CN107058372A - 一种应用于植物上的CRISPR/Cas9载体的构建方法 - Google Patents
一种应用于植物上的CRISPR/Cas9载体的构建方法 Download PDFInfo
- Publication number
- CN107058372A CN107058372A CN201710035068.7A CN201710035068A CN107058372A CN 107058372 A CN107058372 A CN 107058372A CN 201710035068 A CN201710035068 A CN 201710035068A CN 107058372 A CN107058372 A CN 107058372A
- Authority
- CN
- China
- Prior art keywords
- sequence
- digestion
- seq
- psg
- crispr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/80—Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/10—Vectors comprising a non-peptidic targeting moiety
Landscapes
- Genetics & Genomics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明涉及一种应用于植物上的CRISPR/Cas9载体的构建方法,其包括:S1:靶序列退火复性;S2:PSG载体的酶切;S3:连接和转化;S4:重组质粒的鉴定和提取;S5:重组资料和PCC质粒的双酶切;S6:连接、转化和鉴定。其获得的载体不仅能够作用于单个靶位点,而且能够同时作用于两个靶位点。
Description
技术领域
本发明涉及植物分子生物学领域,尤其涉及应用于植物上的CRISPR/Cas9载体的构建方法。
背景技术
CRISPR/Cas9技术是自2013年兴起的一种高效简便的基因组编辑技术,目前已在动物、模式植物中得到广泛应用。它主要是基于细菌的一种获得性免疫系统改造而成,由于其可用于对DNA进行定点编辑,并且可以同时作用于多个靶位点,同时编辑多个基因,较常规转基因方法具有明显优势,且沉默效果更加彻底,因此越来越多的研究人员对其产生了浓厚兴趣。此外,在常用的基因组编辑技术中,CRISPR/Cas9相对于ZFN和TALEN技术,具有操作简便、制备成本低的巨大优势,使其在常规分子生物学实验室即可使用。
目前,应用于动物上的CRISPR/Cas9载体已经有大量的报道,而应用于植物上的CRISPR/Cas9载体则相对较少,特别是能够进行多位点编辑的载体。
发明内容
为克服现有技术存在的上述技术问题,本发明提供了能够应用于植物上的CRISPR/Cas9载体的构建方法,由其获得的载体不仅能够作用于单个靶位点,而且能够同时作用于两个靶位点。
本发明解决上述技术问题的技术方案如下:一种应用于植物上的CRISPR/Cas9载体的构建方法,其包括:
S1:靶序列退火复性:根据选定的靶序列,合成互补的Oligo DNA,将合成的OligoDNA序列进行退火复性获得DNA双链序列,并稀释;
S2:PSG载体的酶切:采用限制性内切酶BbsI酶切pSG载体,酶切产物经超薄产物纯化试剂盒进行回收;
S3:连接和转化:配置连接体系,将S1获得的稀释后的DNA双链序列与S2获得的酶切产物进行连接反应,将获得的全部连接产物采用热激发转化至大肠杆菌JM109中;
S4:重组质粒的鉴定和提取:分别挑单菌落于LB/Amp液体培养基中震荡培养,分别以M13fwd和Oligo-R为引物进行菌液PCR鉴定,将验证正确的菌液转接到新鲜的LB/Amp液体培养基中,培养后进行质粒的提取,得到重组质粒;
S5:重组资料和PCC质粒的双酶切:将得到的重组质粒和PCC质粒进行双酶切,酶切产物经1%的琼脂糖凝胶电泳后,采用凝胶回收试剂盒分别回收目标片段;
S6:连接、转化和鉴定:配置连接体系,将S5获得的酶切回收目标片段进行连接反应,将获得的全部连接产物采用热激发转化至大肠杆菌JM109中,挑单菌落于LB/Kan液体培养基中震荡培养,并进行菌液PCR鉴定,将阳性菌液转接到新鲜的LB/Kan液体培养基中培养,提取质粒,即获得构建好的CRISPR/Cas9载体。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述PSG载体的构建包括:
以pX330质粒为模板,使用高保真酶PrimeSTAR HS DNAPolymerase扩增sgRNA片段,回收该片段,标记为sgRNA1,引物序列为SEQ ID NO.1所示的Sg1-F和SEQ ID NO.2所示的Sg1-R;
使用EcoRI-HF和XbaI分别双酶切pUC19和sgRNA1,回收目的片段后按1:7的摩尔比进行连接,得到重组质粒pSG1,测序,保留序列完全正确的阳性质粒;
以pSG1质粒为模板,使用高保真酶PrimeSTAR HS DNA Polymerase扩增sgRNA片段,回收该片段,标记为sgRNA,引物序列为SEQ ID NO.3所示的Sg2-F和SEQ ID NO.4所示的Sg2-R;
使用EcoRI-HF和XbaI双酶切pUC19,使用BsaI酶切sgRNA,回收目的片段后按1:7的摩尔比进行连接,得到重组质粒pSG,测序,保留序列完全正确的阳性质粒。
进一步,所述PCC载体的构建包括:
以pX330质粒为模板,使用高保真酶PrimeSTAR HS DNA Polymerase扩增hSpCas9片段,其中引物Cas-F:Cas-R1:Cas-R2=1.5:0.2:1.3,回收该片段,标记为hSpCas9,Cas-F的序列如SEQ ID NO.5所示,Cas-R1的序列如SEQ ID NO.6所示,Cas-R2的序列如SEQ IDNO.7所示;
使用NcoI-HF和BstEII-HF分别双酶切pCAMBIA1302和hSpCas9,回收目的片段后按1:5的摩尔比进行连接,得到重组质粒pCC1,测序,保留序列完全正确的阳性质粒;
以pCAMBIA1302质粒为模板,使用高保真酶PrimeSTAR HS DNA Polymerase扩增CaMV 35enhanced promoter片段,回收该片段,标记为CaMV-ep,引物序列为SEQ ID NO.8所示的CaMV-ep-F和SEQ ID NO.9所示的CaMV-ep-R;
使用HindIII和NcoI分别双酶切pCC1和CaMV-ep,回收目的片段后按1:5的摩尔比进行连接,得到重组质粒pCC,测序,保留序列完全正确的阳性质粒。
进一步,在步骤S1中,合成一对互补的Oligo DNA,即序列为SEQ ID NO.10所示的Oligo-F和序列为SEQ ID NO.11所示的Oligo-R。
进一步,在步骤S1中,合成两对互补的Oligo DNA,分别为序列为SEQ ID NO.12所示的Oligo1-F,序列为SEQ ID NO.13所示的Oligo1-R,序列为SEQ ID NO.14所示的Oligo2-F及序列为SEQ ID NO.15所示的Oligo2-R。
进一步,在步骤S1中,将所述合成的Oligo DNA序列进行退火复性的反应程序为:95℃变性5min,每30s降温1℃,降温至25℃,并于4℃保存;在所述步骤S2中,PSG载体的酶切的反应体系为100μL,37℃反应过夜,65℃反应20min。
进一步,在所述步骤S4中,所得到的重组质粒为pSG-CZ;在所述步骤S5中,将得到的pSG-CZ重组质粒、pCC质粒分别采用EcoRI-HF和XbaI进行双酶切,37℃酶切3h后,65℃反应20min得到所述酶切产物。
进一步,在所述步骤S4中,所得到的重组质粒为pSG-CZ1和pSG-CZ2;所述步骤S5中,将得到的pSG-CZ1重组质粒采用EcoRI-HF和KpnI进行双酶切,pSG-CZ2重组质粒采用XbaI和KpnI进行双酶切;或将得到的pSG-CZ1重组质粒采用EcoRI-HF和BamHI进行双酶切,pSG-CZ2重组质粒采用XbaI和BamHI进行双酶切;并将pCC质粒采用EcoRI-HF和XbaI进行双酶切,37℃酶切3h后,65℃反应20min,得到所述酶切产物。
进一步,在所述步骤S6中,所述菌液PCR鉴定以M13rev和Oligo-R为引物。
进一步,在所述步骤S6中,所述菌液PCR鉴定以Oligo1-F和Oligo2-R为引物。
与现有技术相比,本发明提供的应用于植物上的CRISPR/Cas9载体的构建方法可获得应用于植物上的CRISPR/Cas9载体,可用于下一步的遗传转化试验,该载体不仅能够作用于单个靶位点,而且能够同时作用于两个靶位点。
附图说明
图1为PSG载体的图谱;
图2为PCC载体的图谱;
图3为本发明提供的应用于植物上的CRISPR/Cas9载体的构建方法的流程图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
本发明的目的在于提供一种能够应用于植物上的CRISPR/Cas9载体,该载体不仅能够作用于单个靶位点,而且能够同时作用于两个靶位点。为实现此目标,该CRISPR/Cas9载体由两个基本载体pSG和pCC组成,构建方法具体包含以下内容:
1.pSG载体的构建:
1)以pX330质粒为模板,使用高保真酶PrimeSTAR HS DNA Polymerase扩增sgRNA片段,回收该片段,标记为sgRNA1,引物序列如下:
(SEQ ID NO.1)Sg1-F:
GGAATTCATAGTTTCCCATGATTCCTTCATATTTGC(下划线标记的为EcoRI酶切位点);
(SEQ ID NO.2)Sg1-R:
TACCTCTAGAGCCATTTGTCTGC(下划线标记的为XbaI酶切位点);
2)使用EcoRI-HF和XbaI分别双酶切pUC19和sgRNA1,回收目的片段后按1:7的摩尔比进行连接,得到重组质粒pSG1,测序,保留序列完全正确的阳性质粒;
3)以pSG1质粒为模板,使用高保真酶PrimeSTAR HS DNA Polymerase扩增sgRNA片段,回收该片段,标记为sgRNA,引物序列如下:
(SEQ ID NO.3)Sg2-F:
ATATATGGTCTCAAATTGGATCCGGTACCGAATTCATAGTTTCCCATGATTCCT(下划线标记的为BsaI、BamHI、KpnI、EcoRI酶切位点);
(SEQ ID NO.4)Sg2-R:
ATATATGGTCTCACTAGGGATCCGGTACCCTCTAGAGCCATTTGTCTGCAGAATT(下划线标记的为BsaI、BamHI、KpnI、XbaI酶切位点);
4)使用EcoRI-HF和XbaI双酶切pUC19,使用BsaI酶切sgRNA,回收目的片段后按1:7的摩尔比进行连接,得到重组质粒pSG,测序,保留序列完全正确的阳性质粒,pSG载体的图谱如图1所示,pSG载体的部分序列如下所示(SEQ ID NO.16):
其中分别是M13fwd和M13rev引物序列,“____”是hU6promoter序列,是guide序列,是sgRNA scaffold序列,是hU6terminator序列。
2.pCC载体的构建
5)以pX330质粒为模板,使用高保真酶PrimeSTAR HS DNA Polymerase扩增hSpCas9片段,其中引物Cas-F:Cas-R1:Cas-R2=1.5:0.2:1.3,回收该片段,标记为hSpCas9,引物序列如下:
(SEQ ID NO.5)Cas-F:
CATGCCATGGACTATAAGGACCACGACGGAGACT(下划线标记的为NcoI酶切位点);
(SEQ ID NO.6)Cas-R1:
GACCTTCCGCTTCTTCTTTGGCTTTTTCTTTTTTGCCTGGCCGGCCT;
(SEQ ID NO.7)Cas-R2:
CAGGGTCACCTTAACCGACCTTCCGCTTCTTCTTTGGCT(下划线标记的分别为BstEII酶切位点和SV40核定位信号序列);
6)使用NcoI-HF和BstEII-HF分别双酶切pCAMBIA1302和hSpCas9,回收目的片段后按1:5的摩尔比进行连接,得到重组质粒pCC1,测序,保留序列完全正确的阳性质粒;
7)以pCAMBIA1302质粒为模板,使用高保真酶PrimeSTAR HS DNA Polymerase扩增CaMV 35enhanced promoter片段,回收该片段,标记为CaMV-ep,引物序列如下:
(SEQ ID NO.8)CaMV-ep-F:
CCCAAGCTTTTGCGTATTGGCTAGAGCAGCTTG(下划线标记的为HindIII酶切位点);
(SEQ ID NO.9)CaMV-ep-R:
CATGCCATGGCTCATTGCCCCCCGGGATCT(下划线标记的为NcoI酶切位点);
8)使用HindIII和NcoI分别双酶切pCC1和CaMV-ep,回收目的片段后按1:5的摩尔比进行连接,得到重组质粒pCC,测序,保留序列完全正确的阳性质粒,pCC载体的图谱如图2所示。
具体地,CRISPR/Cas9载体的构建方法如图3所示,包括:
S1:靶序列退火复性:根据选定的靶序列,合成互补的Oligo DNA,将合成的OligoDNA序列进行退火复性获得DNA双链序列,并稀释;
S2:PSG载体的酶切:采用限制性内切酶BbsI酶切pSG载体,酶切产物经超薄产物纯化试剂盒进行回收;
S3:连接和转化:配置连接体系,将S1获得的稀释后的DNA双链序列与S2获得的酶切产物进行连接反应,将获得的全部连接产物采用热激发转化至大肠杆菌JM109中;
S4:重组质粒的鉴定和提取:分别挑单菌落于LB/Amp液体培养基中震荡培养,分别以M13fwd和Oligo-R为引物进行菌液PCR鉴定,将验证正确的菌液转接到新鲜的LB/Amp液体培养基中,培养后进行质粒的提取,得到重组质粒;
S5:重组资料和PCC质粒的双酶切:将得到的重组质粒和PCC质粒进行双酶切,酶切产物经1%的琼脂糖凝胶电泳后,采用凝胶回收试剂盒分别回收目标片段;
S6:连接、转化和鉴定:配置连接体系,将S5获得的酶切回收目标片段进行连接反应,将获得的全部连接产物采用热激发转化至大肠杆菌JM109中,挑单菌落于LB/Kan液体培养基中震荡培养,并进行菌液PCR鉴定,将阳性菌液转接到新鲜的LB/Kan液体培养基中培养,提取质粒,即获得构建好的CRISPR/Cas9载体。
实施方式1
本实施方式提供了作用于单个位点的CRISPR/Cas9载体制备过程:
(1)靶序列退火复性。根据选定的靶序列,合成一对互补的Oligo DNA,序列为:Oligo-F(SEQ ID NO.10):CACCNNNNNNNNNNNNNNNNNNNN,Oligo-R(SEQ ID NO.11):AAACNNNNNNNNNNNNNNNNNNNN。将合成的Oligo序列按照表1进行退火复性,反应程序为:95℃变性5min,1℃/30s降温至25℃,4℃保存。将得到的DNA双链序列稀释至0.1μM。
表1靶序列退火复性的反应体系
(2)pSG质粒的酶切。采用限制性内切酶BbsI酶切pSG载体,反应体系100μL,如表2所示,37℃反应过夜,65℃反应20min,酶切产物经超薄产物纯化试剂盒进行回收,并使用核酸蛋白仪测定浓度。
表2 BbsI酶切pSG载体的反应体系
(3)连接和转化。按照表3配置连接体系,16℃反应30min后4℃反应过夜;将全部连接产物采用热激发转化至大肠杆菌JM109中。
表3复性产物与pSG酶切片段的连接反应体系
(4)重组质粒的鉴定和提取。挑单菌落于800μl的LB/Amp液体培养基中,37℃振荡培养。以M13fwd和Oligo-R为引物进行菌液PCR鉴定,将验证正确的菌液转接到新鲜的LB/Amp液体培养基中,培养后进行质粒的提取,得到重组质粒pSG-CZ。
(5)pSG-CZ和pCC质粒的双酶切。将得到的pSG-CZ重组质粒、pCC质粒分别采用EcoRI-HF和XbaI进行双酶切,37℃酶切3h后65℃反应20min;酶切产物经1%的琼脂糖凝胶电泳后,采用凝胶回收试剂盒分别回收目标片段,并用核酸蛋白仪测定浓度。
(6)连接、转化和鉴定。按照表4配置连接体系,16℃反应30min后4℃反应过夜;将全部连接产物采用热激发转化至大肠杆菌JM109中;挑单菌落于800μl的LB/Kan液体培养基中,37℃振荡培养;以M13rev和Oligo-R为引物进行菌液PCR鉴定,将阳性菌液转接到新鲜的LB/Kan液体培养基中培养,提取质粒,-20℃保存。该质粒即为构建好的作用于单个位点的CRISPR/Cas9载体,可用于下一步的遗传转化试验。
表4酶切回收片段的连接反应体系
实施方式2
本实施方式提供了作用于两个位点的CRISPR/Cas9载体制备过程:
(1)靶序列退火复性。根据选定的靶序列,合成两对互补的Oligo DNA,序列为:
Oligo1-F(SEQ ID NO.12):CACCNNNNNNNNNNNNNNNNNNNN;
Oligo1-R(SEQ ID NO.13):AAACNNNNNNNNNNNNNNNNNNNN;
Oligo2-F(SEQ ID NO.14):CACCNNNNNNNNNNNNNNNNNNNN;
Oligo2-R(SEQ ID NO.15):AAACNNNNNNNNNNNNNNNNNNNN;
将合成的Oligo序列分别按照表5进行退火复性,反应程序为:95℃变性5min,1℃/30s降温至25℃,4℃保存;将得到的DNA双链序列稀释至0.1μM。
表5靶序列退火复性的反应体系
(2)pSG质粒的酶切。采用限制性内切酶BbsI酶切pSG载体,反应体系100μL(表6),37℃反应过夜,65℃反应20min,酶切产物经超薄产物纯化试剂盒进行回收,并使用核酸蛋白仪测定浓度。
表6 BbsI酶切pSG载体的反应体系
(3)连接和转化。按照表7分别配置连接体系,16℃反应30min后4℃反应过夜。将全部连接产物采用热激发转化至大肠杆菌JM109中。
表7复性产物与pSG酶切片段的连接反应体系
(4)重组质粒的鉴定和提取。分别挑单菌落于800μl的LB/Amp液体培养基中,37℃振荡培养;分别以M13fwd和Oligo-R为引物进行菌液PCR鉴定,将验证正确的菌液转接到新鲜的LB/Amp液体培养基中,培养后进行质粒的提取,得到重组质粒pSG-CZ1和pSG-CZ2。
(5)pSG-CZ1、pSG-CZ2和pCC质粒的双酶切。将得到的pSG-CZ1重组质粒采用EcoRI-HF和KpnI进行双酶切,pSG-CZ2重组质粒采用XbaI和KpnI进行双酶切;或将得到的pSG-CZ1重组质粒采用EcoRI-HF和BamHI进行双酶切,pSG-CZ2重组质粒采用XbaI和BamHI进行双酶切;将pCC质粒采用EcoRI-HF和XbaI进行双酶切,37℃酶切3h后65℃反应20min。酶切产物经1%的琼脂糖凝胶电泳后,采用凝胶回收试剂盒分别回收目标片段,并用核酸蛋白仪测定浓度。
(6)连接、转化和鉴定。按照表8配置连接体系,16℃反应30min后4℃反应过夜;将全部连接产物采用热激发转化至大肠杆菌JM109中;挑单菌落于800μl的LB/Kan液体培养基中,37℃振荡培养;以Oligo1-F和Oligo2-R为引物进行菌液PCR鉴定,将阳性菌液转接到新鲜的LB/Kan液体培养基中培养,提取质粒,-20℃保存。该质粒即为构建好的作用于两个位点的CRISPR/Cas9载体,可用于下一步的遗传转化试验。
表8酶切回收片段的连接反应体系
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
SEQUENCE LISTING
<110> 四川农业大学
<120> 一种应用于植物上的CRISPR/Cas9载体的构建方法
<130> 2017
<160> 16
<170> PatentIn version 3.3
<210> 1
<211> 36
<212> DNA
<213> 人工序列
<400> 1
ggaattcata gtttcccatg attccttcat atttgc 36
<210> 2
<211> 23
<212> DNA
<213> 人工序列
<400> 2
tacctctaga gccatttgtc tgc 23
<210> 3
<211> 54
<212> DNA
<213> 人工序列
<400> 3
atatatggtc tcaaattgga tccggtaccg aattcatagt ttcccatgat tcct 54
<210> 4
<211> 55
<212> DNA
<213> 人工序列
<400> 4
atatatggtc tcactaggga tccggtaccc tctagagcca tttgtctgca gaatt 55
<210> 5
<211> 34
<212> DNA
<213> 人工序列
<400> 5
catgccatgg actataagga ccacgacgga gact 34
<210> 6
<211> 47
<212> DNA
<213> 人工序列
<400> 6
gaccttccgc ttcttctttg gctttttctt ttttgcctgg ccggcct 47
<210> 7
<211> 39
<212> DNA
<213> 人工序列
<400> 7
cagggtcacc ttaaccgacc ttccgcttct tctttggct 39
<210> 8
<211> 33
<212> DNA
<213> 人工序列
<400> 8
cccaagcttt tgcgtattgg ctagagcagc ttg 33
<210> 9
<211> 30
<212> DNA
<213> 人工序列
<400> 9
catgccatgg ctcattgccc cccgggatct 30
<210> 10
<211> 24
<212> DNA
<213> 人工序列
<220>
<221> misc_feature
<222> (5)..(24)
<223> n is a, c, g, or t
<400> 10
caccnnnnnn nnnnnnnnnn nnnn 24
<210> 11
<211> 24
<212> DNA
<213> 人工序列
<220>
<221> misc_feature
<222> (5)..(24)
<223> n is a, c, g, or t
<400> 11
aaacnnnnnn nnnnnnnnnn nnnn 24
<210> 12
<211> 24
<212> DNA
<213> 人工序列
<220>
<221> misc_feature
<222> (5)..(24)
<223> n is a, c, g, or t
<400> 12
caccnnnnnn nnnnnnnnnn nnnn 24
<210> 13
<211> 24
<212> DNA
<213> 人工序列
<220>
<221> misc_feature
<222> (5)..(24)
<223> n is a, c, g, or t
<400> 13
aaacnnnnnn nnnnnnnnnn nnnn 24
<210> 14
<211> 24
<212> DNA
<213> 人工序列
<220>
<221> misc_feature
<222> (5)..(24)
<223> n is a, c, g, or t
<400> 14
caccnnnnnn nnnnnnnnnn nnnn 24
<210> 15
<211> 24
<212> DNA
<213> 人工序列
<220>
<221> misc_feature
<222> (5)..(24)
<223> n is a, c, g, or t
<400> 15
aaacnnnnnn nnnnnnnnnn nnnn 24
<210> 16
<211> 568
<212> DNA
<213> 人工序列
<400> 16
acgacgttgt aaaacgacgg ccagtgaatt ggatccggta ccgaattcat agtttcccat 60
gattccttca tatttgcata tacgatacaa ggctgttaga gagataattg gaattaattt 120
gactgtaaac acaaagatat tagtacaaaa tacgtgacgt agaaagtaat aatttcttgg 180
gtagtttgca gttttaaaat tatgttttaa aatggactat catatgctta ccgtaacttg 240
aaagtatttc gatttcttgg ctttatatat cttgtggaaa ggacgaaaca ccgggtcttc 300
gagaagacct gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac 360
ttgaaaaagt ggcaccgagt cggtgctttt ttgttttaga gctagaaata gcaagttaaa 420
ataaggctag tccgttttta gcgcgtgcgc caattctgca gacaaatggc tctagagggt 480
accggatccc tagagattaa tcgtcgacct gcaggcatgc aagcttggcg taatcatggt 540
catagctgtt tcctgtgtga aattgtta 568
Claims (10)
1.一种应用于植物上的CRISPR/Cas9载体的构建方法,其特征在于,包括:
S1:靶序列退火复性:根据选定的靶序列,合成互补的Oligo DNA,将合成的Oligo DNA序列进行退火复性获得DNA双链序列,并稀释;
S2:PSG载体的酶切:采用限制性内切酶BbsI酶切pSG载体,酶切产物经超薄产物纯化试剂盒进行回收;
S3:连接和转化:配置连接体系,将S1获得的稀释后的DNA双链序列与S2获得的酶切产物进行连接反应,将获得的全部连接产物采用热激发转化至大肠杆菌JM109中;
S4:重组质粒的鉴定和提取:分别挑单菌落于LB/Amp液体培养基中震荡培养,分别以M13fwd和Oligo-R为引物进行菌液PCR鉴定,将验证正确的菌液转接到新鲜的LB/Amp液体培养基中,培养后进行质粒的提取,得到重组质粒;
S5:重组资料和PCC质粒的双酶切:将得到的重组质粒和PCC质粒进行双酶切,酶切产物经1%的琼脂糖凝胶电泳后,采用凝胶回收试剂盒分别回收目标片段;
S6:连接、转化和鉴定:配置连接体系,将S5获得的酶切回收目标片段进行连接反应,将获得的全部连接产物采用热激发转化至大肠杆菌JM109中,挑单菌落于LB/Kan液体培养基中震荡培养,并进行菌液PCR鉴定,将阳性菌液转接到新鲜的LB/Kan液体培养基中培养,提取质粒,即获得构建好的CRISPR/Cas9载体。
2.根据权利要求1所述的应用于植物上的CRISPR/Cas9载体的构建方法,其特征在于,所述PSG载体的构建包括:
以pX330质粒为模板,使用高保真酶PrimeSTAR HS DNA Polymerase扩增sgRNA片段,回收该片段,标记为sgRNA1,引物序列为SEQ ID NO.1所示的Sg1-F和SEQ ID NO.2所示的Sg1-R;
使用EcoRI-HF和XbaI分别双酶切pUC19和sgRNA1,回收目的片段后按1:7的摩尔比进行连接,得到重组质粒pSG1,测序,保留序列完全正确的阳性质粒;
以pSG1质粒为模板,使用高保真酶PrimeSTAR HS DNA Polymerase扩增sgRNA片段,回收该片段,标记为sgRNA,引物序列为SEQ ID NO.3所示的Sg2-F和SEQ ID NO.4所示的Sg2-R;
使用EcoRI-HF和XbaI双酶切pUC19,使用BsaI酶切sgRNA,回收目的片段后按1:7的摩尔比进行连接,得到重组质粒pSG,测序,保留序列完全正确的阳性质粒。
3.根据权利要求2所述的应用于植物上的CRISPR/Cas9载体的构建方法,其特征在于,所述PCC载体的构建包括:
以pX330质粒为模板,使用高保真酶PrimeSTAR HS DNA Polymerase扩增hSpCas9片段,其中引物Cas-F:Cas-R1:Cas-R2=1.5:0.2:1.3,回收该片段,标记为hSpCas9,Cas-F的序列如SEQ ID NO.5所示,Cas-R1的序列如SEQ ID NO.6所示,Cas-R2的序列如SEQ ID NO.7所示;
使用NcoI-HF和BstEII-HF分别双酶切pCAMBIA1302和hSpCas9,回收目的片段后按1:5的摩尔比进行连接,得到重组质粒pCC1,测序,保留序列完全正确的阳性质粒;
以pCAMBIA1302质粒为模板,使用高保真酶PrimeSTAR HS DNA Polymerase扩增CaMV35enhanced promoter片段,回收该片段,标记为CaMV-ep,引物序列为SEQ ID NO.8所示的CaMV-ep-F和SEQ ID NO.9所示的CaMV-ep-R;
使用HindIII和NcoI分别双酶切pCC1和CaMV-ep,回收目的片段后按1:5的摩尔比进行连接,得到重组质粒pCC,测序,保留序列完全正确的阳性质粒。
4.根据权利要求3所述的应用于植物上的CRISPR/Cas9载体的构建方法,其特征在于,在步骤S1中,合成一对互补的Oligo DNA,即序列为SEQ ID NO.10所示的Oligo-F和序列为SEQ ID NO.11所示的Oligo-R。
5.根据权利要求3所述的应用于植物上的CRISPR/Cas9载体的构建方法,其特征在于,在步骤S1中,合成两对互补的Oligo DNA,分别为序列为SEQ ID NO.12所示的Oligo1-F,序列为SEQ ID NO.13所示的Oligo1-R,序列为SEQ ID NO.14所示的Oligo2-F及序列为SEQ IDNO.15所示的Oligo2-R。
6.根据权利要求4或5所述的应用于植物上的CRISPR/Cas9载体的构建方法,其特征在于,在步骤S1中,将所述合成的Oligo DNA序列进行退火复性的反应程序为:95℃变性5min,每30s降温1℃,降温至25℃,并于4℃保存;
在所述步骤S2中,PSG载体的酶切的反应体系为100μL,37℃反应过夜,65℃反应20min。
7.根据权利要求4所述的应用于植物上的CRISPR/Cas9载体的构建方法,其特征在于,在所述步骤S4中,所得到的重组质粒为pSG-CZ;在所述步骤S5中,将得到的pSG-CZ重组质粒、pCC质粒分别采用EcoRI-HF和XbaI进行双酶切,37℃酶切3h后,65℃反应20min得到所述酶切产物。
8.根据权利要求5所述的应用于植物上的CRISPR/Cas9载体的构建方法,其特征在于,在所述步骤S4中,所得到的重组质粒为pSG-CZ1和pSG-CZ2;所述步骤S5中,将得到的pSG-CZ1重组质粒采用EcoRI-HF和KpnI进行双酶切,pSG-CZ2重组质粒采用XbaI和KpnI进行双酶切;或将得到的pSG-CZ1重组质粒采用EcoRI-HF和BamHI进行双酶切,pSG-CZ2重组质粒采用XbaI和BamHI进行双酶切;并将pCC质粒采用EcoRI-HF和XbaI进行双酶切,37℃酶切3h后,65℃反应20min,得到所述酶切产物。
9.根据权利要求4或7所述的应用于植物上的CRISPR/Cas9载体的构建方法,其特征在于,在所述步骤S6中,所述菌液PCR鉴定以M13rev和Oligo-R为引物。
10.根据权利要求5或8所述的应用于植物上的CRISPR/Cas9载体的构建方法,其特征在于,在所述步骤S6中,所述菌液PCR鉴定以Oligo1-F和Oligo2-R为引物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710035068.7A CN107058372A (zh) | 2017-01-18 | 2017-01-18 | 一种应用于植物上的CRISPR/Cas9载体的构建方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710035068.7A CN107058372A (zh) | 2017-01-18 | 2017-01-18 | 一种应用于植物上的CRISPR/Cas9载体的构建方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107058372A true CN107058372A (zh) | 2017-08-18 |
Family
ID=59598612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710035068.7A Pending CN107058372A (zh) | 2017-01-18 | 2017-01-18 | 一种应用于植物上的CRISPR/Cas9载体的构建方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107058372A (zh) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
CN109468338A (zh) * | 2018-12-07 | 2019-03-15 | 苏州上源生物科技有限公司 | 一种快速构建秀丽线虫基因编辑所需目的pU6-sgRNA质粒的方法 |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106636192A (zh) * | 2017-01-18 | 2017-05-10 | 四川农业大学 | 一种应用于草莓上的CRISPR/Cas9载体的构建方法 |
-
2017
- 2017-01-18 CN CN201710035068.7A patent/CN107058372A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106636192A (zh) * | 2017-01-18 | 2017-05-10 | 四川农业大学 | 一种应用于草莓上的CRISPR/Cas9载体的构建方法 |
Non-Patent Citations (2)
Title |
---|
FENG ZHENGYAN: "Efficient genome editing in plants using a CRISPR/Cas", 《CELL RESEARCH》 * |
MA XINGLIANG等: "A Robust CRISPR/Cas9 System for Convenient,High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants", 《MOLECULAR PLANT》 * |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
CN109468338A (zh) * | 2018-12-07 | 2019-03-15 | 苏州上源生物科技有限公司 | 一种快速构建秀丽线虫基因编辑所需目的pU6-sgRNA质粒的方法 |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107058372A (zh) | 一种应用于植物上的CRISPR/Cas9载体的构建方法 | |
CN116515797A (zh) | 具有ruvc结构域的酶 | |
CN110312800A (zh) | 处理核酸样本的方法 | |
CN107604003A (zh) | 一种基于线性化crispr‑cas9慢病毒载体基因敲除试剂盒及其应用 | |
CN109593757B (zh) | 一种探针及其适用于高通量测序的对目标区域进行富集的方法 | |
US20240327871A1 (en) | Systems and methods for transposing cargo nucleotide sequences | |
US20240301374A1 (en) | Systems and methods for transposing cargo nucleotide sequences | |
WO2021178934A1 (en) | Class ii, type v crispr systems | |
CN106636192B (zh) | 一种应用于草莓上的CRISPR/Cas9载体的构建方法 | |
CN108118057A (zh) | 一种基因编辑系统及其制备方法和应用 | |
CN110499334A (zh) | CRISPR/SlugCas9基因编辑系统及其应用 | |
CN104109669B (zh) | 猪ampd1基因启动子区域snp作为猪胴体性状的遗传标记及应用 | |
AU2022335499A1 (en) | Enzymes with ruvc domains | |
CN116003549A (zh) | 水稻叶尖皱缩扭曲基因ltr1及其应用 | |
WO2022159742A1 (en) | Novel engineered and chimeric nucleases | |
CN114990093A (zh) | 氨基酸序列小的蛋白序列mini rfx-cas13d | |
CN112662687A (zh) | 推迟玉米花期的方法、试剂盒、基因 | |
CN104480081A (zh) | Sso7d-Sau重组DNA聚合酶 | |
CA2156260A1 (en) | Bi-functional expression system | |
CN108754019A (zh) | 一种猪流行性腹泻病毒orf1基因全序列的扩增方法 | |
US20240360477A1 (en) | Systems and methods for transposing cargo nucleotide sequences | |
CN110438103B (zh) | 一种新型高效的常温ii型限制性内切酶 | |
US20240110167A1 (en) | Enzymes with ruvc domains | |
CN110387362B (zh) | 一种可识别切割agct位点的耐高温限制性内切酶 | |
CN116042710A (zh) | 将猴源nova1基因特异性地修改为人源基因的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |