. Moreover, it is preferably 0.1 μm to 5 μm, more preferably 0.5 μm to 4 μm.

通过将玻璃粉末的平均粒径设为5μm以下,从而即使在使用软化温度处于上述范围内的玻璃粉末的情况下,在短时间内也会熔融,从而容易获得平滑的玻璃层。因此,通过将玻璃粉末的平均粒径设为5μm以下,从而可形成均匀的n型扩散层。By setting the average particle diameter of the glass powder to 5 μm or less, even when using a glass powder having a softening temperature within the above range, it melts in a short time, and a smooth glass layer is easily obtained. Therefore, by setting the average particle size of the glass powder to 5 μm or less, a uniform n-type diffused layer can be formed.

n型扩散层是否均匀的情况,例如可通过涂布于半导体基板上所获得的n型扩散层面内的薄膜电阻的偏差(标准偏差:σ)的形式来确认。当薄膜电阻值的偏差(σ)显示出例如10以下,优选为5以下,更优选为2以下时,可评价为形成了均匀的n型扩散层。Whether or not the n-type diffusion layer is uniform can be confirmed, for example, by the variation (standard deviation: σ) of the sheet resistance in the n-type diffusion layer obtained by coating on the semiconductor substrate. When the variation (σ) of the sheet resistance value is, for example, 10 or less, preferably 5 or less, more preferably 2 or less, it can be evaluated that a uniform n-type diffused layer is formed.

在本发明中,作为薄膜电阻,采用利用三菱化学(株)制造的Loresta-EP MCP-T360型低电阻率计,并通过四探针法在25℃下所测定的值。In the present invention, a value measured at 25° C. by a four-probe method using a Loresta-EP MCP-T360 low resistivity meter manufactured by Mitsubishi Chemical Corporation was used as the sheet resistance.

另外,σ,是将针对所涂布的面内通过上述测定方法所获得的25处的薄膜电阻值的偏差的平方和除以数据数,再根据将由此所得的值的平方根而算出的。In addition, σ is calculated from the square root of the value obtained by dividing the sum of the squares of the deviations of the sheet resistance values at 25 points in the coated surface obtained by the above measurement method by the number of data.

另外,通常在太阳能电池中所使用的半导体基板上表面,具有凸部与凹部的高低差为5μm左右的纹理结构。因此,通过将玻璃粉末的平均粒径设为5μm以下,从而提升对于凹部表面的追随性,因此也可减少扩散不均。In addition, generally, the upper surface of a semiconductor substrate used in a solar cell has a textured structure in which a difference in height between a convex portion and a concave portion is about 5 μm. Therefore, by setting the average particle size of the glass powder to 5 μm or less, since the followability to the surface of the concave portion is improved, diffusion unevenness can also be reduced.

这里,在本说明书中,只要事先无特别说明,则玻璃的平均粒径表示体积平均粒径,可通过激光散射衍射法粒度分布测定装置(Beckman Coulter公司制造)等来测定。Here, in this specification, unless otherwise specified, the average particle diameter of the glass means a volume average particle diameter, and can be measured with a laser scattering diffraction particle size distribution analyzer (manufactured by Beckman Coulter) or the like.

本发明中所使用的玻璃粉末的d90优选为20μm以下。另外,d90更优选为15μm以下,进一步优选为10μm以下。此处所谓d90,是指在描绘粒径的体积分布累积曲线时,从粒径最小的粒子起依次累积而达到整体的90%时的粒径。体积分布累积曲线可与上述平均粒径同样地进行测定,可通过激光散射衍射法粒度分布测定装置(Beckman Coulter公司制造)等来测定。The d90 of the glass powder used in the present invention is preferably 20 μm or less. In addition, d90 is more preferably 15 μm or less, still more preferably 10 μm or less. Here, d90 refers to the particle diameter at which 90% of the whole is accumulated sequentially from the particle with the smallest particle diameter when the cumulative volume distribution curve of the particle diameter is drawn. The volume distribution cumulative curve can be measured in the same manner as the average particle size described above, and can be measured with a laser light scattering diffraction particle size distribution analyzer (manufactured by Beckman Coulter) or the like.

若上述玻璃粉末的d90为20μm以下,则存在如下的倾向:在将上述n型扩散层形成用组合物赋予至半导体基板上表面后,能抑制由粗大粒子所引起的大的气孔的产生,并可使施主元素的分布更均匀化。If the d90 of the above-mentioned glass powder is 20 μm or less, there is a tendency that after the above-mentioned composition for forming an n-type diffusion layer is applied to the upper surface of the semiconductor substrate, the generation of large pores caused by coarse particles can be suppressed, and The distribution of the donor elements can be made more uniform.

就本发明中的玻璃粉末而言,需要玻璃粉末的软化温度为500℃~900℃,平均粒径为5μm以下。另外,优选为玻璃的软化温度为600℃~800℃,平均粒径为0.1μm~5μm,更优选为玻璃的软化温度为700℃~800℃,平均粒径为0.5μm~4μm。The glass powder in the present invention needs to have a softening temperature of 500° C. to 900° C. and an average particle diameter of 5 μm or less. In addition, the softening temperature of the glass is preferably 600°C to 800°C, and the average particle size is 0.1 µm to 5 µm, more preferably the softening temperature of the glass is 700°C to 800°C, and the average particle size is 0.5 µm to 4 µm.

另外,对于上述玻璃粉末而言,优选的是,玻璃粉末的软化温度为500℃~900℃,平均粒径为5μm以下,d90为20μm以下,更优选的是,玻璃的软化温度为600℃~800℃,平均粒径为0.1μm~5μm,d90为15μm以下,进一步优选的是,玻璃的软化温度为700℃~800℃,平均粒径为0.5μm~4μm,d90为10μm以下。In addition, for the above-mentioned glass powder, it is preferable that the softening temperature of the glass powder is 500° C. to 900° C., the average particle diameter is 5 μm or less, and the d90 is 20 μm or less. More preferably, the softening temperature of the glass is 600° C. to 600° C. 800°C, the average particle size is 0.1 μm to 5 μm, and the d90 is 15 μm or less. More preferably, the softening temperature of the glass is 700° C. to 800° C., the average particle size is 0.5 μm to 4 μm, and the d90 is 10 μm or less.

另外,对于上述玻璃粉末而言,更优选的是,玻璃的软化温度为600℃~800℃,平均粒径为0.1μm~5μm,d90为15μm以下,且含有上述施主元素的玻璃粉末包括选自由P2O3、P2O5及Sb2O3所组成的组中的至少1种含施主元素的物质,以及选自由SiO2、K2O、Na2O、Li2O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2及MoO3所组成的组中的至少1种玻璃成分物质,进一步优选的是,玻璃的软化温度为700℃~800℃,平均粒径为0.5μm~4μm,d90为10μm以下,且含有上述施主元素的玻璃粉末包括选自由P2O3、P2O5及Sb2O3所组成的组中的至少1种含施主元素的物质,以及选自由SiO2、K2O、Na2O、Li2O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2及MoO3所组成的组中的至少1种玻璃成分物质。In addition, for the above-mentioned glass powder, it is more preferable that the softening temperature of the glass is 600° C. to 800° C., the average particle size is 0.1 μm to 5 μm, and the d90 is 15 μm or less, and the glass powder containing the above-mentioned donor element includes: At least one donor element-containing substance from the group consisting of P 2 O 3 , P 2 O 5 , and Sb 2 O 3 , and a substance selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, and SrO , CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 and MoO 3 at least one glass component material in the group consisting of, more preferably, the softening temperature of the glass is 700 ° C ~ 800 ° C, the average Glass powder with a particle size of 0.5 μm to 4 μm, d90 of 10 μm or less, and containing the above-mentioned donor element includes at least one donor element selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb 2 O 3 and substances selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 and MoO 3 At least one glass constituent substance.

含有施主元素的玻璃粉末通过以下的顺序来制作。A glass powder containing a donor element is produced by the following procedure.

首先,称量原料,例如称量上述含施主元素的物质与玻璃成分物质,然后将其填充至坩埚中。作为坩埚的材质,可举出:铂、铂-铑、铱、氧化铝、石英、碳等。坩埚的材质可以考虑熔融温度、环境、与熔融物质的反应性等来适当选择。First, raw materials, for example, the above-mentioned donor element-containing substance and glass component substance are weighed, and then filled into a crucible. Examples of the material of the crucible include platinum, platinum-rhodium, iridium, alumina, quartz, carbon, and the like. The material of the crucible can be appropriately selected in consideration of melting temperature, environment, reactivity with molten substances, and the like.

接着,利用电炉并以与玻璃组成相适应的温度对上述含施主元素的物质及玻璃成分物质进行加热而制成熔液。此时,理想的是以使熔液变得均匀的方式进行搅拌。Next, the material containing the donor element and the glass component material are heated at a temperature suitable for the composition of the glass in an electric furnace to form a melt. At this time, it is desirable to stir so that the melt becomes uniform.

接下来,使所获得的熔液流出至氧化锆基板或碳基板等上而将熔液玻璃化。Next, the obtained melt is flowed onto a zirconia substrate, a carbon substrate, or the like to vitrify the melt.

最后,粉碎玻璃而形成粉末状。粉碎可应用喷射磨机、珠磨机、球磨机等公知的方法。Finally, the glass is pulverized to form a powder. For pulverization, known methods such as a jet mill, a bead mill, and a ball mill can be applied.

n型扩散层形成用组合物中的含有施主元素的玻璃粉末的含有比率可考虑赋予适应性(涂布性)施主元素的扩散性等来决定。一般而言,n型扩散层形成用组合物中的玻璃粉末的含有比率优选为0.1质量%以上且95质量%以下,更优选为1质量%以上且90质量%以下,进一步优选为1.5质量%以上且85质量%以下,特别优选为2质量%以上且80质量%以下。The content ratio of the donor element-containing glass powder in the composition for forming an n-type diffused layer is determined in consideration of the diffusivity of the donor element to impart adaptability (coatability), and the like. Generally, the content ratio of the glass powder in the composition for forming an n-type diffusion layer is preferably 0.1% by mass to 95% by mass, more preferably 1% by mass to 90% by mass, still more preferably 1.5% by mass It is not less than 85% by mass, particularly preferably not less than 2% by mass and not more than 80% by mass.

以下,对分散介质进行说明。Hereinafter, the dispersion medium will be described.

所谓分散介质,是指在组合物中使上述玻璃粉末分散的介质。具体而言,采用选自由粘结剂及溶剂所组成的组中的至少1种作为分散介质。The term "dispersion medium" refers to a medium for dispersing the above-mentioned glass powder in the composition. Specifically, at least one selected from the group consisting of binders and solvents is used as the dispersion medium.

作为粘结剂,例如可举出:聚乙烯醇、聚丙烯酰胺树脂、聚乙烯酰胺树脂、聚乙烯吡咯烷酮、聚环氧乙烷树脂、聚磺酸、丙烯酰胺烷基磺酸、纤维素醚树脂、纤维素衍生物、羧甲基纤维素、羟乙基纤维素、乙基纤维素、明胶、淀粉及淀粉衍生物、海藻酸钠及海藻酸钠衍生物、黄原胶及黄原胶衍生物、瓜尔胶及瓜尔胶衍生物、硬葡聚糖及硬葡聚糖衍生物、黄蓍胶及黄蓍胶衍生物、糊精及糊精衍生物、(甲基)丙烯酸树脂、(甲基)丙烯酸酯树脂(例如(甲基)丙烯酸烷基酯树脂、(甲基)丙烯酸二甲氨基乙酯树脂等)、丁二烯树脂、苯乙烯树脂、及它们的共聚物。另外,此外可适当选择硅氧烷树脂。这些粘结剂可单独使用1种、或将2种以上组合使用。Examples of binders include polyvinyl alcohol, polyacrylamide resin, polyvinylamide resin, polyvinylpyrrolidone, polyethylene oxide resin, polysulfonic acid, acrylamide alkylsulfonic acid, and cellulose ether resin. , cellulose derivatives, carboxymethyl cellulose, hydroxyethyl cellulose, ethyl cellulose, gelatin, starch and starch derivatives, sodium alginate and sodium alginate derivatives, xanthan gum and xanthan gum derivatives , guar gum and guar gum derivatives, scleroglucan and scleroglucan derivatives, tragacanth and tragacanth gum derivatives, dextrin and dextrin derivatives, (meth)acrylic resins, (formazan base) acrylate resins (such as alkyl (meth)acrylate resins, dimethylaminoethyl (meth)acrylate resins, etc.), butadiene resins, styrene resins, and copolymers thereof. In addition, a silicone resin can also be selected appropriately. These binders may be used alone or in combination of two or more.

粘结剂的分子量并无特别限制,理想的是根据作为组合物的所期望的粘度来适当调整。The molecular weight of the binder is not particularly limited, and it is desirable to appropriately adjust it according to the desired viscosity of the composition.

作为溶剂,例如可举出:丙酮、甲基乙基酮、甲基-正丙基酮、甲基-异丙基酮、甲基-正丁基酮、甲基-异丁基酮、甲基-正戊基酮、甲基-正己基酮、二乙基酮、二丙基酮、二异丁基酮、三甲基壬酮、环己酮、环戊酮、甲基环己酮、2,4-戊二酮、丙酮基丙酮等酮溶剂;二乙醚、甲基乙基醚、甲基-正丙醚、二异丙醚、四氢呋喃、甲基四氢呋喃、二噁烷、二甲基二噁烷、乙二醇二甲醚、乙二醇二乙醚、乙二醇二正丙醚、乙二醇二丁醚、二乙二醇二甲醚、二乙二醇二乙醚、二乙二醇甲基乙基醚、二乙二醇甲基正丙醚、二乙二醇甲基-正丁醚、二乙二醇二正丙醚、二乙二醇二正丁醚、二乙二醇甲基正己醚、三乙二醇二甲醚、三乙二醇二乙醚、三乙二醇甲基乙基醚、三乙二醇甲基正丁醚、三乙二醇二正丁醚、三乙二醇甲基正己醚、四乙二醇二甲醚、四乙二醇二乙醚、四乙二醇甲基乙基醚、四乙二醇甲基正丁醚、二乙二醇二正丁醚、四乙二醇甲基正己醚、四乙二醇二正丁醚、丙二醇二甲醚、丙二醇二乙醚、丙二醇二正丙醚、丙二醇二丁醚、二丙二醇二甲醚、二丙二醇二乙醚、二丙二醇甲基乙基醚、二丙二醇甲基正丁醚、二丙二醇二正丙醚、二丙二醇二正丁醚、二丙二醇甲基正己醚、三丙二醇二甲醚、三丙二醇二乙醚、三丙二醇甲基乙基醚、三丙二醇甲基正丁醚、三丙二醇二正丁醚、三丙二醇甲基正己醚、四丙二醇二甲醚、四丙二醇二乙醚、四丙二醇甲基乙基醚、四丙二醇甲基正丁醚、二丙二醇二正丁醚、四丙二醇甲基正己醚、四丙二醇二正丁醚等醚溶剂;乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸异丙酯、乙酸正丁酯、乙酸异丁酯、乙酸仲丁酯、乙酸正戊酯、乙酸仲戊酯、乙酸3-甲氧基丁酯、乙酸甲基戊酯、乙酸2-乙基丁酯、乙酸2-乙基己酯、乙酸2-(2-丁氧基乙氧基)乙酯、乙酸苄酯、乙酸环己酯、乙酸甲基环己酯、乙酸壬酯、乙酰乙酸甲酯、乙酰乙酸乙酯、二乙二醇单甲醚乙酸酯、二乙二醇单乙醚乙酸酯、二丙二醇单甲醚乙酸酯、二丙二醇单乙醚乙酸酯、乙二醇二乙酸酯、甲氧基三乙二醇乙酸酯、丙酸乙酯、丙酸正丁酯、丙酸异戊酯、草酸二乙酯、草酸二正丁酯、乳酸甲酯、乳酸乙酯、乳酸正丁酯、乳酸正戊酯、乙二醇单甲醚丙酸酯、乙二醇单乙醚丙酸酯、乙二醇单甲醚乙酸酯、乙二醇单乙醚乙酸酯、丙二醇单甲醚乙酸酯、丙二醇单乙醚乙酸酯、丙二醇单丙醚乙酸酯、γ-丁内酯、γ-戊内酯等酯溶剂;乙腈、N-甲基吡咯烷酮、N-乙基吡咯烷酮、N-丙基吡咯烷酮、N-丁基吡咯烷酮、N-己基吡咯烷酮、N-环己基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜等非质子性极性溶剂;甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、仲丁醇、叔丁醇、正戊醇、异戊醇、2-甲基丁醇、仲戊醇、叔戊醇、3-甲氧基丁醇、正己醇、2-甲基戊醇、仲己醇、2-乙基丁醇、仲庚醇、正辛醇、2-乙基己醇、仲辛醇、正壬醇、正癸醇、仲十一醇、三甲基壬醇、仲十四醇、仲十七醇、苯酚、环己醇、甲基环己醇、苄醇、乙二醇、1,2-丙二醇、1,3-丁二醇、二乙二醇、二丙二醇、三乙二醇、三丙二醇等醇溶剂;乙二醇单甲醚、乙二醇单乙醚、乙二醇单苯醚、二乙二醇单甲醚、二乙二醇单乙醚、二乙二醇单正丁醚、二乙二醇单正己醚、三乙二醇单乙醚、四乙二醇单正丁醚、丙二醇单甲醚、二丙二醇单甲醚、二丙二醇单乙醚、三丙二醇单甲醚等二醇单醚溶剂;α-萜品烯、α-萜品醇、月桂油烯、别罗勒烯、柠檬烯、双戊烯、α-蒎烯、β-蒎烯、松油醇、香芹酮、罗勒烯、水芹烯等萜溶剂;水。这些溶剂可单独使用1种、或将2种以上组合使用。制成n型扩散层形成用组合物时,从对基板的赋予适应性的观点出发,优选α-萜品醇、二乙二醇单正丁醚、二乙二醇单正丁醚乙酸酯,作为更优选的溶剂,可举出α-萜品醇、二乙二醇单正丁醚。Examples of solvents include: acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-isopropyl ketone, methyl-n-butyl ketone, methyl-isobutyl ketone, methyl -n-amyl ketone, methyl-n-hexyl ketone, diethyl ketone, dipropyl ketone, diisobutyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2 , 4-pentanedione, acetonyl acetone and other ketone solvents; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl ether, tetrahydrofuran, methyl tetrahydrofuran, dioxane, dimethyldiox Alkanes, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di-n-propyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl Diethylene glycol methyl n-propyl ether, diethylene glycol methyl-n-butyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether, diethylene glycol methyl n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methyl ethyl ether, triethylene glycol methyl n-butyl ether, triethylene glycol di-n-butyl ether, triethylene glycol Alcohol methyl n-hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol methyl ethyl ether, tetraethylene glycol methyl n-butyl ether, diethylene glycol di-n-butyl ether, Tetraethylene glycol methyl n-hexyl ether, tetraethylene glycol di-n-butyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol dibutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, Propylene glycol methyl ethyl ether, dipropylene glycol methyl n-butyl ether, dipropylene glycol di-n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl n-hexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol methyl Diethyl ether, tripropylene glycol methyl n-butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol methyl n-hexyl ether, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether, tetrapropylene glycol methyl ethyl ether, tetrapropylene glycol methyl Ether solvents such as n-butyl ether, dipropylene glycol di-n-butyl ether, tetrapropylene glycol methyl n-hexyl ether, tetrapropylene glycol di-n-butyl ether; methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate , isobutyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate ester, 2-(2-butoxyethoxy)ethyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, nonyl acetate, methyl acetoacetate, ethyl acetoacetate, diethyl Glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, ethylene glycol diacetate, methoxytriethylene glycol Alcohol acetate, ethyl propionate, n-butyl propionate, isopentyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n-pentyl lactate , ethylene glycol monomethyl ether propionate, ethylene glycol monoethyl ether propionate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether Acetate, propylene glycol monopropyl ether acetate, γ-butyrolactone, γ-valerolactone and other ester solvents; acetonitrile, N-methylpyrrolidone, N-ethylpyrrolidone, N-propylpyrrolidone, N-butyl Basepyrrolidone, N-hexylpyrrolidone, N-ring Hexylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide and other aprotic polar solvents; methanol, ethanol, n-propanol, isopropanol, n-butyl alcohol, isobutanol, sec-butanol, tert-butanol, n-pentanol, isoamyl alcohol, 2-methylbutanol, sec-pentanol, tert-amyl alcohol, 3-methoxybutanol, n-hexanol, 2- Methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, n-octanol, 2-ethylhexanol, sec-octanol, n-nonanol, n-decyl alcohol, sec-undecyl alcohol, trimethyl Nonanol, sec-tetradecanol, sec-heptadecyl alcohol, phenol, cyclohexanol, methylcyclohexanol, benzyl alcohol, ethylene glycol, 1,2-propanediol, 1,3-butanediol, diethylene glycol Alcohol solvents such as alcohol, dipropylene glycol, triethylene glycol, and tripropylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether , Diethylene glycol mono-n-butyl ether, diethylene glycol mono-n-hexyl ether, triethylene glycol monoethyl ether, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, Glycol monoether solvents such as tripropylene glycol monomethyl ether; α-terpinene, α-terpineol, myrcene, alloocimene, limonene, dipentene, α-pinene, β-pinene, pine oil Alcohol, carvone, ocimene, phellandrene and other terpene solvents; water. These solvents may be used alone or in combination of two or more. When preparing an n-type diffusion layer-forming composition, from the viewpoint of imparting adaptability to the substrate, α-terpineol, diethylene glycol mono-n-butyl ether, and diethylene glycol mono-n-butyl ether acetate are preferable. , As more preferable solvents, α-terpineol and diethylene glycol mono-n-butyl ether are mentioned.

n型扩散层形成用组合物中的分散介质的含有比率是考虑涂布性、施主浓度而决定的。The content ratio of the dispersion medium in the composition for forming an n-type diffused layer is determined in consideration of applicability and donor concentration.

考虑到赋予适应性,n型扩散层形成用组合物的粘度更优选为10mPa·s以上且1000000mPa·s以下。In consideration of imparting adaptability, the viscosity of the composition for forming an n-type diffusion layer is more preferably 10 mPa·s or more and 1,000,000 mPa·s or less.

本发明的n型扩散层的制造方法包括:在半导体基板上赋予上述n型扩散层形成用组合物的工序、以及对上述赋予后的半导体基板实施热扩散处理的工序。另外,本发明的太阳能电池元件的制造方法包括:在半导体基板上赋予上述n型扩散层形成用组合物的工序;对上述赋予后的半导体基板实施热扩散处理,从而形成n型扩散层的工序;以及在所形成的上述n型扩散层上形成电极的工序。The method for producing an n-type diffused layer of the present invention includes the steps of applying the composition for forming an n-type diffused layer on a semiconductor substrate, and performing a thermal diffusion treatment on the semiconductor substrate after the application. In addition, the method for producing a solar cell element of the present invention includes the steps of applying the composition for forming an n-type diffusion layer on a semiconductor substrate; and performing a thermal diffusion treatment on the semiconductor substrate after the application to form an n-type diffusion layer. and a step of forming an electrode on the formed n-type diffusion layer.

一边参照图1,一边对本发明的n型扩散层及太阳能电池元件的制造方法进行说明。图1是概念性地表示本发明的太阳能电池元件的制造工序的一例的示意剖面图。另外,图1中,10表示p型半导体基板,12表示n型扩散层,14表示p+型扩散层,16表示防反射膜,18表示表面电极,20表示背面电极(电极层)。在以下的附图中,对相同的构成要素标注相同的符号,并省略说明。此外,以下对于使用硅基板作为p型半导体基板的例子进行说明,但本发明中,半导体基板并不限于硅基板。The n-type diffused layer and the method of manufacturing the solar cell element of the present invention will be described with reference to FIG. 1 . FIG. 1 is a schematic cross-sectional view conceptually showing an example of the manufacturing process of the solar cell element of the present invention. In addition, in FIG. 1, 10 denotes a p-type semiconductor substrate, 12 denotes an n-type diffusion layer, 14 denotes a p + type diffusion layer, 16 denotes an antireflection film, 18 denotes a surface electrode, and 20 denotes a back electrode (electrode layer). In the following drawings, the same reference numerals are assigned to the same constituent elements, and description thereof will be omitted. In addition, an example in which a silicon substrate is used as a p-type semiconductor substrate will be described below, but in the present invention, the semiconductor substrate is not limited to a silicon substrate.

图1(1)中,对作为p型半导体基板10的硅基板赋予碱性溶液来去除损坏层,并通过蚀刻而获得纹理结构。In FIG. 1(1), an alkaline solution is applied to a silicon substrate as a p-type semiconductor substrate 10 to remove a damaged layer, and a textured structure is obtained by etching.

详细而言,利用20质量%苛性钠去除从铸锭切片时所产生的硅表面的损坏层。接下来,利用1质量%苛性钠与10质量%异丙醇的混合液进行蚀刻,而形成纹理结构(图中省略纹理结构的记载)。对于太阳能电池元件而言,通过在受光面(表面)侧形成纹理结构,从而使光陷落效应得以促进,能谋求高效率化。Specifically, the damaged layer on the silicon surface generated when slicing from the ingot was removed with 20% by mass of caustic soda. Next, etching was performed with a mixed solution of 1% by mass of caustic soda and 10% by mass of isopropyl alcohol to form a textured structure (description of the textured structure is omitted in the figure). In solar cell elements, by forming a textured structure on the light-receiving surface (surface) side, the light trapping effect is promoted and efficiency can be increased.

图1(2)中,将上述n型扩散层形成用组合物赋予至p型半导体基板10的表面即成为受光面的面上,形成n型扩散层形成用组合物层11。本发明中,赋予方法并无限制,例如可举出印刷法、旋涂法、毛刷涂布、喷雾法、刮刀法、辊涂机法、喷墨法等。In FIG. 1(2), the n-type diffusion layer-forming composition is applied to the surface of the p-type semiconductor substrate 10 , that is, the light-receiving surface, to form an n-type diffusion layer-forming composition layer 11 . In the present invention, the application method is not limited, and examples thereof include a printing method, a spin coating method, a brush coating method, a spray method, a doctor blade method, a roll coater method, and an inkjet method.

上述n型扩散层形成用组合物的赋予量并无特别限制。例如,作为玻璃粉末量,可设为0.01g/m2~100g/m2,优选为0.1g/m2~10g/m2The amount of the composition for forming an n-type diffused layer to be provided is not particularly limited. For example, the amount of glass powder may be 0.01 g/m 2 to 100 g/m 2 , preferably 0.1 g/m 2 to 10 g/m 2 .

此外,根据n型扩散层形成用组合物的组成,在赋予后有时需要用来使组合物中所含有的溶剂挥发的干燥工序。在此时,在80℃~300℃左右的温度下使用加热板时,干燥1分钟~10分钟,在使用干燥机等时干燥10分钟~30分钟左右。该干燥条件依存于n型扩散层形成用组合物的溶剂组成,在本发明中并不特别限定于上述条件。In addition, depending on the composition of the composition for forming an n-type diffusion layer, a drying step for volatilizing the solvent contained in the composition may be required after application. At this time, when using a hot plate at a temperature of about 80° C. to 300° C., it is dried for 1 minute to 10 minutes, and when a drier or the like is used, it is dried for about 10 minutes to 30 minutes. The drying conditions depend on the solvent composition of the composition for forming an n-type diffusion layer, and are not particularly limited to the above conditions in the present invention.

另外,在使用本发明的制造方法时,背面的p+型扩散层(高浓度电场层)14的制造方法并不限于基于铝的由n型扩散层转换为p型扩散层的方法,也可采用先前公知的任何方法,制造方法的选择自由度扩大。因此,例如可赋予含有B(硼)等第13族的元素的组合物13,从而形成p+型扩散层14。In addition, when using the manufacturing method of the present invention, the manufacturing method of the p + -type diffused layer (high-concentration electric field layer) 14 on the back is not limited to the method of converting an n-type diffused layer into a p-type diffused layer based on aluminum. With any of the previously known methods, the freedom of choice of the manufacturing method is expanded. Therefore, for example, the composition 13 containing a group 13 element such as B (boron) can be provided to form the p + -type diffusion layer 14 .

作为上述含有B(硼)等第13族的元素的组合物13,例如可举出使用含有受体元素的玻璃粉末来代替含有施主元素的玻璃粉末,且以与n型扩散层形成用组合物相同的方式构成的p型扩散层形成用组合物。受体元素只要是第13族的元素即可,例如可举出B(硼)、Al(铝)及Ga(镓)等。另外,含有受体元素的玻璃粉末优选包含选自由B2O3、Al2O3及Ga2O3所组成的组中的至少1种。As the composition 13 containing an element of Group 13 such as B (boron), for example, glass powder containing an acceptor element is used instead of a glass powder containing a donor element, and the composition 13 for forming an n-type diffusion layer is used. A composition for forming a p-type diffusion layer constituted in the same manner. The acceptor element should just be an element of Group 13, and examples thereof include B (boron), Al (aluminum), and Ga (gallium). In addition, the glass powder containing the acceptor element preferably contains at least one selected from the group consisting of B 2 O 3 , Al 2 O 3 and Ga 2 O 3 .

进而,将p型扩散层形成用组合物赋予至硅基板的背面的方法与已述的将n型扩散层形成用组合物赋予至硅基板上的方法相同。Furthermore, the method of applying the composition for p-type diffusion layer formation to the back surface of a silicon substrate is the same as the method of applying the composition for n-type diffusion layer formation to the silicon substrate mentioned above.

以与后述的n型扩散层形成用组合物的热扩散处理相同的方式,对被赋予至背面的p型扩散层形成用组合物进行热扩散处理,由此可在背面形成p+型扩散层14。此外,优选p型扩散层形成用组合物的热扩散处理与n型扩散层形成用组合物的热扩散处理同时进行。In the same manner as the thermal diffusion treatment of the n-type diffusion layer-forming composition described later, the p-type diffusion layer-forming composition applied to the back surface is subjected to thermal diffusion treatment, thereby forming a p + -type diffusion layer on the back surface. Layer 14. In addition, it is preferable that the thermal diffusion treatment of the composition for forming a p-type diffusion layer and the thermal diffusion treatment of the composition for forming an n-type diffusion layer be performed simultaneously.

接下来,在组合物中的玻璃粉末的熔点以上的温度,例如600℃~1200℃下,对形成有上述n型扩散层形成用组合物层11的p型半导体基板10进行热扩散处理。通过该热扩散处理,如图1(3)所示,施主元素向半导体基板中扩散,从而形成n型扩散层12。热扩散处理可应用公知的连续炉、分批式炉等。另外,热扩散处理时的炉内环境也可适当调整成空气、氧气、氮气等。Next, the p-type semiconductor substrate 10 on which the above-mentioned n-type diffusion layer-forming composition layer 11 is formed is subjected to thermal diffusion treatment at a temperature equal to or higher than the melting point of the glass powder in the composition, for example, 600°C to 1200°C. Through this thermal diffusion treatment, as shown in FIG. 1( 3 ), the donor element diffuses into the semiconductor substrate to form the n-type diffusion layer 12 . A known continuous furnace, batch furnace, etc. can be applied to the thermal diffusion treatment. In addition, the atmosphere in the furnace during the thermal diffusion treatment may be appropriately adjusted to air, oxygen, nitrogen, or the like.

热扩散处理时间可根据n型扩散层形成用组合物中所含有的施主元素的含有率而适当选择。例如,可设为1分钟~60分钟,更优选为2分钟~30分钟。The thermal diffusion treatment time can be appropriately selected according to the content of the donor element contained in the n-type diffusion layer forming composition. For example, it can be set to 1 minute to 60 minutes, more preferably 2 minutes to 30 minutes.

在所形成的n型扩散层12的表面形成磷酸玻璃等玻璃层(未图示)。因此,通过蚀刻来去除该磷酸玻璃。蚀刻可应用浸渍于氢氟酸等酸中的方法、浸渍于苛性钠等碱中的方法等任一种公知的方法。使用浸渍于氢氟酸等酸中的蚀刻方法时,浸渍时间并无特别限制,通常可设为0.5分钟~30分钟,优选为设为1分钟~10分钟。A glass layer (not shown) such as phosphate glass is formed on the surface of the formed n-type diffusion layer 12 . Therefore, the phosphate glass is removed by etching. Any known method such as a method of immersing in an acid such as hydrofluoric acid or a method of immersing in an alkali such as caustic soda can be used for etching. When using the etching method of immersing in an acid such as hydrofluoric acid, the immersion time is not particularly limited, and it is usually 0.5 minutes to 30 minutes, preferably 1 minute to 10 minutes.

在图1(2)及图1(3)所示的本发明的n型扩散层的形成方法中,在所期望的部位形成n型扩散层12,而不在背面或侧面形成不需要的n型扩散层。In the forming method of the n-type diffused layer of the present invention shown in Fig. 1 (2) and Fig. 1 (3), the n-type diffused layer 12 is formed at the desired position without forming unnecessary n-type diffused layer 12 on the back or side. diffusion layer.

因此,在以往广泛采用的通过气相反应法来形成n型扩散层的方法中,用于去除形成在侧面的不需要的n型扩散层的侧蚀工序是必须的,但是,根据本发明的制造方法,不需要侧蚀工序,从而使工序简单化。由此,通过本发明的制造方法,能够在短时间内在所期望的部位形成所期望的形状的均匀的n型扩散层。Therefore, in the method of forming the n-type diffusion layer by the gas phase reaction method widely used in the past, the side etching process for removing the unnecessary n-type diffusion layer formed on the side surface is necessary, but according to the manufacturing method of the present invention The method does not require a side etching process, thereby simplifying the process. Thus, with the production method of the present invention, a uniform n-type diffused layer of a desired shape can be formed in a desired position in a short period of time.

另外,在以往的制造方法中,必须将形成在背面的不需要的n型扩散层转换成p型扩散层,作为该转换方法,采用如下的方法:在背面的n型扩散层上涂布作为第13族元素的铝的糊剂,并进行烧成,使铝扩散至n型扩散层,从而将n型扩散层转换成p型扩散层。在该方法中,为了充分地将n型扩散层转换成p型扩散层,进而形成p+型扩散层的高浓度电场层,而需要某种程度以上的铝量,因此必须将铝层形成得很厚。但是,铝的热膨胀系数与用作基板的硅的热膨胀系数差异很大,因此在烧成及冷却的过程中,会在硅基板中产生较大的内部应力,成为硅基板的翘曲的原因。In addition, in the conventional manufacturing method, it is necessary to convert the unnecessary n-type diffusion layer formed on the back surface into a p-type diffusion layer. As the conversion method, the following method is adopted: coating the n-type diffusion layer on the back surface as Aluminum paste of Group 13 elements is fired to diffuse aluminum into the n-type diffusion layer, thereby converting the n-type diffusion layer into a p-type diffusion layer. In this method, in order to sufficiently convert the n-type diffusion layer into a p-type diffusion layer and further form a high-concentration electric field layer of a p + -type diffusion layer, a certain amount of aluminum is required, so the aluminum layer must be formed very thick. However, the coefficient of thermal expansion of aluminum is significantly different from that of silicon used as a substrate, and therefore a large internal stress is generated in the silicon substrate during firing and cooling, causing warpage of the silicon substrate.

该内部应力会对结晶的晶界造成损伤,存在电力损失变大这一技术问题。另外,翘曲在模块工序中的太阳能电池元件的搬送、或者与被称为极耳线(TAB)的铜线的连接过程中,易于使太阳能电池元件破损。近年来,由于切片加工技术的提高,因此硅基板的厚度逐渐薄型化,从而存在太阳能电池元件更加容易破裂的倾向。This internal stress causes damage to the grain boundaries of the crystals, and there is a technical problem of increasing power loss. In addition, the warpage tends to damage the solar cell element during transport of the solar cell element in the module process or connection to copper wires called tab wires (TAB). In recent years, silicon substrates have become thinner due to improvements in slicing techniques, and solar cell elements tend to be more easily broken.

但是,根据本发明的制造方法,不在背面形成不需要的n型扩散层,因此无需进行由n型扩散层向p型扩散层的转换,从而不必使铝层变厚。其结果,可抑制硅基板内的内部应力的产生或翘曲。作为结果,能够抑制电力损失的增大、或太阳能电池元件的破损。However, according to the manufacturing method of the present invention, since an unnecessary n-type diffusion layer is not formed on the back surface, it is not necessary to perform conversion from an n-type diffusion layer to a p-type diffusion layer, and it is not necessary to thicken the aluminum layer. As a result, generation of internal stress and warpage in the silicon substrate can be suppressed. As a result, an increase in power loss or damage to the solar cell element can be suppressed.

另外,当使用本发明的制造方法时,背面的p+型扩散层(高浓度电场层)14的制造方法并不限定于基于铝的由n型扩散层转换为p型扩散层的方法,也可采用任何方法,制造方法的选择自由度扩大。In addition, when using the manufacturing method of the present invention, the manufacturing method of the p + -type diffusion layer (high-concentration electric field layer) 14 on the back is not limited to the method of converting an n-type diffusion layer into a p-type diffusion layer based on aluminum, but also Any method can be used, and the degree of freedom of selection of the manufacturing method is expanded.

例如,优选将使用含有受体元素的玻璃粉末来代替含有施主元素的玻璃粉末,且以与n型扩散层形成用组合物相同的方式构成的p型扩散层形成用组合物赋予至硅基板的背面(与赋予了n型扩散层形成用组合物的面相反一侧的面),并进行烧成处理,由此在背面形成p+型扩散层(高浓度电场层)14。For example, it is preferable to apply a composition for forming a p-type diffused layer that uses glass powder containing an acceptor element instead of a glass powder containing a donor element and is configured in the same manner as the composition for forming an n-type diffused layer to the silicon substrate. The back side (the side opposite to the side to which the composition for forming an n-type diffusion layer was applied) is subjected to firing treatment to form a p + -type diffusion layer (high-concentration electric field layer) 14 on the back side.

另外,如后所述,在背面电极20中使用的材料并不限于第13族的铝,可应用例如Ag(银)或Cu(铜)等,背面电极20的厚度也可比以往的厚度更薄地形成。In addition, as will be described later, the material used for the back electrode 20 is not limited to Group 13 aluminum, and Ag (silver) or Cu (copper), for example, can be used, and the thickness of the back electrode 20 can also be thinner than conventional ones. form.

图1(4)中,在n型扩散层12上形成防反射膜16。防反射膜16应用公知的技术来形成。例如,防反射膜16为氮化硅膜时,通过将SiH4与NH3的混合气体作为原料的等离子化学气相沉积(CVD)法来形成。此时,氢在结晶中扩散,不参与硅原子成键的轨道,即,悬空键会与氢键合,从而使缺陷钝化(氢钝化)。In FIG. 1( 4 ), an antireflection film 16 is formed on the n-type diffusion layer 12 . The antireflection film 16 is formed using known techniques. For example, when the antireflection film 16 is a silicon nitride film, it is formed by a plasma chemical vapor deposition (CVD) method using a mixed gas of SiH 4 and NH 3 as a raw material. At this time, hydrogen diffuses in the crystal and does not participate in the bonding orbital of the silicon atom, that is, the dangling bond is bonded to hydrogen, thereby deactivating defects (hydrogen passivation).

更具体而言,在上述混合气体流量比NH3/SiH4为0.05~1.0,反应室的压力为13.3Pa(0.1Torr)~266.6Pa(2Torr),成膜时的温度为300℃~550℃,用于等离子的放电的频率为100kHz以上的条件下形成。More specifically, when the above-mentioned mixed gas flow rate ratio NH 3 /SiH 4 is 0.05 to 1.0, the pressure of the reaction chamber is 13.3 Pa (0.1 Torr) to 266.6 Pa (2 Torr), and the temperature during film formation is 300° C. to 550° C. , formed under the condition that the frequency of the plasma discharge is above 100kHz.

图1(5)中,在表面(受光面)的防反射膜16上,通过丝网印刷法来印刷涂布表面电极用金属糊剂并使其干燥,形成表面电极用金属糊剂层17。表面电极用金属糊剂将(1)金属粒子与(2)玻璃粒子作为必需成分,且根据需要包含(3)树脂粘结剂、(4)其他添加剂。In FIG. 1(5), on the antireflection film 16 on the surface (light-receiving surface), a metal paste for surface electrodes is applied by screen printing and dried to form a metal paste layer 17 for surface electrodes. The metal paste for surface electrodes contains (1) metal particles and (2) glass particles as essential components, and contains (3) a resin binder and (4) other additives as necessary.

接下来,在上述背面的p+型扩散层14上也形成背面电极用金属糊剂层19。如上所述,在本发明中,背面电极用金属糊剂层19的材质、形成方法并无特别限定。例如,可赋予包含铝、银或铜等金属的背面电极用糊剂,并使其干燥而形成背面电极用金属糊剂层19。此时,为了模块工序中的太阳能电池元件间的连接,可在背面的一部分上也设置银电极形成用银糊剂。Next, the back electrode metal paste layer 19 is also formed on the p + -type diffusion layer 14 on the back. As described above, in the present invention, the material and formation method of the back electrode metal paste layer 19 are not particularly limited. For example, a back electrode paste containing metal such as aluminum, silver, or copper may be applied and dried to form the back electrode metal paste layer 19 . At this time, a silver paste for forming a silver electrode may also be provided on a part of the back surface for connection between solar cell elements in the module process.

图1(6)中,对电极用金属糊剂层17进行烧成来制成太阳能电池元件。若在600℃~900℃的范围内烧成几秒~几分钟,则在表面侧,作为绝缘膜的防反射膜16因电极用金属糊剂中所含的玻璃粒子而熔融,进而p型半导体基板10表面也局部发生熔融,糊剂中的金属粒子(例如银粒子)与p型半导体基板10形成接触部并凝固。由此,所形成的表面电极18与p型半导体基板10被导通。将此称为烧通(fire through)。另外,在背面侧,也同样地对背面电极用金属糊剂层19的背面电极用金属糊剂进行烧成,从而形成背面电极20。In FIG. 1 (6), the metal paste layer 17 for electrodes is fired, and the solar cell element is produced. If fired in the range of 600°C to 900°C for a few seconds to a few minutes, the antireflection film 16 as an insulating film is melted by the glass particles contained in the metal paste for electrodes on the surface side, and the p-type semiconductor The surface of the substrate 10 is also partially melted, and the metal particles (for example, silver particles) in the paste form a contact portion with the p-type semiconductor substrate 10 and solidify. Thereby, the formed surface electrode 18 and the p-type semiconductor substrate 10 are conducted. This is called fire through. In addition, on the back side, the back electrode metal paste of the back electrode metal paste layer 19 is similarly fired to form the back electrode 20 .

参照图2对表面电极18的形状进行说明。此外,在图2中,30表示母线电极,32表示指状电极。表面电极18包含母线电极30、以及与该母线电极30交叉的指状电极32。图2A是从表面观察到的将表面电极18制成包含母线电极30、以及与该母线电极30交叉的指状电极32的构成的太阳能电池元件的平面图,图2B是将图2A的一部分放大表示的立体图。The shape of the surface electrode 18 will be described with reference to FIG. 2 . In addition, in FIG. 2 , 30 denotes a bus bar electrode, and 32 denotes a finger electrode. The surface electrode 18 includes a bus bar electrode 30 and finger electrodes 32 intersecting the bus bar electrode 30 . FIG. 2A is a plan view of a solar cell element in which the surface electrode 18 is formed to include a bus bar electrode 30 and a finger electrode 32 intersecting the bus bar electrode 30 as seen from the surface, and FIG. 2B is an enlarged view of a part of FIG. 2A stereogram.

这样的表面电极18可通过例如上述金属糊剂的丝网印刷、或者电极材料的镀敷、高真空中的利用电子束加热的电极材料的蒸镀等方法来形成。众所周知,包含母线电极30与指状电极32的表面电极18通常用作受光面侧的电极,可应用受光面侧的母线电极及指状电极的公知的形成方法。Such surface electrodes 18 can be formed by, for example, screen printing of the above-mentioned metal paste, plating of electrode materials, vapor deposition of electrode materials heated by electron beams in a high vacuum, or the like. As is well known, the surface electrode 18 including the bus bar electrodes 30 and the finger electrodes 32 is usually used as an electrode on the light receiving side, and a known method of forming the bus bar electrodes and finger electrodes on the light receiving side can be applied.

在上述中,对在表面形成n型扩散层,在背面形成p+型扩散层,进而在各个层上设置有表面电极及背面电极而成的太阳能电池元件进行了说明,但如果使用本发明的n型扩散层形成用组合物,则也可制作背面接触型的太阳能电池元件。In the above, a solar cell element in which an n-type diffusion layer is formed on the surface, a p + -type diffusion layer is formed on the back surface, and a surface electrode and a back electrode are provided on each layer has been described. The composition for forming an n-type diffused layer can also produce a back contact type solar cell element.

背面接触型的太阳能电池元件是将电极全部设置在背面而增大受光面的面积的太阳能电池元件。即,在背面接触型的太阳能电池元件中,必须在背面形成n型扩散部位及p+型扩散部位这两者而来形成pn结结构。本发明的n型扩散层形成用组合物可在特定的部位形成n型扩散部位,因此,可适宜地应用于背面接触型的太阳能电池元件的制造。The back-contact type solar cell element is a solar cell element in which all electrodes are provided on the back surface to increase the area of the light-receiving surface. That is, in a back contact solar cell element, it is necessary to form both n-type diffusion sites and p + -type diffusion sites on the back surface to form a pn junction structure. Since the composition for forming an n-type diffusion layer of the present invention can form an n-type diffusion site at a specific site, it can be suitably applied to production of a back contact type solar cell element.

在本发明中,还分别包含制造n型扩散层时的上述n型扩散层形成用组合物的使用、以及制造含有上述半导体基板与n型扩散层及电极的太阳能电池元件时的上述n型扩散层形成用组合物的使用。如上所述,通过使用本发明的n型扩散层形成用组合物,从而可不形成不需要的n型扩散层,而能在短时间内在特定的区域以所期望的形状得到均匀的n型扩散层,另外,可不形成不需要的n型扩散层而获得具有这样的n型扩散层的太阳能电池元件。In the present invention, the use of the above-mentioned composition for forming an n-type diffusion layer when producing an n-type diffusion layer, and the use of the above-mentioned n-type diffusion layer when producing a solar cell element including the above-mentioned semiconductor substrate, n-type diffusion layer and electrode are also included. Use of layer-forming composition. As described above, by using the composition for forming an n-type diffused layer of the present invention, it is possible to obtain a uniform n-type diffused layer in a desired shape in a specific region in a short time without forming an unnecessary n-type diffused layer. , In addition, a solar cell element having such an n-type diffusion layer can be obtained without forming an unnecessary n-type diffusion layer.

实施例Example

以下,对本发明的实施例进行更具体地说明,但本发明并不受这些实施例限制。此外,只要无特别说明,化学品全部使用了试剂。另外,只要事先无说明,则“%”表示“质量%”。进而,只要事先无说明,则“cm/s”表示流入炉内的气体的流量除以电炉的剖面面积所得的“线速度”。Hereinafter, examples of the present invention will be described more specifically, but the present invention is not limited by these examples. In addition, reagents were used for all chemicals unless otherwise specified. In addition, "%" means "mass %" unless otherwise stated. Furthermore, unless otherwise specified, "cm/s" means the "linear velocity" obtained by dividing the flow rate of gas flowing into the furnace by the cross-sectional area of the electric furnace.

[实施例1][Example 1]

使用自动乳钵混炼装置对粒子形状为大致球状、平均粒径为4μm、且d90为15μm的P2O5-SiO2-CaO系玻璃(软化温度为700℃,P2O5:50%,SiO2:43%,CaO:7%)粉末3g,乙基纤维素2.1g,及萜品醇24.9g进行混合并糊剂化,制备了n型扩散层形成用组合物。P 2 O 5 -SiO 2 -CaO-based glass (softening temperature: 700°C, P 2 O 5 : 50% , SiO 2 : 43%, CaO: 7%) powder 3 g, ethyl cellulose 2.1 g, and terpineol 24.9 g were mixed and pasted to prepare a composition for forming an n-type diffusion layer.

此外,玻璃粒子形状使用日立High-Technologies(株)制造的TM-1000型扫描型电子显微镜进行观察并判定。玻璃的平均粒径及d90使用Beckman Coulter(株)制造的LS 13320型激光散射衍射法粒度分布测定装置(测定波长:632nm)算出。玻璃的软化温度使用岛津制作所(株)制造的DTG-60H型差示热·热重量同时测定装置,并通过差示热(DTA)曲线来求出。In addition, the glass particle shape was observed and judged using the Hitachi High-Technologies Co., Ltd. TM-1000 scanning electron microscope. The average particle diameter and d90 of glass were computed using the Beckman Coulter Co., Ltd. make LS13320 laser-scattering-diffraction method particle size distribution measuring apparatus (measurement wavelength: 632 nm). The softening temperature of the glass was determined from a differential thermal (DTA) curve using a DTG-60H differential thermal/thermogravimetric simultaneous measuring device manufactured by Shimadzu Corporation.

然后,利用丝网印刷将所制备的糊剂涂布在p型硅基板的表面,并在150℃的加热板上干燥5分钟。接下来,在设定成450℃的烘箱中保持1.5分钟,使乙基纤维素脱离。接下来,在大气流(0.9cm/s)环境中,在设定成950℃的电炉中保持10分钟,由此进行热扩散处理,其后为了去除玻璃层而将基板在氢氟酸中浸渍5分钟,然后进行流水清洗。随后,进行干燥。Then, the prepared paste was coated on the surface of the p-type silicon substrate by screen printing, and dried on a hot plate at 150° C. for 5 minutes. Next, hold in an oven set at 450° C. for 1.5 minutes to detach ethyl cellulose. Next, thermal diffusion treatment was performed by holding in an electric furnace set at 950°C for 10 minutes in an atmosphere of air flow (0.9cm/s), and then immersing the substrate in hydrofluoric acid to remove the glass layer. 5 minutes, then rinse with running water. Subsequently, drying is performed.

涂布有n型扩散层形成用组合物一侧的表面的薄膜电阻为60Ω/□,P(磷)扩散而形成了n型扩散层。另外,经涂布的面内的薄膜电阻值的偏差为σ=0.8,形成了均匀的n型扩散层。另一方面,背面的薄膜电阻为1000000Ω/□以上而无法测定,未形成n型扩散层。The sheet resistance of the surface on which the composition for forming an n-type diffusion layer was applied was 60 Ω/□, and P (phosphorus) diffused to form an n-type diffusion layer. In addition, the variation in sheet resistance value in the coated surface was σ=0.8, and a uniform n-type diffused layer was formed. On the other hand, the sheet resistance of the back surface was 1,000,000Ω/□ and could not be measured, and an n-type diffusion layer was not formed.

此外,薄膜电阻是使用三菱化学(株)制造的Loresta-EP MCP-T360型低电阻率计,并通过四探针法在25℃下进行测定的。In addition, the sheet resistance was measured at 25°C by the four-probe method using a Loresta-EP MCP-T360 low resistivity meter manufactured by Mitsubishi Chemical Corporation.

另外,σ表示标准偏差,其通过经涂布的面内的25处的薄膜电阻值的偏差的平方和除以数据数所得的值的平方根来算出。In addition, σ represents a standard deviation, which is calculated by dividing the square root of the sum of the squares of the deviations of the sheet resistance values at 25 points in the coated surface by the number of data.

[实施例2][Example 2]

将玻璃粉末的平均粒径设为2μm、且将d90设为6.5μm,除此以外,以与实施例1相同的方式形成n型扩散层。An n-type diffused layer was formed in the same manner as in Example 1 except that the average particle diameter of the glass powder was 2 μm and d90 was 6.5 μm.

涂布有n型扩散层形成用组合物一侧的表面的薄膜电阻为33Ω/□,P(磷)扩散而形成了n型扩散层。另外,经涂布的面内的薄膜电阻值的偏差为σ=0.5,形成了均匀的n型扩散层。另一方面,背面的薄膜电阻为1000000Ω/□以上而无法测定,未形成n型扩散层。The sheet resistance of the surface on which the composition for forming an n-type diffusion layer was applied was 33Ω/□, and P (phosphorus) diffused to form an n-type diffusion layer. In addition, the variation in sheet resistance value in the coated surface was σ=0.5, and a uniform n-type diffused layer was formed. On the other hand, the sheet resistance of the back surface was 1,000,000Ω/□ and could not be measured, and an n-type diffusion layer was not formed.

[实施例3][Example 3]

将玻璃粉末的平均粒径设为0.7μm、且将d90设为3.4μm,除此以外,以与实施例1相同的方式形成n型扩散层。An n-type diffused layer was formed in the same manner as in Example 1 except that the average particle diameter of the glass powder was 0.7 μm and d90 was 3.4 μm.

涂布有n型扩散层形成用组合物一侧的表面的薄膜电阻为25Ω/□,P(磷)扩散而形成了n型扩散层。另外,经涂布的面内的薄膜电阻值的偏差为σ=0.3,形成了均匀的n型扩散层。另一方面,背面的薄膜电阻为1000000Ω/□以上而无法测定,未形成n型扩散层。The sheet resistance of the surface on which the composition for forming an n-type diffusion layer was applied was 25Ω/□, and P (phosphorus) diffused to form an n-type diffusion layer. In addition, the variation in sheet resistance value in the coated surface was σ=0.3, and a uniform n-type diffused layer was formed. On the other hand, the sheet resistance of the back surface was 1,000,000Ω/□ and could not be measured, and an n-type diffusion layer was not formed.

[实施例4][Example 4]

使用自动乳钵混炼装置对粒子形状为大致球状、平均粒径为2μm、且d90为6.5μm、具有比实施例1高的软化温度的P2O5-SiO2-CaO系玻璃(软化温度为800℃,P2O5:44%,SiO2:49%,CaO:7%)粉末3g,乙基纤维素2.1g,及萜品醇24.9g进行了混合并糊剂化,从而制备了n型扩散层形成用组合物。接下来,利用丝网印刷将所制备的糊剂涂布在p型硅基板的表面,并在150℃的加热板上干燥5分钟。接下来,在大气流(0.9cm/s)环境中,在设定成950℃的电炉中保持10分钟来进行热扩散处理,然后为了去除玻璃层而将基板在氢氟酸中浸渍5分钟,然后进行流水清洗。随后,进行干燥。P 2 O 5 -SiO 2 -CaO-based glass (softening temperature 800°C, P 2 O 5 : 44%, SiO 2 : 49%, CaO: 7%) powder 3g, ethyl cellulose 2.1g, and terpineol 24.9g were mixed and pasted to prepare A composition for forming an n-type diffused layer. Next, the prepared paste was coated on the surface of the p-type silicon substrate by screen printing, and dried on a hot plate at 150° C. for 5 minutes. Next, in an atmosphere of air flow (0.9cm/s), hold in an electric furnace set at 950°C for 10 minutes to perform thermal diffusion treatment, and then immerse the substrate in hydrofluoric acid for 5 minutes to remove the glass layer, Then wash with running water. Subsequently, drying is performed.

涂布有n型扩散层形成用组合物一侧的表面的薄膜电阻为42Ω/□,P(磷)扩散而形成了n型扩散层。另外,经涂布的面内的薄膜电阻值的偏差为σ=0.5,形成了均匀的n型扩散层。另一方面,背面的薄膜电阻为1000000Ω/□以上而无法测定,未形成n型扩散层。The sheet resistance of the surface on which the composition for forming an n-type diffusion layer was applied was 42 Ω/□, and P (phosphorus) diffused to form an n-type diffusion layer. In addition, the variation in sheet resistance value in the coated surface was σ=0.5, and a uniform n-type diffused layer was formed. On the other hand, the sheet resistance of the back surface was 1,000,000Ω/□ and could not be measured, and an n-type diffusion layer was not formed.

[比较例1][Comparative example 1]

将玻璃粉末的平均粒径设为8μm、且将d90设为50μm,除此以外,以与实施例1相同的方式形成n型扩散层。An n-type diffused layer was formed in the same manner as in Example 1 except that the average particle diameter of the glass powder was 8 μm and d90 was 50 μm.

涂布有n型扩散层形成用组合物一侧的表面的薄膜电阻为120Ω/□,P(磷)扩散而形成了n型扩散层。但是,在面内的薄膜电阻值中能看到偏差(σ=10.7),不均匀。The sheet resistance of the surface on which the composition for forming an n-type diffusion layer was applied was 120 Ω/□, and P (phosphorus) diffused to form an n-type diffusion layer. However, variation (σ=10.7) and non-uniformity were observed in the in-plane sheet resistance value.

[比较例2][Comparative example 2]

将玻璃粉末的平均粒径设为30μm、且将d90设为110μm,除此以外,以与实施例1相同的方式形成n型扩散层。An n-type diffused layer was formed in the same manner as in Example 1 except that the average particle diameter of the glass powder was 30 μm and d90 was 110 μm.

涂布有n型扩散层形成用组合物一侧的表面的薄膜电阻为300Ω/□,P(磷)扩散而形成了n型扩散层。但是,在面内的薄膜电阻值中能看到偏差(σ=24.9),不均匀。The sheet resistance of the surface on which the composition for forming an n-type diffusion layer was applied was 300 Ω/□, and P (phosphorus) diffused to form an n-type diffusion layer. However, variation (σ=24.9) and non-uniformity were observed in the in-plane sheet resistance value.

[比较例3][Comparative example 3]

使用自动乳钵混炼装置对粒子形状为大致球状、平均粒径为2μm、且d90为6.5μm的P2O5-SnO系玻璃(软化温度为300℃,P2O5:30%,SnO:70%)粉末3g,乙基纤维素2.1g,及萜品醇24.9g进行了混合并糊剂化,从而制备了n型扩散层形成用组合物。P 2 O 5 -SnO-based glass (softening temperature: 300°C, P 2 O 5 : 30%, SnO : 70%) powder 3 g, ethyl cellulose 2.1 g, and terpineol 24.9 g were mixed and pasted to prepare an n-type diffusion layer forming composition.

接着,利用丝网印刷将所制备的糊剂在p型硅基板表面涂布成120μm宽的细线状,并在150℃的加热板上干燥5分钟。接下来,在氮气流(0.9cm/s)环境中,在设定成950℃的电炉中保持10分钟来进行热扩散处理,然后为了去除玻璃层而将基板在氢氟酸中浸渍5分钟,然后进行流水清洗。随后,进行干燥。Next, the prepared paste was applied on the surface of the p-type silicon substrate in a thin line shape with a width of 120 μm by screen printing, and dried on a hot plate at 150° C. for 5 minutes. Next, in a nitrogen flow (0.9cm/s) atmosphere, hold in an electric furnace set at 950°C for 10 minutes to perform thermal diffusion treatment, and then immerse the substrate in hydrofluoric acid for 5 minutes to remove the glass layer, Then wash with running water. Subsequently, drying is performed.

将n型扩散层形成用组合物涂布成细线状的部分的薄膜电阻为120Ω/□,P(磷)扩散而形成了n型扩散层。另外,所涂布的细线状图案的宽度变成400μm,熔融了的玻璃产生了液滴落,因此无法实现对特定部分的选择性扩散。The sheet resistance of the portion where the composition for forming an n-type diffused layer was applied in a thin line was 120 Ω/□, and P (phosphorus) was diffused to form an n-type diffused layer. In addition, since the width of the thin linear pattern to be applied was 400 μm, and the molten glass was dripped, selective diffusion to a specific portion could not be achieved.

[比较例4][Comparative example 4]

使用自动乳钵混炼装置对磷酸二氢铵(NH4H2PO4)粉末20g、乙基纤维素3g、及乙酸2-(2-丁氧基乙氧基)乙酯7g进行了混合并糊剂化,制备了n型扩散层形成用组合物。20 g of ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) powder, 3 g of ethyl cellulose, and 7 g of 2-(2-butoxyethoxy)ethyl acetate were mixed using an automatic mortar mixing device. Paste was prepared to prepare a composition for forming an n-type diffusion layer.

接下来,利用丝网印刷将所制备的糊剂涂布在p型硅基板的表面,并在150℃的加热板上干燥5分钟。接下来,在设定成1000℃的电炉中保持10分钟来进行热扩散处理,然后为了去除玻璃层而将基板在氢氟酸中浸渍5分钟,然后进行流水清洗、干燥。Next, the prepared paste was coated on the surface of the p-type silicon substrate by screen printing, and dried on a hot plate at 150° C. for 5 minutes. Next, thermal diffusion treatment was performed by holding in an electric furnace set at 1000° C. for 10 minutes, and then the substrate was immersed in hydrofluoric acid for 5 minutes in order to remove the glass layer, followed by running water washing and drying.

涂布了n型扩散层形成用组合物一侧的表面的薄膜电阻为14Ω/□,P(磷)扩散而形成了n型扩散层。但是,背面的薄膜电阻为50Ω/□,在背面也形成有n型扩散层。The sheet resistance of the surface on which the composition for forming an n-type diffusion layer was applied was 14Ω/□, and P (phosphorus) diffused to form an n-type diffusion layer. However, the sheet resistance of the back surface was 50Ω/□, and an n-type diffused layer was also formed on the back surface.

[比较例5][Comparative Example 5]

使用自动乳钵混炼装置对磷酸二氢铵(NH4H2PO4)粉末1g、纯水7g、聚乙烯醇0.7g、及异丙醇1.5g进行了混合,制备溶液,从而制备了n型扩散层组合物。Using an automatic mortar mixing device, 1 g of ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) powder, 7 g of pure water, 0.7 g of polyvinyl alcohol, and 1.5 g of isopropanol were mixed to prepare a solution, thereby preparing n Type diffusion layer composition.

接下来,利用旋涂机(2000rpm,30秒)将所制备的溶液涂布于p型硅基板的表面,并在150℃的加热板上干燥5分钟。接下来,在设定成1000℃的电炉中保持10分钟来进行热扩散处理,然后为了去除玻璃层而将基板在氢氟酸中浸渍5分钟,然后进行流水清洗、干燥。Next, the prepared solution was coated on the surface of the p-type silicon substrate using a spin coater (2000 rpm, 30 seconds), and dried on a hot plate at 150° C. for 5 minutes. Next, thermal diffusion treatment was performed by holding in an electric furnace set at 1000° C. for 10 minutes, and then the substrate was immersed in hydrofluoric acid for 5 minutes in order to remove the glass layer, followed by running water washing and drying.

涂布有n型扩散层形成用组合物一侧的表面的薄膜电阻为10Ω/□,P(磷)扩散而形成了n型扩散层。但是,背面的薄膜电阻为100Ω/□,在背面也形成有n型扩散层。The sheet resistance of the surface on which the composition for forming an n-type diffusion layer was applied was 10Ω/□, and P (phosphorus) diffused to form an n-type diffusion layer. However, the sheet resistance of the back surface was 100Ω/□, and an n-type diffusion layer was also formed on the back surface.

通过参照而将2011年7月5日申请的日本专利申请2011-149249号中所公开的全部内容引入本说明书中。All the content disclosed in the JP Patent application 2011-149249 for which it applied on July 5, 2011 is taken in into this specification by reference.

本说明书中所记载的所有文献、专利申请、及技术规格是以与具体地且分别记载通过参照而引入各个文献、专利申请、及技术规格的情况为相同的程度,通过参照而被引入至本说明书中。All documents, patent applications, and technical specifications described in this specification are incorporated by reference to the same extent as if each document, patent application, and technical specification were specifically and individually stated to be incorporated by reference. in the manual.

Claims (6)

1. a kind of n-type diffusion layer formation composition, it includes:Containing donor element, softening temperature is more than 500 DEG C and 900 Below DEG C, and average grain diameter is less than 5 μm of glass powder;And decentralized medium.
2. n-type diffusion layer formation composition according to claim 1, wherein, the d90 of the glass powder for 20 μm with Under.
3. n-type diffusion layer formation composition according to claim 1 or 2, wherein, the donor element is selected from phosphorus P And it is at least one kind of in antimony Sb.
4. according to n-type diffusion layer formation composition according to any one of claims 1 to 3, wherein, contain alms giver member The glass powder of element includes:Selected from by P2O3、P2O5And Sb2O3At least one kind of material containing donor element in the group constituted, with And selected from by SiO2、K2O、Na2O、Li2O、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、ZrO2And MoO3Constituted Group at least one kind of glass ingredient material.
5. a kind of manufacture method of n-type diffusion layer, it includes:Entitle requires any one of 1~4 institute on a semiconductor substrate The process for the n-type diffusion layer formation composition stated;And heat diffusion treatment is implemented to the semiconductor substrate after the imparting Process.
6. a kind of manufacture method of solar cell device, it includes:Appoint on a semiconductor substrate in entitle requirement 1~4 The process of n-type diffusion layer formation composition described in one;Heat diffusion treatment is implemented to the semiconductor substrate after the imparting, So as to the process for forming n-type diffusion layer;And the process that electrode is formed in the n-type diffusion layer formed.
CN201610917021.9A 2011-07-05 2012-07-03 The manufacture method of n-type diffusion layer formation composition, the manufacture method of n-type diffusion layer and solar cell device Pending CN107093550A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011149249 2011-07-05
JP2011-149249 2011-07-05
CN201280031501.5A CN103650111A (en) 2011-07-05 2012-07-03 Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for producing solar cell element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201280031501.5A Division CN103650111A (en) 2011-07-05 2012-07-03 Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for producing solar cell element

Publications (1)

Publication Number Publication Date
CN107093550A true CN107093550A (en) 2017-08-25

Family

ID=47437086

Family Applications (5)

Application Number Title Priority Date Filing Date
CN201280031501.5A Pending CN103650111A (en) 2011-07-05 2012-07-03 Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for producing solar cell element
CN201510226976.5A Pending CN105006429A (en) 2011-07-05 2012-07-03 Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for producing solar cell element
CN201610917021.9A Pending CN107093550A (en) 2011-07-05 2012-07-03 The manufacture method of n-type diffusion layer formation composition, the manufacture method of n-type diffusion layer and solar cell device
CN201510917152.2A Pending CN105551947A (en) 2011-07-05 2012-07-03 Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for producing solar cell element
CN201410048996.3A Pending CN103839787A (en) 2011-07-05 2012-07-03 Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for producing solar cell element

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201280031501.5A Pending CN103650111A (en) 2011-07-05 2012-07-03 Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for producing solar cell element
CN201510226976.5A Pending CN105006429A (en) 2011-07-05 2012-07-03 Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for producing solar cell element

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201510917152.2A Pending CN105551947A (en) 2011-07-05 2012-07-03 Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for producing solar cell element
CN201410048996.3A Pending CN103839787A (en) 2011-07-05 2012-07-03 Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for producing solar cell element

Country Status (5)

Country Link
JP (1) JP5176158B1 (en)
KR (2) KR101384874B1 (en)
CN (5) CN103650111A (en)
TW (2) TWI570778B (en)
WO (1) WO2013005738A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384874B1 (en) * 2011-07-05 2014-04-16 히타치가세이가부시끼가이샤 COMPOSITION FOR FORMING n-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING n-TYPE DIFFUSION LAYER, AND METHOD FOR PRODUCING SOLAR CELL ELEMENT
JPWO2016010095A1 (en) * 2014-07-15 2017-04-27 日立化成株式会社 Manufacturing method of semiconductor substrate having n-type diffusion layer and manufacturing method of solar cell element
JPWO2016068315A1 (en) * 2014-10-30 2017-06-15 日立化成株式会社 N-type diffusion layer forming composition, method for producing n-type diffusion layer, and method for producing solar cell element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1873837A (en) * 2005-04-25 2006-12-06 E.I.内穆尔杜邦公司 Thick film conductor paste compositions for LTCC tape in microwave applications
WO2009029738A1 (en) * 2007-08-31 2009-03-05 Ferro Corporation Layered contact structure for solar cells
WO2009045707A1 (en) * 2007-10-05 2009-04-09 Sunpower Corporation Dopant material for manufacturing solar cells
CN102026927A (en) * 2008-06-26 2011-04-20 E.I.内穆尔杜邦公司 Glass compositions used in conductors for photovoltaic cells
CN102194672A (en) * 2010-01-25 2011-09-21 日立化成工业株式会社 Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
CN102834898A (en) * 2010-04-23 2012-12-19 日立化成工业株式会社 N-type diffusion layer forming composition, method of producing n-type diffusion layer, and method of producing solar cell element
CN102844841A (en) * 2010-04-23 2012-12-26 日立化成工业株式会社 N-type diffusion layer-forming composition, n-type diffusion layer production method and solar cell component production method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19910816A1 (en) * 1999-03-11 2000-10-05 Merck Patent Gmbh Doping pastes for producing p, p + and n, n + regions in semiconductors
US6664567B2 (en) * 2001-06-28 2003-12-16 Kyocera Corporation Photoelectric conversion device, glass composition for coating silicon, and insulating coating in contact with silicon
JP5522900B2 (en) * 2008-02-22 2014-06-18 東京応化工業株式会社 Electrode forming conductive composition and method for forming solar cell
KR101631711B1 (en) * 2008-03-21 2016-06-17 신에쓰 가가꾸 고교 가부시끼가이샤 Phosphorus paste for diffusion and method for preparing solar cell by using the same
TW201008889A (en) * 2008-06-06 2010-03-01 Du Pont Glass compositions used in conductors for photovoltaic cells
US8053867B2 (en) * 2008-08-20 2011-11-08 Honeywell International Inc. Phosphorous-comprising dopants and methods for forming phosphorous-doped regions in semiconductor substrates using phosphorous-comprising dopants
JP5414409B2 (en) * 2009-01-16 2014-02-12 日立粉末冶金株式会社 Low melting glass composition, low-temperature sealing material and electronic component using the same
CN102803171A (en) * 2009-06-17 2012-11-28 旭硝子株式会社 Glass frit for formation of electrode, and electrically conductive paste for formation of electrode and solar cell each utilizing same
JP5815215B2 (en) * 2009-08-27 2015-11-17 東京応化工業株式会社 Diffusion agent composition and method for forming impurity diffusion layer
KR101384874B1 (en) * 2011-07-05 2014-04-16 히타치가세이가부시끼가이샤 COMPOSITION FOR FORMING n-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING n-TYPE DIFFUSION LAYER, AND METHOD FOR PRODUCING SOLAR CELL ELEMENT

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1873837A (en) * 2005-04-25 2006-12-06 E.I.内穆尔杜邦公司 Thick film conductor paste compositions for LTCC tape in microwave applications
WO2009029738A1 (en) * 2007-08-31 2009-03-05 Ferro Corporation Layered contact structure for solar cells
WO2009045707A1 (en) * 2007-10-05 2009-04-09 Sunpower Corporation Dopant material for manufacturing solar cells
CN102026927A (en) * 2008-06-26 2011-04-20 E.I.内穆尔杜邦公司 Glass compositions used in conductors for photovoltaic cells
CN102194672A (en) * 2010-01-25 2011-09-21 日立化成工业株式会社 Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
CN102834898A (en) * 2010-04-23 2012-12-19 日立化成工业株式会社 N-type diffusion layer forming composition, method of producing n-type diffusion layer, and method of producing solar cell element
CN102844841A (en) * 2010-04-23 2012-12-26 日立化成工业株式会社 N-type diffusion layer-forming composition, n-type diffusion layer production method and solar cell component production method

Also Published As

Publication number Publication date
CN105551947A (en) 2016-05-04
CN103650111A (en) 2014-03-19
JPWO2013005738A1 (en) 2015-02-23
TW201419384A (en) 2014-05-16
TWI570778B (en) 2017-02-11
KR20140008535A (en) 2014-01-21
KR20140019473A (en) 2014-02-14
WO2013005738A1 (en) 2013-01-10
JP5176158B1 (en) 2013-04-03
CN103839787A (en) 2014-06-04
TW201308402A (en) 2013-02-16
TWI480929B (en) 2015-04-11
CN105006429A (en) 2015-10-28
KR101384874B1 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
TWI587372B (en) Composition for forming n-type diffusion layer and method for producing n-type diffusion layer, and method for manufacturing photovoltaic cell
CN102870197B (en) N-type diffusion layer forms compositions, the manufacture method of n-type diffusion layer and the manufacture method of solar cell device
CN105977143B (en) Form the composition and method of p-diffusion layer, and the method for preparing photovoltaic cell
CN102844841B (en) N-type diffusion layer forms the manufacture method of compositions, the manufacture method of n-type diffusion layer and solar cell device
CN103688341B (en) N-type diffusion layer is formed by compositions, the manufacture method of n-type diffusion layer and the manufacture method of solar cell device
CN104844268A (en) Impurities diffusion layer forming composition, n-type diffusion layer forming composition, method for manufacturing n-type diffusion layer, p-type diffusion layer forming composition, method for manufacturing p-type diffusion layer, and method for manufacturing solar cell elements
CN107093550A (en) The manufacture method of n-type diffusion layer formation composition, the manufacture method of n-type diffusion layer and solar cell device
CN102834898B (en) N-type diffusion layer forms the manufacture method of constituent, the manufacture method of n-type diffusion layer and solar cell device
JP5842431B2 (en) Method for producing n-type diffusion layer and method for producing solar cell element
JP6582747B2 (en) Composition for forming n-type diffusion layer, method for producing semiconductor substrate having n-type diffusion layer, and method for producing solar cell
CN107148662A (en) Composition for forming n-type diffused layer, method for producing n-type diffused layer, and method for producing solar cell element

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170825

WD01 Invention patent application deemed withdrawn after publication