[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN106925296A - 一种纳米复合材料及其制备方法和应用 - Google Patents

一种纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN106925296A
CN106925296A CN201710193554.1A CN201710193554A CN106925296A CN 106925296 A CN106925296 A CN 106925296A CN 201710193554 A CN201710193554 A CN 201710193554A CN 106925296 A CN106925296 A CN 106925296A
Authority
CN
China
Prior art keywords
ferrite
silver
nano composite
composite material
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710193554.1A
Other languages
English (en)
Inventor
董立峰
陈英杰
刘士奔
董红周
于立岩
逄贝莉
张乾
于建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201710193554.1A priority Critical patent/CN106925296A/zh
Priority to PCT/CN2017/078563 priority patent/WO2018176259A1/zh
Publication of CN106925296A publication Critical patent/CN106925296A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8986Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种石墨烯负载银‑铁氧体(Ag‑MFe2O4)纳米复合材料及其制备方法和应用,所述纳米复合材料是由石墨烯负载银‑铁氧体异质纳米颗粒复合而成。其制备方法既可以采用银‑铁氧体异质纳米颗粒直接负载在石墨烯上的工艺,也可以采用先将颗粒负载在氧化石墨烯上再还原的工艺。石墨烯负载银‑铁氧体纳米复合材料作为电催化剂稳定性好、耐甲醇毒性、导电性和催化活性高,其制备工艺简单、成本较低,反应条件易控,所得材料形貌均一,分散性好,易于扩大规模生产。

Description

一种纳米复合材料及其制备方法和应用
技术领域
本发明属于新型催化剂研发领域,具体地说,涉及一种新型纳米复合材料及其制备方法和应用。
背景技术
目前商用铂/碳(Pt/C)催化剂存在着成本较高、稳定性以及耐毒性较差等问题,严重制约了相关电池的大规模应用。随着纳米技术与材料化学的迅速发展,人们开始尝试研发新型纳米复合材料来取代Pt/C催化剂。
近年来,碳负载过渡态金属M(铁、锰、钴、镍、锌,II)的铁氧体(MFe2O4)纳米晶由于其优异的氧还原反应(ORR)催化活性,逐渐引起了人们的关注。此外,银(Ag)纳米晶具备优异的导电性和耐甲醇毒性,在直接甲醇燃料电池方面可以起到提高导电性和催化活性的作用。将MFe2O4纳米晶与Ag纳米晶一起负载在导电炭黑上,可以制备出Ag/MFe2O4/C纳米复合材料。导电炭黑的负载作用不仅改善了银纳米晶的分散和形貌,而且促进了MFe2O4纳米晶与Ag纳米晶之间的电子转移。因此,与MFe2O4/C和Ag/C相比,Ag/MFe2O4/C纳米复合材料表现出更强的电催化活性。这种纳米复合材料低成本、易规模生产,在锂离子电池和燃料电池中表现出良好的应用前景。然而,与商用Pt/C相比,Ag/MFe2O4/C纳米复合材料的催化活性还有待提高。
发明内容
本发明的目的在于提供一种导电性好、催化活性高的新型电催化剂。目前商用Pt/C催化剂活性高,但是成本高、稳定性以及耐毒性较差;虽然Ag/MFe2O4/C纳米复合材料成本低、稳定性好,但是其导电性和催化活性较低。本发明将银-铁氧体(Ag-MFe2O4)异质纳米颗粒与石墨烯复合,提供一种高活性、低成本、稳定又耐毒的新型纳米复合材料及其制备方法和应用。
为了实现上述目的,本发明设计合成了一种石墨烯负载银-铁氧体纳米复合材料,其制备方法既可以采用银-铁氧体异质纳米颗粒直接负载在石墨烯上的工艺,也可以采用先将颗粒负载在氧化石墨烯上再还原的工艺。
一种纳米复合材料,所述纳米复合材料是由石墨烯负载银-铁氧体异质纳米颗粒复合而成。
其中,所述银-铁氧体异质纳米颗粒为银-过渡态金属M的铁氧体异质纳米颗粒,由粒径为3~10nm的金属银与1~3个粒径为3~10nm过渡态金属M的铁氧体结合形成。该异质纳米颗粒的制备方法参见专利申请号201610506179.7,一种银-铁氧体复合纳米颗粒的制备方法。
所述过渡态金属M为铁、锰、钴、镍、锌中的一种,其中过渡态金属M为II价。
工艺一:采用银-铁氧体异质纳米颗粒直接负载在石墨烯上的工艺:室温条件下,将银-铁氧体异质纳米颗粒和石墨烯按照质量比为1:2~5分散在有机溶剂中,超声10~60min,搅拌12~24h,磁分离,得到石墨烯负载银-铁氧体纳米复合材料。
工艺二:采用银-铁氧体异质纳米颗粒先负载在氧化石墨烯上形成氧化石墨烯负载银-铁氧体纳米复合材料,然后再还原制成石墨烯负载银-铁氧体纳米复合材料的工艺:室温条件下,将银-铁氧体异质纳米颗粒在有机溶剂中的分散液与氧化石墨烯在水中的分散液按照其中银-铁氧体异质纳米颗粒和石墨烯的质量比为1:2~5混合;超声10~60min,搅拌12~24h,取水相磁分离,得到氧化石墨烯负载银-铁氧体纳米复合材料。该材料用水洗涤3~5次,分散在乙二醇中,超声30~60min,用氢氧化钠调节pH=13,氩气气氛下130℃回流反应2~3h,磁分离,得到石墨烯负载银-铁氧体纳米复合材料。
所述银-铁氧体异质纳米颗粒为银-过渡态金属M的铁氧体异质纳米颗粒,由粒径为3~10nm的金属银与1~3个粒径为3~10nm过渡态金属M的铁氧体结合形成。
所述过渡态金属M为铁、锰、钴、镍、锌中的一种,其中过渡态金属M为II价。
所述的有机溶剂采用非极性有机溶剂。
所述非极性有机溶剂为正己烷、环己烷、甲苯中的一种。
上述纳米复合材料在电催化剂方面的应用。
本发明制备的石墨烯负载银-铁氧体纳米复合材料,一方面,石墨烯作为新型碳负载材料,可以更好地体现纳米材料的反应活性位点;自组装形成的三维石墨稀水凝胶网络结构为电解液提供充分缓冲区域,有利于电化学反应过程中电解液的扩散;三维石墨烯的高导电特性确保各个反应位点氧化还原传输的电子快速传导到电极上,加快了电子的传输速率。另一方面,Ag-MFe2O4异质纳米颗粒中不同纳米晶之间的协同效应可以显著提高其催化活性。因此,石墨烯负载Ag-MFe2O4纳米复合材料为一种导电性好、催化活性高的新型电催化剂。
与现有催化剂相比,石墨烯负载银-铁氧体纳米复合材料作为电催化剂稳定性好、耐甲醇毒性、导电性和催化活性高,其制备工艺简单、成本较低,反应条件易控,所得材料形貌均一,分散性好,易于扩大规模生产。
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
以下结合附图,详细说明本发明的优点和特征。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1为本发明实施例1制备的氧化石墨烯负载Ag-MnFe2O4纳米复合材料的透射电镜成像图;
图2为本发明实施例1制备的石墨烯负载Ag-MnFe2O4纳米复合材料的透射电镜成像图;
图3为本发明实施例1制备的石墨烯负载Ag-MnFe2O4纳米复合材料在0.1mol/LKOH溶液中的ORR催化性能测试结果;
图4为本发明实施例2制备的石墨烯负载Ag-CoFe2O4纳米复合材料的透射电镜成像图;
图5为本发明实施例2制备的石墨烯负载Ag-CoFe2O4纳米复合材料在0.1mol/LKOH溶液中的ORR催化性能测试结果。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图和实施例对本发明作进一步详细的说明。应当理解,此处所描述的实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例公开的纳米复合材料是由石墨烯负载银-铁氧体(Ag-MFe2O4)异质纳米颗粒复合而成,其制备方法既可以采用银-铁氧体异质纳米颗粒直接负载在石墨烯上的工艺,也可以采用先将颗粒负载在氧化石墨烯上再还原的工艺。
实施例1:
室温条件下,取30mg银-铁酸锰(Ag-MnFe2O4)异质纳米颗粒分散在10mL正己烷中;取100mg氧化石墨烯分散在10毫升去离子水中;将两种溶液混合并超声30min,搅拌12h,取水相磁分离,得到氧化石墨烯负载Ag-MnFe2O4纳米复合材料,其透射电子显微镜照片如图1所示,Ag-MnFe2O4异质纳米颗粒均匀地负载在氧化石墨烯上。该材料用去离子水洗涤3次,分散在10mL乙二醇中,超声30min,用2.5mol/LNaOH的乙二醇溶液调节分散液pH=13,氩气气氛下130℃回流反应3h,磁分离,得到分散性良好的石墨烯负载Ag-MnFe2O4纳米复合材料,其透射电子显微镜照片如图2所示,纳米复合材料中颗粒形貌基本保持不变。该材料用去离子水洗3次,80℃烘干成粉末后的ORR催化性能测试结果如图3所示。在转速为1600rpm时,该材料线性扫描曲线的半波峰位置在-0.21V,极限电流密度约为6.5mA cm-2,是一种导电性和催化活性较高的新型催化剂。
实施例2:
室温条件下,取30mg银-铁酸钴(Ag-CoFe2O4)异质纳米颗粒和100mg石墨烯分散在10mL甲苯中;超声60min,搅拌12h,磁分离,得到石墨烯负载Ag-CoFe2O4纳米复合材料,其透射电子显微镜照片如图4所示,Ag-CoFe2O4异质纳米颗粒均匀地负载在石墨烯上,复合后材料的分散性良好。该材料用乙醇洗3次,80℃烘干成粉末后的ORR催化性能测试结果如图5所示。在转速为1600rpm时,该材料线性扫描曲线的半波峰位置在-0.26V,极限电流密度约为6.4mA cm-2,是一种导电性和催化活性较高的新型催化剂。
目前商用Pt/C催化剂活性好,但是成本高、稳定性以及耐毒性较差;虽然Ag/MFe2O4/C纳米复合材料成本低、稳定性好,但是其导电性和催化活性较差。本发明将银-铁氧体异质纳米颗粒负载在石墨烯上,制备出石墨烯负载银-铁氧体纳米复合材料,这类材料可以作为一种环境友好、导电性好、催化活性高的新型电催化剂。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

1.一种纳米复合材料,其特征在于:所述纳米复合材料是由石墨烯负载银-铁氧体异质纳米颗粒复合而成。
2.根据权利要求1所述纳米复合材料,其特征在于:所述银-铁氧体异质纳米颗粒为银-过渡态金属M的铁氧体异质纳米颗粒,由粒径为3~10nm的金属银与1~3个粒径为3~10nm过渡态金属M的铁氧体结合形成。
3.根据权利要求2所述纳米复合材料,其特征在于:所述过渡态金属M为铁、锰、钴、镍、锌中的一种,其中过渡态金属M为II价。
4.一种权利要求1所述纳米复合材料的制备方法,其特征在于:采用银-铁氧体异质纳米颗粒直接负载在石墨烯上的工艺:室温条件下,将银-铁氧体异质纳米颗粒和石墨烯按照质量比为1:2~5分散在有机溶剂中,超声10~60min,搅拌12~24h,磁分离,得到石墨烯负载银-铁氧体纳米复合材料。
5.一种权利要求1所述纳米复合材料的制备方法,其特征在于:采用银-铁氧体异质纳米颗粒先负载在氧化石墨烯上形成氧化石墨烯负载银-铁氧体纳米复合材料,然后再还原制成石墨烯负载银-铁氧体纳米复合材料的工艺:室温条件下,将银-铁氧体异质纳米颗粒在有机溶剂中的分散液与氧化石墨烯在水中的分散液按照银-铁氧体异质纳米颗粒和石墨烯的质量比为1:2~5混合;超声10~60min,搅拌12~24h,取水相磁分离,得到氧化石墨烯负载银-铁氧体纳米复合材料;该材料用水洗涤3-5次,分散在乙二醇中,超声30~60min,用氢氧化钠调节pH=13,氩气气氛下130℃回流反应2~3h,磁分离,得到石墨烯负载银-铁氧体纳米复合材料。
6.根据权利要求4或5所述纳米复合材料的制备方法,其特征在于:所述银-铁氧体异质纳米颗粒为银-过渡态金属M的铁氧体异质纳米颗粒,由粒径为3~10nm的金属银与1~3个粒径为3~10nm过渡态金属M的铁氧体结合形成。
7.根据权利要求6所述纳米复合材料的制备方法,其特征在于:所述过渡态金属M为铁、锰、钴、镍、锌中的一种,其中过渡态金属M为II价。
8.根据权利要求4或5所述纳米复合材料的制备方法,其特征在于:所述的有机溶剂采用非极性有机溶剂。
9.根据权利要求8所述纳米复合材料的制备方法,其特征在于:所述非极性有机溶剂为正己烷、环己烷、甲苯中的一种。
10.上述权利要求1~3中任一项所述纳米复合材料在电催化剂方面的应用。
CN201710193554.1A 2017-03-28 2017-03-28 一种纳米复合材料及其制备方法和应用 Pending CN106925296A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710193554.1A CN106925296A (zh) 2017-03-28 2017-03-28 一种纳米复合材料及其制备方法和应用
PCT/CN2017/078563 WO2018176259A1 (zh) 2017-03-28 2017-03-29 一种纳米复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710193554.1A CN106925296A (zh) 2017-03-28 2017-03-28 一种纳米复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN106925296A true CN106925296A (zh) 2017-07-07

Family

ID=59424915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710193554.1A Pending CN106925296A (zh) 2017-03-28 2017-03-28 一种纳米复合材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN106925296A (zh)
WO (1) WO2018176259A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109569648A (zh) * 2018-10-25 2019-04-05 湖北省晴川生态工程技术有限公司 一种铁酸银纳米材料催化过硫酸盐处理有机废水的方法
CN111439807A (zh) * 2020-04-07 2020-07-24 浙江工业大学 一种基于多元复合材料可见光催化水体消毒的方法
CN111548618A (zh) * 2020-06-29 2020-08-18 江西伟普科技有限公司 一种金属负载碳/聚合物基电磁屏蔽材料及其制备方法
CN111592744A (zh) * 2020-06-29 2020-08-28 江西伟普科技有限公司 一种金属负载碳/聚合物基电磁屏蔽材料及其制备方法
CN111777063A (zh) * 2020-07-09 2020-10-16 西安交通大学 一种纳米材料的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109746044B (zh) * 2019-01-22 2021-07-27 陕西科技大学 一种CuFe2O4/CNC@Ag@ZIF-8催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102151565A (zh) * 2011-03-04 2011-08-17 南京师范大学 微波法一步合成PdPt/石墨烯纳米电催化剂的方法
CN102530927A (zh) * 2010-12-24 2012-07-04 中国科学院兰州化学物理研究所 石墨烯的制备方法
CN103399053A (zh) * 2013-08-15 2013-11-20 无锡百灵传感技术有限公司 一种基于NiFe2O4磁性纳米粒子修饰碳纳米管的用于甲磺胺心定检测的电化学传感器制备方法
CN106041121A (zh) * 2016-06-30 2016-10-26 青岛科技大学 一种纳米碳材料负载纳米铁氧体空心球的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876288B (zh) * 2012-10-29 2014-05-07 哈尔滨工业大学 一种石墨烯/钡铁氧体复合吸波材料的制备方法
CN103449504B (zh) * 2013-06-26 2015-06-10 中山大学 一种氧化锌纳米盘/石墨烯复合材料及其制备方法
JP2015059049A (ja) * 2013-09-17 2015-03-30 株式会社豊田中央研究所 半導体材料、光電極材料、光触媒材料、半導体材料の製造方法
EP3119514A4 (en) * 2014-03-18 2017-11-01 Basf Se A process for the production of a carbon supported catalyst
CN104549361B (zh) * 2014-12-10 2017-11-07 郑州轻工业学院 一种具有拉曼增强活性的磁性贵金属催化剂及其制备方法
CN105833834B (zh) * 2016-05-13 2018-07-10 上海应用技术学院 还原石墨烯/四氧化三铁/贵金属纳米复合材料、制备方法及其应用
CN106077699A (zh) * 2016-06-30 2016-11-09 青岛科技大学 一种银‑铁氧体复合纳米颗粒的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102530927A (zh) * 2010-12-24 2012-07-04 中国科学院兰州化学物理研究所 石墨烯的制备方法
CN102151565A (zh) * 2011-03-04 2011-08-17 南京师范大学 微波法一步合成PdPt/石墨烯纳米电催化剂的方法
CN103399053A (zh) * 2013-08-15 2013-11-20 无锡百灵传感技术有限公司 一种基于NiFe2O4磁性纳米粒子修饰碳纳米管的用于甲磺胺心定检测的电化学传感器制备方法
CN106041121A (zh) * 2016-06-30 2016-10-26 青岛科技大学 一种纳米碳材料负载纳米铁氧体空心球的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨铁军等: "《产业专利分析报告(第32册)-新型显示》", 30 June 2015, 知识产权出版社 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109569648A (zh) * 2018-10-25 2019-04-05 湖北省晴川生态工程技术有限公司 一种铁酸银纳米材料催化过硫酸盐处理有机废水的方法
CN109569648B (zh) * 2018-10-25 2021-05-18 湖北省晴川生态工程技术有限公司 一种铁酸银纳米材料催化过硫酸盐处理有机废水的方法
CN111439807A (zh) * 2020-04-07 2020-07-24 浙江工业大学 一种基于多元复合材料可见光催化水体消毒的方法
CN111439807B (zh) * 2020-04-07 2022-04-29 浙江工业大学 一种基于多元复合材料可见光催化水体消毒的方法
CN111548618A (zh) * 2020-06-29 2020-08-18 江西伟普科技有限公司 一种金属负载碳/聚合物基电磁屏蔽材料及其制备方法
CN111592744A (zh) * 2020-06-29 2020-08-28 江西伟普科技有限公司 一种金属负载碳/聚合物基电磁屏蔽材料及其制备方法
CN111777063A (zh) * 2020-07-09 2020-10-16 西安交通大学 一种纳米材料的制备方法

Also Published As

Publication number Publication date
WO2018176259A1 (zh) 2018-10-04

Similar Documents

Publication Publication Date Title
Meng et al. 1D-2D hybridization: nanoarchitectonics for grain boundary-rich platinum nanowires coupled with MXene nanosheets as efficient methanol oxidation electrocatalysts
CN106925296A (zh) 一种纳米复合材料及其制备方法和应用
Wang et al. Surface-oxidized Fe–Co–Ni alloys anchored to N-doped carbon nanotubes as efficient catalysts for oxygen reduction reaction
Kakaei et al. Fabrication of Pt–CeO2 nanoparticles supported sulfonated reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation
CN102544531B (zh) 一种Pd/TiO2/C复合纳米催化剂及其制备方法和应用
Wang et al. Metal-organic gel-derived Fe-Fe2O3@ nitrogen-doped-carbon nanoparticles anchored on nitrogen-doped carbon nanotubes as a highly effective catalyst for oxygen reduction reaction
Wang et al. Rapid and facile laser-assistant preparation of Ru-ZIF-67-derived CoRu nanoalloy@ N-doped graphene for electrocatalytic hydrogen evolution reaction at all pH values
Wang et al. Synthesis and characterization of Pt–Se/C electrocatalyst for oxygen reduction and its tolerance to methanol
Gao et al. One step synthesis of PtNi electrocatalyst for methanol oxidation
Chen et al. Enhanced electrochemical performance in microbial fuel cell with carbon nanotube/NiCoAl-layered double hydroxide nanosheets as air-cathode
Gao et al. Methanol tolerant core-shell RuFeSe@ Pt/C catalyst for oxygen reduction reaction
Zaman et al. Comparative study of Mn-ZIF-67 derived carbon (Mn-Co/C) and its rGO-based composites for the methanol oxidation
CN104607186B (zh) 基于低共熔溶剂的多壁碳纳米管载PdSn催化剂及其制备方法与应用
CN108878911A (zh) 一种基于低共熔溶剂的氮掺杂碳纳米管载Pt催化剂及其制备方法与应用
Wang et al. Electrochemical synthesis of Pt nanoparticles on ZrO2/MWCNTs hybrid with high electrocatalytic performance for methanol oxidation
CN106207205B (zh) 一种燃料电池用PtPd电催化剂及其制备方法
Zhang et al. One-pot synthesis of MnFe2O4/C by microwave sintering as an efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
Wang et al. Nitrogen-doped graphene nanosheets supported assembled Pd nanoflowers for efficient ethanol electrooxidation
Duan et al. Bowl-like carbon supported AuPd and phosphotungstic acid composite for electrooxidation of ethylene glycol and glycerol
Salarizadeh et al. Comparison of methanol oxidation reaction process for NiCo2O4/X (X= rGO, MWCNTs, HCNs) nanocatalyst
Guo et al. Cost-effective Co3O4 nanospheres on nitrogen-doped graphene used as highly efficient catalyst for oxygen reduction reaction
Wang et al. CoFe alloy nanoparticles embedded in vertically grown nanosheets on N-doped carbon nanofibers as a trifunctional electrocatalyst for high-performance microbial fuel cells
CN104258853B (zh) 一种金铱双功能氧电极催化剂及制备方法和应用
Dang et al. Hierarchical CoO@ MoN heterostructure nanowire array as a highly efficient electrocatalyst for hydrogen evolution
CN106058272A (zh) 小粒径且分散均匀的贵金属纳米颗粒电催化剂的绿色一步合成法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170707