CN106975756B - 一种铑碲合金空心纳米管的制备方法 - Google Patents
一种铑碲合金空心纳米管的制备方法 Download PDFInfo
- Publication number
- CN106975756B CN106975756B CN201710222650.4A CN201710222650A CN106975756B CN 106975756 B CN106975756 B CN 106975756B CN 201710222650 A CN201710222650 A CN 201710222650A CN 106975756 B CN106975756 B CN 106975756B
- Authority
- CN
- China
- Prior art keywords
- nanotube
- rhodium
- tellurium
- alloy
- rhte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0549—Hollow particles, including tubes and shells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Catalysts (AREA)
Abstract
一种铑碲合金空心纳米管的制备方法,涉及纳米管。提供方法简单易行,可大量制备晶态良好、原子利用率高、高稳定性的一维铑碲中空纳米管状材料的一种铑碲合金空心纳米管的制备方法。制备碲纳米线;制备RhTe合金纳米管;将得到的RhTe合金纳米管经过NaOH处理,即得高Rh含量的铑碲合金空心纳米管。利用湿部化学的方法,以结构稳定、可大量制备的超细Te纳米线为牺牲模板,经过置换过程后得到形貌规则的RhTe空心纳米管状材料。通过改变金属前驱体盐氯铑酸钠十二水合物的投料量以置换反应机理过程来调控合成不同厚度、高纵横比RhTe空心纳米管。
Description
技术领域
本发明涉及纳米管,尤其是涉及一种以碲纳米线为牺牲模板制备铑碲合金空心纳米管的方法。
背景技术
贵金属纳米材料因为其独特的物理化学性质而被广泛应用于催化、生物医疗、能源储存与转化等领域。过去几十年期间,通过调控反应热力学与动力学,贵金属纳米晶的形貌控制合成已经取得了很大的进展,各种形貌的贵金属纳米晶相继获得,但相比钯、铂、金、银而言,由于铑具有超高的表面能,目前关于铑纳米晶合成的文献报道比较少。普遍认为表面自由能在晶体生长过程中起着至关重要的作用,因此纳米晶体在热力学的诱导下生长成总表面能最低的形貌。金属铑作为一种重要的催化剂,在众多有机反应(Halasi,G.;Bánsági,T.;Solymosi,F.ChemCatChem 2009,1,311–317.)以及CO催化氧化(Zhang,Y.W.;Grass,M.E.;Huang,W.Y.;Somorjai,G.Langmuir 2010,26,16463–16468.)、N0x还原(Wang,R.;He,H.;Wang,J.N.;Liu,L.C.;Dai,H.X.Catal.Today 2013,201,68–78.)(如汽车尾气处理)等方面有很高的催化活性。因为铑在催化转化中不可或缺,储存量极少且价格昂贵,所以如何进一步提高其催化活性和利用效率一直是相关领域的重大科学问题与关键技术难题。与纳米颗粒、纳米线、纳米棒等实心材料相比,空心纳米材料具有低密度高比表面积、高原子利用效率的特点;硬模板法是一种常见有效的制备一维纳米材料的方法,尤其是通过置换反应的机理途径。例如Yushan Yan课题组(Chen,Z.;Waje,M.;Li,W.;Yan,Y.Supportless Ptand PtPd nanotubes as electrocatalysts for oxygen-reductionreactions.Angewandte Chemie 2007,46,4060-4063.)利用银纳米线为自牺牲模板,制备出Pt纳米管和PdPt合金纳米管,该实验利用的银模板直径较大约40nm且由于银的价格价高,同时由于置换反应生成的银离子容易与反应中引入的氯离子生成氯化银沉淀,对最终产物造成不利影响,所以此方法并非经济友好型。同时多组分的一维纳米结构(如:纳米线、纳米带、纳米棒和纳米管)由具特殊结构和超长的尺寸、各组分之间的协同效应表现出优异的物理化学性质而受到科学界的广泛关注,在催化过程中相比其他纳米颗粒而言表现出较低的溶出速率,奥斯瓦尔德熟化而表现出较高的稳定性。已有一些文献报道用晶种合成的方法制备铑的纳米框架(Xie,S.;Lu,N.;Xie,Z.;Wang,J.;Kim,M.J.;Xia,Y.AngewandteChemie 2012,51,10266-10270.)和纳米笼(Xie,S.;Peng,H.C.;Lu,N.;Wang,J.;Kim,M.J.;Xie,Z.;Xia,Y.Journal of the American Chemical Society 2013,135,16658-16667.),但目前还未有关于一维中空结构的铑合金纳米晶的制备。碲纳米线由于具有大的纵横比,较小的直径,是一种理想的模板来制备一维贵金属纳米材料。因此开发一种操作简单易行的方法来大量制备晶态良好、高稳定性、原子利用率高的一维铑碲中空纳米管状材料,对于满足其在未来催化重整、能源转化与储存其方面的应用来说是非常重要的。对于提高贵金属的使用效率,增强其催化活性同时减少使用量仍然是当前研究的一个挑战也是机遇。
发明内容
本发明的目的在于提供方法简单易行,可大量制备晶态良好、原子利用率高、高稳定性的一维铑碲中空纳米管状材料的一种铑碲合金空心纳米管的制备方法。
本发明的具体步骤如下:
1)制备碲纳米线;
2)制备RhTe合金纳米管;
3)将步骤2)得到的RhTe合金纳米管经过NaOH处理,即得高Rh含量的铑碲合金空心纳米管。
在步骤1)中,所述制备碲纳米线的具体方法可为:以抗坏血酸为还原剂,亚碲酸钠为碲源,十六烷基三甲基氯化铵为结构引导剂,制备高结晶度、高纵横比形貌规则的碲纳米线。
在步骤2)中,所述制备RhTe合金纳米管的具体方法可为:以氯铑酸钠十二水合物为金属前驱体盐,乙二醇为反应溶剂,步骤1)制备的碲纳米线为模板并同时作为还原剂,PVP为表面活性剂,制备厚度可控的RhTe合金纳米管。
本发明利用湿部化学的方法,以结构稳定、可大量制备的超细Te纳米线为牺牲模板,经过置换过程后得到形貌规则的RhTe空心纳米管状材料。
本发明通过改变金属前驱体盐氯铑酸钠十二水合物的投料量以置换反应机理过程来调控合成不同厚度、高纵横比RhTe空心纳米管。
附图说明
图1为以亚碲酸钠为碲源,通过绿色化学的方法制备得到的超细碲纳米线的低倍透射电子显微镜图片;
图2为低倍下2nm壁厚铑碲合金中空纳米管透射电子显微镜图片;
图3为高倍下2nm壁厚铑碲合金中空纳米管透射电子显微镜图片;
图4为低倍下3nm壁厚铑碲合金中空纳米管透射电子显微镜图片;
图5为高倍下3nm壁厚铑碲合金中空纳米管透射电子显微镜图片;
图6为低倍下4nm壁厚铑碲合金中空纳米管透射电子显微镜图片;
图7为高倍下4nm壁厚铑碲合金中空纳米管透射电子显微镜图片;
图8为低倍下5nm壁厚铑碲合金中空纳米管透射电子显微镜图片;
图9为高倍下5nm壁厚铑碲合金中空纳米管透射电子显微镜图片;
图10为RhTe中空纳米管高角度环形暗场扫描透射电子显微镜图;
图11为RhTe中空纳米管高角度环形暗场能谱分析线性扫描图;
图12为RhTe中空纳米管高角度环形暗场扫描透射电子显微镜图;
图13为RhTe中空纳米管高角度环形暗场能谱分析面扫描图。
具体实施方式
下面通过实施例结合附图对本发明作进一步说明。
实施例1
在50mL反应釜里,加入1000mg的抗坏血酸,100mg的十六烷基三甲基溴化铵,40mL超纯水室温搅拌均匀后,加入52mg的亚碲酸钠,室温搅拌均匀成乳白色,将50mL反应釜内衬装入钢套中,放入电热恒温鼓风干燥箱,经0.5h由30℃加热到90℃,然后恒温10h,最后自然降温至室温,用乙醇与水洗涤数次保存于乙二醇溶液中备用。
产物经TEM现代纳米测试分析技术对其形貌、微结构进行系统的研究。
TEM(参见图1)表征为超细规整Te纳米线结构,直径20nm左右;
实施例2
取2mL实施例1溶液于50mL三口烧瓶中,加入19mL乙二醇和200mg聚乙烯吡咯烷酮,在110℃的加热搅拌油浴锅中预热10min,然后将1.25mL乙二醇中溶解分散的4.7mg十二水合氯铑酸钠通过注射泵以5mL/h的速率将其注入预热10min的反应液中,注射结束后再继续反应1h,用乙醇与水洗涤数次保存于超纯水中备用。
TEM、HRTEM表征如图2、3为厚度2nm铑碲合金中空纳米管。
实施例3
取2mL实施例1溶液于50mL三口烧瓶中,加入19mL乙二醇和200mg聚乙烯吡咯烷酮,在110℃的加热搅拌油浴锅中预热10min,然后将2.5mL乙二醇中溶解分散的9.4mg十二水合氯铑酸钠通过注射泵以5mL/h的速率将其注入预热10min的反应液中,注射结束后再继续反应1h,用乙醇与水洗涤数次保存于超纯水中备用。
TEM、HRTEM表征如图4、5为厚度3nm铑碲合金中空纳米管。
实施例4
取2mL实施例1溶液于50mL三口烧瓶中,加入19mL乙二醇和200mg聚乙烯吡咯烷酮,在110℃的加热搅拌油浴锅中预热10min,然后将5mL乙二醇中溶解分散的18.8mg十二水合氯铑酸钠通过注射泵以5mL/h的速率将其注入预热10min的反应液中,注射结束后再继续反应1h,用乙醇与水洗涤数次保存于超纯水中备用。
TEM、HRTEM表征如图6、7为厚度4nm铑碲合金中空纳米管。
实施例5
取2mL实施例1溶液于50mL三口烧瓶中,加入19mL乙二醇和200mg聚乙烯吡咯烷酮,在110℃的加热搅拌油浴锅中预热10min,然后将10mL乙二醇中溶解分散的37.6mg十二水合氯铑酸钠通过注射泵以5mL/h的速率将其注入预热10min的反应液中,注射结束后再继续反应1h,用乙醇与水洗涤数次保存于超纯水中备用。
TEM、HRTEM表征图8、9为不同厚度5nm铑碲合金中空纳米管。
实施例6
将上述实施例2~5所制备的不同厚度铑碲合金中空纳米管加入0.01-1摩尔每升的氢氧化钠溶液中室温搅拌3h处理,可制备出高含量铑的铑碲合金中空纳米管。此处以实施例五作为研究对象
HAADF-STEM and EDX表征如图10和11RhTe中空纳米管高角度环形暗场扫描透射电子显微镜图和能谱分析线性扫描图;如图12和13能谱分析面扫描图;证实了为空心管状RhTe合金的结构。
实施例7
取四mL实施例1溶液于100mL三口烧瓶中,加入19mL乙二醇和400mg聚乙烯吡咯烷酮,在110℃的加热搅拌油浴锅中预热10min,然后将20mL乙二醇中溶解分散的75.2mg十二水合氯铑酸钠通过注射泵以5mL/h的速率将其注入预热10min的反应液中,注射结束后再继续反应1h,用乙醇与水洗涤数次保存于超纯水中备用。
实施例8
取2mL上述溶液于50mL三口烧瓶中,加入19mL乙二醇和200mg聚乙烯吡咯烷酮,在80℃的加热搅拌油浴锅中预热10min,然后将10mL乙二醇中溶解分散的37.6mg十二水合氯铑酸钠通过注射泵以5mL/h的速率将其注入预热10min的反应液中,注射结束后再继续反应1h,用乙醇与水洗涤数次保存于超纯水中备用。
Claims (2)
1.一种铑碲合金空心纳米管的制备方法,其特征在于其具体步骤如下:
1)制备碲纳米线;
2)制备RhTe合金纳米管;所述制备RhTe合金纳米管的具体方法为:以氯铑酸钠十二水合物为金属前驱体盐,乙二醇为反应溶剂,步骤1)制备的碲纳米线为模板并同时作为还原剂,PVP为表面活性剂,制备厚度可控的RhTe合金纳米管;
3)将步骤2)得到的RhTe合金纳米管经过NaOH处理,即得高Rh含量的铑碲合金空心纳米管。
2.如权利要求1所述一种铑碲合金空心纳米管的制备方法,其特征在于在步骤1)中,所述制备碲纳米线的具体方法为:以抗坏血酸为还原剂,亚碲酸钠为碲源,十六烷基三甲基氯化铵为结构引导剂,制备高结晶度、高纵横比形貌规则的碲纳米线。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710222650.4A CN106975756B (zh) | 2017-04-07 | 2017-04-07 | 一种铑碲合金空心纳米管的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710222650.4A CN106975756B (zh) | 2017-04-07 | 2017-04-07 | 一种铑碲合金空心纳米管的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106975756A CN106975756A (zh) | 2017-07-25 |
CN106975756B true CN106975756B (zh) | 2019-02-15 |
Family
ID=59344931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710222650.4A Expired - Fee Related CN106975756B (zh) | 2017-04-07 | 2017-04-07 | 一种铑碲合金空心纳米管的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106975756B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109453793A (zh) * | 2018-10-22 | 2019-03-12 | 浙江工业大学 | 一种超长铂碲介孔纳米管电催化剂及其制备方法 |
CN111804314B (zh) * | 2020-06-09 | 2022-03-01 | 浙江工业大学 | 一种催化甲醇氧化反应的糖葫芦状铑碲纳米链催化剂及制备方法 |
CN112968187A (zh) * | 2021-02-02 | 2021-06-15 | 浙江工业大学 | 一种介孔铑空心纳米纤维电催化剂及其制备方法 |
CN113814407B (zh) * | 2021-09-30 | 2022-12-02 | 华中科技大学 | 一种具有铂皮的铂基合金纳米管及其制备方法和应用 |
CN114045519B (zh) * | 2021-12-07 | 2022-07-29 | 哈尔滨工业大学(深圳) | 一种钯铂碲空心立方体合金纳米催化剂及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102874749A (zh) * | 2012-09-12 | 2013-01-16 | 中国科学技术大学 | 一种纳米管的制备方法 |
CN103011070A (zh) * | 2012-12-18 | 2013-04-03 | 中国科学技术大学 | 有序的异质纳米线柔性导电薄膜及其制备方法 |
CN104985174A (zh) * | 2015-05-26 | 2015-10-21 | 江苏大学 | 一种快速且大批量制备金银合金纳米管的方法 |
CN105060306A (zh) * | 2015-08-11 | 2015-11-18 | 杭州禹净环境科技有限公司 | 一种二氧化硅纳米管的制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7585474B2 (en) * | 2005-10-13 | 2009-09-08 | The Research Foundation Of State University Of New York | Ternary oxide nanostructures and methods of making same |
-
2017
- 2017-04-07 CN CN201710222650.4A patent/CN106975756B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102874749A (zh) * | 2012-09-12 | 2013-01-16 | 中国科学技术大学 | 一种纳米管的制备方法 |
CN103011070A (zh) * | 2012-12-18 | 2013-04-03 | 中国科学技术大学 | 有序的异质纳米线柔性导电薄膜及其制备方法 |
CN104985174A (zh) * | 2015-05-26 | 2015-10-21 | 江苏大学 | 一种快速且大批量制备金银合金纳米管的方法 |
CN105060306A (zh) * | 2015-08-11 | 2015-11-18 | 杭州禹净环境科技有限公司 | 一种二氧化硅纳米管的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106975756A (zh) | 2017-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106975756B (zh) | 一种铑碲合金空心纳米管的制备方法 | |
Ye et al. | A new low-cost and effective method for enhancing the catalytic performance of Cu–SiO2 catalysts for the synthesis of ethylene glycol via the vapor-phase hydrogenation of dimethyl oxalate by coating the catalysts with dextrin | |
Li et al. | Construction of Pd-M (M= Ni, Ag, Cu) alloy surfaces for catalytic applications | |
Gawande et al. | Cu and Cu-based nanoparticles: synthesis and applications in catalysis | |
Vinokurov et al. | Halloysite nanotube-based cobalt mesocatalysts for hydrogen production from sodium borohydride | |
Liu et al. | Golden carbon nanotube membrane for continuous flow catalysis | |
Xiang et al. | Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction | |
Chen et al. | Preparation of Pt and PtRu nanoparticles supported on carbon nanotubes by microwave-assisted heating polyol process | |
Kim et al. | Effect of Pd particle size on the direct synthesis of hydrogen peroxide from hydrogen and oxygen over Pd core–porous SiO 2 shell catalysts | |
Wang et al. | Synthesis of Pd nanoframes by excavating solid nanocrystals for enhanced catalytic properties | |
Kukovecz et al. | Complex-assisted one-step synthesis of ion-exchangeable titanate nanotubes decorated with CdS nanoparticles | |
Shen et al. | Gas-phase selective oxidation of alcohols: In situ electrolytic nano-silver/zeolite film/copper grid catalyst | |
Wang et al. | One-pot hydrothermal route to synthesize the Bi-doped anatase TiO2 hollow thin sheets with prior facet exposed for enhanced visible-light-driven photocatalytic activity | |
Sadjadi et al. | Preparation of palladated porous nitrogen-doped carbon using halloysite as porogen: Disclosing its utility as a hydrogenation catalyst | |
CN103007932B (zh) | 一种二氧化钛纳米带负载双金属整体式催化剂的制备方法 | |
Luo et al. | Graphene quantum dots/Au hybrid nanoparticles as electrocatalyst for hydrogen evolution reaction | |
CN109569601B (zh) | 一种高效稳定负载型铜基催化剂及其制备方法 | |
CN107597109A (zh) | 纳米金属氧化物掺杂的负载型金催化剂及其制备方法与应用 | |
Zhang et al. | Ruthenium nanosheets decorated cobalt foam for controllable hydrogen production from sodium borohydride hydrolysis | |
Qi et al. | Solvent-free aerobic oxidation of alcohols over palladium supported on MCM-41 | |
CN107199038B (zh) | 一种复合光催化剂及其制备方法 | |
Ning et al. | Rare earth oxide anchored platinum catalytic site coated zeolitic imidazolate frameworks toward enhancing selective hydrogenation | |
Cai et al. | A novel strategy to construct supported Pd nanocomposites with synergistically enhanced catalytic performances | |
Bhat et al. | Improving the thermal stability and n-butanol oxidation activity of Ag-TiO2 catalysts by controlling the catalyst architecture and reaction conditions | |
Xu et al. | Enhanced performance of binary WO3/N-doped carbon composites for the catalytic oxidation of benzyl alcohol under mild conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20170815 Address after: Xiamen City, Fujian Province, 361005 South Siming Road No. 422 Applicant after: Xiamen University Applicant after: Shenzhen Research Institute of Xiamen University Address before: Xiamen City, Fujian Province, 361005 South Siming Road No. 422 Applicant before: Xiamen University |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190215 Termination date: 20200407 |
|
CF01 | Termination of patent right due to non-payment of annual fee |