[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN106911013B - Array Antennas and Antenna Systems - Google Patents

Array Antennas and Antenna Systems Download PDF

Info

Publication number
CN106911013B
CN106911013B CN201510979037.8A CN201510979037A CN106911013B CN 106911013 B CN106911013 B CN 106911013B CN 201510979037 A CN201510979037 A CN 201510979037A CN 106911013 B CN106911013 B CN 106911013B
Authority
CN
China
Prior art keywords
array antenna
offset
antenna
antenna system
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510979037.8A
Other languages
Chinese (zh)
Other versions
CN106911013A (en
Inventor
黄国书
萧兴隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wistron Neweb Corp
Original Assignee
Wistron Neweb Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wistron Neweb Corp filed Critical Wistron Neweb Corp
Priority to CN201510979037.8A priority Critical patent/CN106911013B/en
Publication of CN106911013A publication Critical patent/CN106911013A/en
Application granted granted Critical
Publication of CN106911013B publication Critical patent/CN106911013B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种阵列天线与天线系统。该阵列天线形成一主波束,该主波束朝向一波束方向,该阵列天线包括:多个辐射体,该多个辐射体具有多个中心线,该多个辐射体排列于一直线,该直线贯穿该多个中心线;以及多个蜿蜒件,该多个蜿蜒件连接该多个辐射体;其中,该阵列天线设置于一第一平面,该波束方向与一法线方向之间具有非零度的一偏移角度,该法线方向垂直于该第一平面。本发明的天线系统在水平平面及垂直平面可达到相同的检测范围。

Figure 201510979037

An array antenna and an antenna system. The array antenna forms a main beam, which is oriented toward a beam direction. The array antenna includes: a plurality of radiators, the plurality of radiators having a plurality of center lines, the plurality of radiators being arranged in a straight line, the straight line passing through the plurality of center lines; and a plurality of meandering members, the plurality of meandering members connecting the plurality of radiators; wherein the array antenna is arranged in a first plane, the beam direction has a non-zero offset angle with a normal direction, and the normal direction is perpendicular to the first plane. The antenna system of the present invention can achieve the same detection range in the horizontal plane and the vertical plane.

Figure 201510979037

Description

阵列天线与天线系统Array Antennas and Antenna Systems

技术领域technical field

本发明涉及一种阵列天线与天线系统,尤指一种在水平方向及垂直方向达到相同的检测范围的阵列天线与天线系统。The present invention relates to an array antenna and an antenna system, in particular to an array antenna and an antenna system that achieve the same detection range in the horizontal direction and the vertical direction.

背景技术Background technique

阵列天线是多个相同的天线按一定规律排列组成的天线系统,且通过调整阵列天线中天线组件的摆放方式,可使阵列天线达成特定的辐射场型,将主波束集中于特定的方向传递信号。举例来说,针对车用雷达系统,其阵列天线通常设定为对水平方向进行二维检测。然而,在实际应用中,仅水平方向的二维检测可能受到来自高于水平面物体(如告示牌、交通标志、桥梁、建筑物等)的反射,由于硬件的限制,常常造成错误警报(False Alarm),而降低系统效能。在此情形下,若能针对车用雷达系统提供具三维扫描功能的射频系统,同时进行水平与垂直方向的检测,将有助于分辨来自水平或垂直方向的反射,增加系统可靠度,进一步降低错误发报率。The array antenna is an antenna system composed of multiple identical antennas arranged according to a certain rule, and by adjusting the placement of the antenna components in the array antenna, the array antenna can achieve a specific radiation pattern and concentrate the main beam in a specific direction for transmission. Signal. For example, for a vehicle radar system, its array antenna is usually set to perform two-dimensional detection in the horizontal direction. However, in practical applications, two-dimensional detection in only the horizontal direction may be subject to reflections from objects above the horizontal plane (such as billboards, traffic signs, bridges, buildings, etc.), which often cause false alarms due to hardware limitations. ), which reduces system performance. In this case, if a radio frequency system with three-dimensional scanning function can be provided for the vehicle radar system, and the detection in the horizontal and vertical directions can be performed at the same time, it will help to distinguish the reflection from the horizontal or vertical direction, increase the reliability of the system, and further reduce the error rate.

传统上,要增加不同方向的检测功能最直觉的方式是另外增加一组阵列天线,并调整天线组件的摆放方式,以针对垂直方向进行检测。然而,车用雷达系统是将无线信号收发器设置于车辆保险杆或风扇栅罩内部,来进行测距、信息交换等应用。由于车辆保险杆内通常会设置吸震保丽龙或玻璃纤维等,可用空间极为受限,若要额外增加一组阵列天线,势必有许多难度。更有甚者,若车用雷达系统的销售目标为车后市场,亦即雷达供货商将无法参与决策保险杆的材质及厚度,在此情形下,为了尽可能适用大部分车辆,阵列天线的增益、面积、辐射场型等的设计要求将更为严格。Traditionally, the most intuitive way to increase the detection function in different directions is to add an additional set of array antennas and adjust the placement of the antenna components to detect in the vertical direction. However, in the vehicle radar system, the wireless signal transceiver is installed inside the vehicle bumper or fan grille to perform applications such as ranging and information exchange. Since shock-absorbing styrofoam or fiberglass are usually installed in the vehicle bumper, the available space is extremely limited. It is bound to be difficult to add an additional set of array antennas. What's more, if the sales target of the automotive radar system is the after-car market, that is, the radar supplier will not be able to participate in the decision-making of the material and thickness of the bumper. The design requirements of the gain, area, radiation pattern, etc. will be more stringent.

公知技术已发展出包含有水平极化天线以及垂直极化天线的双极化天线系统,以提供水平及垂直方向的三维扫描功能。然而,公知双极化天线系统的水平极化天线及垂直极化天线无法达到相同的检测范围,使得系统效能降低。另外,双极化天线系统的水平极化天线及垂直极化天线需个别设计,且在制程上需通过特殊的堆栈结构才能实现,其具有较高的设计复杂度及生产成本。In the prior art, a dual-polarized antenna system including a horizontally polarized antenna and a vertically polarized antenna has been developed to provide a three-dimensional scanning function in the horizontal and vertical directions. However, the horizontally polarized antenna and the vertically polarized antenna of the conventional dual-polarized antenna system cannot achieve the same detection range, which reduces the system performance. In addition, the horizontally polarized antenna and the vertically polarized antenna of the dual-polarized antenna system need to be individually designed, and can only be realized through a special stack structure in the manufacturing process, which has high design complexity and production cost.

因此,如何在水平方向及垂直方向达到相同的检测范围,已成为业界所努力的目标之一。Therefore, how to achieve the same detection range in the horizontal direction and the vertical direction has become one of the goals of the industry.

从而,需要提供一种阵列天线与天线系统来满足上述需求。Therefore, it is necessary to provide an array antenna and an antenna system to meet the above requirements.

发明内容SUMMARY OF THE INVENTION

因此,本发明的主要目的即在于提供一种在水平方向及垂直方向达到相同的检测范围的阵列天线与天线系统,以改善公知技术的缺点。Therefore, the main purpose of the present invention is to provide an array antenna and an antenna system that can achieve the same detection range in the horizontal direction and the vertical direction, so as to improve the shortcomings of the known technology.

本发明公开一种阵列天线,该阵列天线形成一主波束,该主波束朝向一波束方向,该阵列天线包括:多个辐射体,该多个辐射体具有多个中心线,该多个辐射体排列于一直线,该直线贯穿该多个中心线;以及多个蜿蜒件(Meander),该多个蜿蜒件连接该多个辐射体;其中,该阵列天线设置于一第一平面,该波束方向与一法线方向之间具有非零度的一偏移角度,该法线方向垂直于该第一平面。The invention discloses an array antenna, the array antenna forms a main beam, the main beam faces a beam direction, the array antenna comprises: a plurality of radiators, the plurality of radiators have a plurality of center lines, the plurality of radiators arranged in a straight line, the straight line runs through the plurality of center lines; and a plurality of meanders, the plurality of meanders are connected to the plurality of radiators; wherein, the array antenna is arranged on a first plane, the There is a non-zero offset angle between the beam direction and a normal direction perpendicular to the first plane.

本发明还公开一种天线系统,设置于一第一平面,包含有至少一偏移阵列天线,形成至少一偏移主波束,该至少一偏移主波束朝向至少一偏移波束方向;以及至少一第一阵列天线,形成至少一第一主波束,该至少一第一主波束朝向至少一第一波束方向;其中,该至少一第一波束方向与该至少一偏移波束方向具有非零的角度差。The present invention also discloses an antenna system, which is arranged on a first plane, includes at least one offset array antenna, and forms at least one offset main beam, the at least one offset main beam faces at least one offset beam direction; and at least one offset beam direction; a first array antenna forming at least one first main beam, the at least one first main beam faces at least one first beam direction; wherein the at least one first beam direction and the at least one offset beam direction have a non-zero difference Poor angle.

本发明还公开一种天线系统,该天线系统设置于一第一平面,该天线系统包括:至少一阵列天线,该至少一阵列天线形成至少一主波束,该至少一主波束朝向至少一波束方向;以及至少一偏移阵列天线,该至少一偏移阵列天线形成至少一偏移主波束,该至少一偏移主波束朝向至少一偏移波束方向;其中,该至少一波束方向与该至少一偏移波束方向具有非零的角度差。The present invention also discloses an antenna system, the antenna system is arranged on a first plane, the antenna system includes: at least one array antenna, the at least one array antenna forms at least one main beam, and the at least one main beam faces at least one beam direction ; And at least one offset array antenna, the at least one offset array antenna forms at least one offset main beam, the at least one offset main beam is oriented towards at least one offset beam direction; wherein, the at least one beam direction and the at least one offset beam direction The offset beam directions have a non-zero angular difference.

本发明用蜿蜒件串连多个辐射体,使其主波束的波束方向偏移其设置平面的法线方向,并利用形成不同波束方向的阵列天线进行垂直方向的扫描及检测,使得本发明的天线系统在水平平面及垂直平面可达到相同的检测范围。The invention uses a serpentine piece to connect multiple radiators in series, so that the beam direction of the main beam is offset from the normal direction of its setting plane, and uses array antennas that form different beam directions to scan and detect in the vertical direction, so that the invention The antenna system can achieve the same detection range in the horizontal plane and the vertical plane.

附图说明Description of drawings

图1A为本发明实施例一阵列天线的俯视图。FIG. 1A is a top view of an array antenna according to an embodiment of the present invention.

图1B为本发明实施例一阵列天线的等角视图。FIG. 1B is an isometric view of an array antenna according to an embodiment of the present invention.

图2为本发明实施例一天线系统的俯视图。FIG. 2 is a top view of an antenna system according to an embodiment of the present invention.

图3为图2的天线系统的天线辐射场型图。FIG. 3 is an antenna radiation pattern diagram of the antenna system of FIG. 2 .

图4为本发明实施例一天线系统的俯视图。FIG. 4 is a top view of an antenna system according to an embodiment of the present invention.

图5为本发明实施例一天线系统的俯视图。FIG. 5 is a top view of an antenna system according to an embodiment of the present invention.

图6为图1A的阵列天线的天线辐射场型图。FIG. 6 is an antenna radiation pattern diagram of the array antenna of FIG. 1A .

图7为图2的天线系统的一差和比示意图。FIG. 7 is a schematic diagram of a difference sum ratio of the antenna system of FIG. 2 .

主要组件符号说明:Explanation of main component symbols:

10、200、202、204、402、504、 阵列天线10, 200, 202, 204, 402, 504, array antenna

600~616、701~708600~616, 701~708

20、40、50、60、70 天线系统20, 40, 50, 60, 70 Antenna Systems

FD_a、FD_b、FD_1 馈入点FD_a, FD_b, FD_1 feed points

MLB_a、MLB_b、MLB_2、MLB_4 主波束MLB_a, MLB_b, MLB_2, MLB_4 main beam

D_a、D_b、D_2、D_4 波束方向D_a, D_b, D_2, D_4 beam directions

N 法线方向N normal direction

θa、θb 角度θ a , θ b angle

θ 角度差θ angle difference

PA、PA0、PA2、PA4 辐射体PA, PA0, PA2, PA4 radiators

MD 蜿蜒件MD meanders

LS 中心线LS centerline

LN、LN0、LN2、LN4 直线LN, LN0, LN2, LN4 straight line

PC、PC0、PC2、PC4 相位中心PC, PC0, PC2, PC4 Phase Center

PCL 相位中线PCL phase neutral

DS 直线距离DS straight-line distance

X、Y、Z 坐标轴X, Y, Z axes

S1 第一侧S1 first side

S2 第二侧S2 second side

DE、DA 方向DE, DA direction

具体实施方式Detailed ways

请参考图1A及图1B,图1A及图1B为本发明实施例一阵列天线10的俯视图及等角视图,为了方便说明,图1A及图1B标示有X、Y、Z轴的坐标系统。阵列天线10包含有多个辐射体PA及多个蜿蜒件(Meander)MD,多个蜿蜒件MD用来连接多个辐射体PA,多个辐射体PA排列于一直线LN,每一辐射体PA具有一中心线LS(即多个辐射体PA具有多个中心线LS),直线LN贯穿(或串连)多个中心线LS,多个蜿蜒件MD连接多个辐射体PA,多个蜿蜒件MD的两端分别连接至辐射体PA的中心线LS。阵列天线10具有一相位中心PC,阵列天线10对称于相位中心PC。辐射体PA之间具有一直线距离DS,蜿蜒件MD具有一长度L_MD,长度L_MD大于直线距离DS且长度L_MD与直线距离DS之间具有一长度差δ,长度差δ大于零。在一实施例中,长度差δ可相关于阵列天线10所传输的电磁波的波长λ,例如,长度差δ可为0.11倍的波长。多个蜿蜒件MD可在多个辐射体PA之间形成一相位差

Figure BDA0000888030300000031
相位差
Figure BDA0000888030300000032
与蜿蜒件MD的长度L_MD成正比,即蜿蜒件MD的长度L_MD越长,相位差
Figure BDA0000888030300000033
越大。具体来说,请参考图6,图6为阵列天线10的天线辐射场型图,其中,虚线及粗黑线代表当阵列天线10的蜿蜒件MD的长度L_MD大于辐射体PA之间的直线距离DS(即长度差δ大于零)时的辐射场型,而细黑线代表当长度差δ等于零时的辐射场型,由图6可知,蜿蜒件MD的长度L_MD与直线距离DS之间的长度差δ可造成相位差
Figure BDA0000888030300000034
进而使阵列天线10所形成的主波束具有角度偏移。Please refer to FIGS. 1A and 1B . FIGS. 1A and 1B are a top view and an isometric view of an array antenna 10 according to an embodiment of the present invention. For convenience of description, FIGS. The array antenna 10 includes a plurality of radiators PA and a plurality of meanders MD. The plurality of meanders MD are used to connect the plurality of radiators PA, and the plurality of radiators PA are arranged on a line LN. The body PA has a center line LS (that is, a plurality of radiators PA have a plurality of center lines LS), a straight line LN runs through (or is connected in series) a plurality of center lines LS, a plurality of meanders MD connect the plurality of radiators PA, and a plurality of Both ends of the meanders MD are respectively connected to the center line LS of the radiator PA. The array antenna 10 has a phase center PC, and the array antenna 10 is symmetrical to the phase center PC. There is a linear distance DS between the radiators PA, the meander MD has a length L_MD, the length L_MD is greater than the linear distance DS, and there is a length difference δ between the length L_MD and the linear distance DS, and the length difference δ is greater than zero. In one embodiment, the length difference δ may be related to the wavelength λ of the electromagnetic wave transmitted by the array antenna 10 , for example, the length difference δ may be 0.11 times the wavelength. Multiple meanders MD can form a phase difference between multiple radiators PA
Figure BDA0000888030300000031
phase difference
Figure BDA0000888030300000032
It is proportional to the length L_MD of the meandering piece MD, that is, the longer the length L_MD of the meandering piece MD, the higher the phase difference.
Figure BDA0000888030300000033
bigger. Specifically, please refer to FIG. 6 , which is an antenna radiation pattern diagram of the array antenna 10 , wherein the dotted line and the thick black line represent when the length L_MD of the meander MD of the array antenna 10 is greater than the straight line between the radiators PA The radiation pattern when the distance DS (that is, the length difference δ is greater than zero), and the thin black line represents the radiation pattern when the length difference δ is equal to zero. It can be seen from Figure 6 that the length L_MD of the serpentine member MD and the straight-line distance DS are between The length difference δ can cause the phase difference
Figure BDA0000888030300000034
Furthermore, the main beam formed by the array antenna 10 has an angular offset.

具体来说,阵列天线10可设置于由X轴与Y轴所构成的一第一平面,第一平面具有一法线方向N,法线方向N垂直于第一平面(即平行于Z轴)。一般来说,阵列天线10可形成一主波束(Mainlobe)MLB,而主波束MLB朝向一波束方向D,波束方向D与法线方向N之间具有非零度的一偏移角度θ。以图1B为例,当阵列天线10由一馈入点FD_b(即阵列天线10的一端)进行馈入时,阵列天线10可形成一主波束MLB_a,而主波束MLB_a朝向一波束方向D_a,波束方向D_a与法线方向N之间具有非零度的一偏移角度θa;当阵列天线10由一馈入点FD_a(即阵列天线10的另一端)进行馈入时,阵列天线10可形成一主波束MLB_b,而主波束MLB_b朝向一波束方向D_b,波束方向D_b与法线方向N之间具有非零度的一偏移角度θbSpecifically, the array antenna 10 can be disposed on a first plane formed by the X axis and the Y axis, the first plane has a normal direction N, and the normal direction N is perpendicular to the first plane (ie, parallel to the Z axis) . Generally speaking, the array antenna 10 can form a main beam MLB, and the main beam MLB faces a beam direction D with a non-zero offset angle θ between the beam direction D and the normal direction N. Taking FIG. 1B as an example, when the array antenna 10 is fed from a feeding point FD_b (ie, one end of the array antenna 10 ), the array antenna 10 can form a main beam MLB_a, and the main beam MLB_a faces a beam direction D_a, and the beam There is a non-zero offset angle θ a between the direction D_a and the normal direction N; when the array antenna 10 is fed by a feeding point FD_a (ie, the other end of the array antenna 10 ), the array antenna 10 can form a The main beam MLB_b, and the main beam MLB_b faces a beam direction D_b, and the beam direction D_b and the normal direction N have a non-zero offset angle θ b .

简言之,阵列天线10利用蜿蜒件MD,使辐射体PA之间形成相位差

Figure BDA0000888030300000041
如此一来,阵列天线10所形成的主波束MLB的波束方向D可偏移第一平面的法线方向N。阵列天线10可应用于一天线系统中。请参考图2及图3,图2为本发明实施例一天线系统20的俯视图,图3为天线系统20的天线辐射场型图,图2及图3亦标示有X、Y、Z轴的坐标系统。天线系统20为一发二收的频率调制连续波FMCW(Frequency-Modulated Continuous Wave)雷达天线系统,其设置于由X轴与Y轴所构成的一第一平面。天线系统20可应用于车用雷达系统,其可垂直设置于车辆保险杆或风扇栅罩内部,天线系统20包含一传送阵列天线200、一阵列天线202以及一偏移阵列天线204,偏移阵列天线204可利用阵列天线10来实现,传送阵列天线200用来传送一信号,阵列天线202及偏移阵列天线204用来接收反射信号。具体来说,阵列天线202形成一主波束MLB_2,主波束MLB_2朝向一波束方向D_2,而偏移阵列天线204形成一偏移主波束MLB_4,偏移主波束MLB_4朝向一偏移波束方向D_4,波束方向D_2与偏移波束方向D_4具有非零的一角度差θ。In short, the array antenna 10 uses the meander MD to form a phase difference between the radiators PA
Figure BDA0000888030300000041
In this way, the beam direction D of the main beam MLB formed by the array antenna 10 can be shifted from the normal direction N of the first plane. The array antenna 10 can be used in an antenna system. Please refer to FIGS. 2 and 3 . FIG. 2 is a top view of an antenna system 20 according to an embodiment of the present invention, and FIG. 3 is an antenna radiation pattern diagram of the antenna system 20 . coordinate system. The antenna system 20 is a frequency-modulated continuous wave (FMCW) radar antenna system with one transmission and two receptions, which is arranged on a first plane formed by the X axis and the Y axis. The antenna system 20 can be applied to a vehicle radar system, which can be vertically arranged inside a vehicle bumper or a fan grille. The antenna system 20 includes a transmission array antenna 200 , an array antenna 202 and an offset array antenna 204 . The antenna 204 can be implemented by using the array antenna 10, the transmitting array antenna 200 is used for transmitting a signal, and the array antenna 202 and the offset array antenna 204 are used for receiving the reflected signal. Specifically, the array antenna 202 forms a main beam MLB_2, the main beam MLB_2 faces a beam direction D_2, and the offset array antenna 204 forms an offset main beam MLB_4, the offset main beam MLB_4 faces an offset beam direction D_4, and the beam The direction D_2 and the offset beam direction D_4 have a non-zero angular difference θ.

详细来说,传送阵列天线200包含有多个传送辐射体PA0及多个直线连接件CN,多个传送辐射体PA0排列于一直线LN0,传送阵列天线200具有一传送相位中心PC0,传送阵列天线200对称于传送相位中心PC0;阵列天线202包含有多个辐射体PA2,多个辐射体PA2排列于一直线LN2,阵列天线202具有一相位中心PC2,阵列天线202对称于相位中心PC2;偏移阵列天线204包含有多个偏移辐射体PA4及多个蜿蜒件MD,多个偏移辐射体PA4排列于一偏移直线LN4,偏移阵列天线204具有一偏移相位中心PC4,偏移阵列天线204对称于偏移相位中心PC4。直线LN0、LN2、LN4相互平行,传送相位中心PC0、相位中心PC2以及偏移相位中心PC4相互对齐于一相位中线PCL,相位中线PCL与直线LN0、LN2、LN4垂直。In detail, the transmission array antenna 200 includes a plurality of transmission radiators PA0 and a plurality of linear connectors CN. The plurality of transmission radiators PA0 are arranged on a line LN0, the transmission array antenna 200 has a transmission phase center PC0, and the transmission array antenna 200 is symmetrical to the transmission phase center PC0; the array antenna 202 includes a plurality of radiators PA2, and the plurality of radiators PA2 are arranged in a straight line LN2, the array antenna 202 has a phase center PC2, and the array antenna 202 is symmetrical to the phase center PC2; offset The array antenna 204 includes a plurality of offset radiators PA4 and a plurality of serpentine elements MD. The plurality of offset radiators PA4 are arranged on an offset line LN4. The offset array antenna 204 has an offset phase center PC4. The array antenna 204 is symmetrical about the offset phase center PC4. The straight lines LN0, LN2, and LN4 are parallel to each other. The transmission phase center PC0, the phase center PC2, and the offset phase center PC4 are aligned with each other on a phase center line PCL. The phase center line PCL is perpendicular to the lines LN0, LN2, and LN4.

需注意的是,阵列天线202中多个辐射体PA2是利用多个直线连接件CN相互串连成一序列,使得对应于主波束MLB_2的波束方向D_2平行于第一平面的法线方向N(即Z轴方向);而偏移阵列天线204中多个偏移辐射体PA4是利用多个蜿蜒件MD相互串连成一序列,多个蜿蜒件MD在辐射体PA之间形成相位差

Figure BDA0000888030300000042
使得对应偏移主波束MLB_4的偏移波束方向D_4与波束方向D_2之间具有非零的角度差θ。It should be noted that, the plurality of radiators PA2 in the array antenna 202 are connected in series by a plurality of linear connectors CN, so that the beam direction D_2 corresponding to the main beam MLB_2 is parallel to the normal direction N of the first plane (ie, In the offset array antenna 204, a plurality of offset radiators PA4 are connected in series with each other by means of a plurality of serpentine elements MD, and the plurality of serpentine elements MD form a phase difference between the radiators PA
Figure BDA0000888030300000042
There is a non-zero angle difference θ between the offset beam direction D_4 corresponding to the offset main beam MLB_4 and the beam direction D_2.

更进一步地,天线系统20还包含一处理单元206,处理单元206耦接于传送阵列天线200、阵列天线202、偏移阵列天线204,即处理单元206通过多个馈入点FD_1耦接至传送阵列天线200、阵列天线202、偏移阵列天线204。在天线系统20,多个馈入点FD_1皆位于天线系统20的一第一侧S1,即传送阵列天线200、阵列天线202、偏移阵列天线204皆由天线系统20的第一侧S1馈入。处理单元206可操作于一比幅单脉冲模式(Amplitude-Comparison Mono-Pulse)或一比相单脉冲模式(Phase-Comparison Mono-Pulse)。在一实施例中,天线系统20设置于一XY平面,因阵列天线202与偏移阵列天线204在平行于一XZ平面的一第一方向DE上有不同角度的主波束MLB_2、MLB_4,天线系统20可通过传送阵列天线200、阵列天线202、偏移阵列天线204操作于比幅单脉冲模式,以在XZ平面(第一方向DE)上进行目标物的检测与角度辨识。同时,主波束MLB_2、MLB_4在平行于一YZ平面的一第二方向DA并没有角度差,因此天线系统20可通过传送阵列天线200、阵列天线202、偏移阵列天线204操作于比相单脉冲模式,在YZ平面(第二方向DA)上进行目标物的检测与角度辨识。具体来说,当天线系统20垂直设置于一垂直面时,即XY平面为一垂直平面,YZ平面为一水平平面,第一方向DE即为一垂直方向(Elevation Direction),而第二方向DA即为一水平方向(Azimuth Direction),第一方向DE与第二方向DA垂直。Furthermore, the antenna system 20 further includes a processing unit 206, the processing unit 206 is coupled to the transmission array antenna 200, the array antenna 202, and the offset array antenna 204, that is, the processing unit 206 is coupled to the transmission through a plurality of feeding points FD_1 Array antenna 200 , array antenna 202 , offset array antenna 204 . In the antenna system 20 , a plurality of feeding points FD_1 are located on a first side S1 of the antenna system 20 , that is, the transmitting array antenna 200 , the array antenna 202 , and the offset array antenna 204 are all fed from the first side S1 of the antenna system 20 . . The processing unit 206 can operate in an Amplitude-Comparison Mono-Pulse mode or a Phase-Comparison Mono-Pulse mode. In one embodiment, the antenna system 20 is disposed on an XY plane. Since the array antenna 202 and the offset array antenna 204 have main beams MLB_2 and MLB_4 at different angles in a first direction DE parallel to an XZ plane, the antenna system The transmitting array antenna 200 , the array antenna 202 , and the offset array antenna 204 can operate in the amplitude ratio monopulse mode to perform target detection and angle identification on the XZ plane (the first direction DE). Meanwhile, the main beams MLB_2 and MLB_4 have no angle difference in a second direction DA parallel to a YZ plane, so the antenna system 20 can operate the phase-compared monopulse by transmitting the array antenna 200 , the array antenna 202 , and the offset array antenna 204 In the mode, the detection and angle identification of the target are performed on the YZ plane (the second direction DA). Specifically, when the antenna system 20 is vertically disposed on a vertical plane, that is, the XY plane is a vertical plane, the YZ plane is a horizontal plane, the first direction DE is an elevation direction, and the second direction DA That is, a horizontal direction (Azimuth Direction), the first direction DE is perpendicular to the second direction DA.

请参考图7,图7为天线系统20操作于比幅单脉冲模式时的一差和比(Delta-SumRatio,Δ/Σ)的示意图,由图7可知,天线系统20可在XZ平面上进行目标物的检测与角度辨识,且角度辨识范围大约为正负10度。Please refer to FIG. 7 . FIG. 7 is a schematic diagram of a difference-sum ratio (Delta-SumRatio, Δ/Σ) when the antenna system 20 operates in the amplitude-ratio single-pulse mode. It can be seen from FIG. 7 that the antenna system 20 can operate on the XZ plane. Target detection and angle identification, and the angle identification range is about plus or minus 10 degrees.

除此之外,请参考图4,图4为本发明实施例一天线系统40的俯视图,图4亦标示有X、Y、Z轴的坐标系统。天线系统40与天线系统20相似,故相同组件沿用相同符号。与天线系统20不同的是,天线系统40还包含一阵列天线402,阵列天线402用来接收反射信号,即天线系统40为一发三收的天线系统,阵列天线402具有与阵列天线202相同的结构,即阵列天线202、402所形成主波束朝向与Z轴平行的波束方向。天线系统40可通过传送阵列天线200与阵列天线202、402操作于比相单脉冲模式,同时,天线系统40可通过传送阵列天线200与阵列天线202及偏移阵列天线204(或通过传送阵列天线200与阵列天线402及偏移阵列天线204)操作于比幅单脉冲模式。同样地,当天线系统40设置于垂直平面时,天线系统40可利用比相单脉冲模式在平行于YZ平面的第二方向DA上进行目标物的检测与角度辨识,同时天线系统40可利用比幅单脉冲模式在XZ平面上进行目标物的检测与角度辨识。需注意的是,在天线系统20中,偏移阵列天线204的YZ平面上的分量具有比阵列天线202小的增益,导致检测距离较短;相比之下,天线系统20利用阵列天线202、402增加平行于YZ平面的增益,增加YZ平面上的检测距离。另外,天线系统40利用阵列天线202、402及偏移阵列天线204共三个阵列天线来接收反射信号,且利用不同阵列天线分别操作于比相单脉冲模式与比幅单脉冲模式,因此,相比天线系统20,天线系统40在进行第一方向DE与第二方向DA的角度检测时具有较佳的隔离度。In addition, please refer to FIG. 4 . FIG. 4 is a top view of an antenna system 40 according to an embodiment of the present invention, and FIG. 4 also indicates the coordinate system of the X, Y, and Z axes. Antenna system 40 is similar to antenna system 20, so the same symbols are used for the same components. Different from the antenna system 20 , the antenna system 40 also includes an array antenna 402 , which is used for receiving reflected signals, that is, the antenna system 40 is a one-transmitting three-receiving antenna system, and the array antenna 402 has the same characteristics as the array antenna 202 . The structure, that is, the main beam formed by the array antennas 202 and 402 faces the beam direction parallel to the Z axis. Antenna system 40 may operate in phase-phased monopulse mode by transmitting array antenna 200 and array antennas 202, 402, while antenna system 40 may transmit array antenna 200 and array antenna 202 and offset array antenna 204 (or by transmitting array antenna 202 and offset array antenna 204). 200 and array antenna 402 and offset array antenna 204) operate in the amplitude ratio monopulse mode. Similarly, when the antenna system 40 is arranged on a vertical plane, the antenna system 40 can use the phase-comparison monopulse mode to perform target detection and angle identification in the second direction DA parallel to the YZ plane. The single-pulse mode performs target detection and angle identification on the XZ plane. It should be noted that, in the antenna system 20, the component on the YZ plane of the offset array antenna 204 has a smaller gain than the array antenna 202, resulting in a shorter detection distance; in contrast, the antenna system 20 utilizes the array antenna 202, 402 increases the gain parallel to the YZ plane, increasing the detection distance on the YZ plane. In addition, the antenna system 40 uses three array antennas, including the array antennas 202, 402 and the offset array antenna 204, to receive the reflected signal, and uses different array antennas to operate in the phase-comparison monopulse mode and the amplitude-comparison monopulse mode, respectively. Compared with the antenna system 20, the antenna system 40 has better isolation when performing angle detection between the first direction DE and the second direction DA.

另外,请参考图5,图5为本发明实施例一天线系统50的俯视图,图5亦标示有X、Y、Z轴的坐标系统。天线系统50与天线系统40相似,故相同组件沿用相同符号。与天线系统40不同的是,天线系统50还包含一偏移阵列天线504,偏移阵列天线504具有与偏移阵列天线204相同的结构,偏移阵列天线504亦用来接收反射信号,即天线系统50为一发四收的天线系统。另外,偏移阵列天线504的馈入位置与传送阵列天线200、阵列天线202、402及偏移阵列天线204的馈入位置不同,换句话说,传送阵列天线200、阵列天线202、402及偏移阵列天线204是由天线系统50的馈入点位于一第一侧S1(即由第一侧S1耦接至天线系统50的一处理单元506),而偏移阵列天线504是由天线系统50的馈入点位于一第二侧S2(即由第二侧S2耦接至天线系统50的处理单元506)。需注意的是,偏移阵列天线204与偏移阵列天线504的馈入位置不同,导致偏移阵列天线204、504所形成的主波束分别偏移Z轴一正角度及一负角度,因应不同应用,天线系统50可通过传送阵列天线200与偏移阵列天线204、504操作于比幅单脉冲模式,使得天线系统50在XZ平面上相比天线系统40具有较宽广的扫描及检测角度。In addition, please refer to FIG. 5 . FIG. 5 is a top view of an antenna system 50 according to an embodiment of the present invention, and FIG. 5 also indicates the coordinate system of the X, Y, and Z axes. Antenna system 50 is similar to antenna system 40, so the same symbols are used for the same components. Different from the antenna system 40, the antenna system 50 further includes an offset array antenna 504. The offset array antenna 504 has the same structure as the offset array antenna 204. The offset array antenna 504 is also used to receive reflected signals, that is, an antenna. The system 50 is a one-transmit four-receive antenna system. In addition, the feeding position of the offset array antenna 504 is different from the feeding position of the transmission array antenna 200, the array antennas 202, 402, and the offset array antenna 204. In other words, the transmission array antenna 200, the array antennas 202, 402, and the offset array antenna The shifting array antenna 204 is provided by the feeding point of the antenna system 50 on a first side S1 (ie, the first side S1 is coupled to a processing unit 506 of the antenna system 50 ), and the shifting array antenna 504 is provided by the antenna system 50 The feeding point of the is located on a second side S2 (ie, the second side S2 is coupled to the processing unit 506 of the antenna system 50 ). It should be noted that the feeding positions of the offset array antenna 204 and the offset array antenna 504 are different, so that the main beams formed by the offset array antennas 204 and 504 are respectively offset from the Z axis by a positive angle and a negative angle. For application, the antenna system 50 can operate in the amplitude ratio monopulse mode by transmitting the array antenna 200 and the offset array antennas 204, 504, so that the antenna system 50 has a wider scanning and detection angle in the XZ plane than the antenna system 40.

需注意的是,前述实施例是用以说明本发明的概念,本领域普通技术人员应当可据以做不同的修饰,而不限于此。举例来说,在图4中,天线系统40不限于通过传送阵列天线200与阵列天线202、402操作于比相单脉冲模式,只要天线系统40通过阵列天线202、402及偏移阵列天线204其中之二接收反射信号,天线系统40的处理单元206即可控制天线系统40操作于比相单脉冲模式,也就是说,天线系统40通过阵列天线202、402及偏移阵列天线204其中的任二阵列天线操作于比相单脉冲模式,亦属于本发明的范畴。It should be noted that the foregoing embodiments are used to illustrate the concept of the present invention, and those of ordinary skill in the art should be able to make various modifications accordingly, but are not limited thereto. For example, in FIG. 4, the antenna system 40 is not limited to operating in the phased monopulse mode by transmitting the array antenna 200 and the array antennas 202, 402, as long as the antenna system 40 is operated by the array antennas 202, 402 and the offset array antenna 204 wherein Second, after receiving the reflected signal, the processing unit 206 of the antenna system 40 can control the antenna system 40 to operate in the phase-compared monopulse mode. It is also within the scope of the present invention that the array antenna operates in the phase-compared monopulse mode.

另外,在图5中,天线系统50不限于通过传送阵列天线200与偏移阵列天线204、504操作于比幅单脉冲模式,只要天线系统50通过可形成不同波束方向的任二阵列天线接收反射信号,天线系统50的处理单元206即可控制天线系统50操作于比幅单脉冲模式。举例来说,天线系统50可通过阵列天线202、402其中的一阵列天线以及偏移阵列天线204、504其中的一偏移阵列天线接收反射信号,天线系统50即可操作于比幅单脉冲模式,亦属于本发明的范畴。另外,天线系统50可通过阵列天线202、402及偏移阵列天线204、504其中的任二阵列天线接收反射信号,天线系统50的处理单元206即可控制天线系统50操作于比相单脉冲模式,亦属于本发明的范畴。In addition, in FIG. 5, the antenna system 50 is not limited to operate in the amplitude-contrast monopulse mode through the transmit array antenna 200 and the offset array antennas 204, 504, as long as the antenna system 50 receives reflections through any two array antennas that can form different beam directions signal, the processing unit 206 of the antenna system 50 can control the antenna system 50 to operate in the amplitude ratio monopulse mode. For example, the antenna system 50 can receive reflected signals through one of the array antennas 202, 402 and one of the offset array antennas of the offset array antennas 204, 504, and the antenna system 50 can operate in the ratio-amplitude monopulse mode , also belong to the scope of the present invention. In addition, the antenna system 50 can receive reflected signals through any two of the array antennas 202, 402 and the offset array antennas 204, 504, and the processing unit 206 of the antenna system 50 can control the antenna system 50 to operate in the phase-compared monopulse mode , also belong to the scope of the present invention.

综上所述,本发明用蜿蜒件串连多个辐射体,使其主波束的波束方向偏移其设置平面的法线方向,并利用形成不同波束方向的阵列天线进行垂直方向的扫描及检测,使得本发明的天线系统在水平平面及垂直平面可达到相同的检测范围。To sum up, the present invention uses a serpentine member to connect multiple radiators in series, so that the beam direction of the main beam is shifted from the normal direction of the setting plane, and the array antennas that form different beam directions are used to perform vertical scanning and detection, so that the antenna system of the present invention can achieve the same detection range in the horizontal plane and the vertical plane.

以上所述仅为本发明的较佳实施例,凡是根据本发明权利要求书所做的等同变化与修饰,皆应属本发明的涵盖范围。The above are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.

Claims (16)

1.一种阵列天线,该阵列天线形成一主波束,该主波束朝向一波束方向,该阵列天线包括:1. An array antenna, the array antenna forms a main beam, the main beam faces a beam direction, the array antenna comprises: 多个辐射体,该多个辐射体具有多个中心线,该多个辐射体设置于一第一平面且排列于一直线,该直线贯穿该多个中心线;以及a plurality of radiators, the plurality of radiators have a plurality of centerlines, the plurality of radiators are disposed on a first plane and arranged in a straight line, and the straight line runs through the plurality of centerlines; and 多个蜿蜒件,该多个蜿蜒件在该第一平面上连接该多个辐射体,以使得该多个蜿蜒件和该多个辐射体沿该直线相互串连成一序列;a plurality of serpentine pieces, the plurality of serpentine pieces connect the plurality of radiators on the first plane, so that the plurality of serpentine pieces and the plurality of radiators are connected to each other in a series along the straight line; 其中,该阵列天线设置于该第一平面,该波束方向与一法线方向之间具有非零度的一偏移角度,该法线方向垂直于该第一平面。Wherein, the array antenna is disposed on the first plane, there is a non-zero offset angle between the beam direction and a normal direction, and the normal direction is perpendicular to the first plane. 2.如权利要求1所述的阵列天线,其中该阵列天线具有一相位中心,该阵列天线对称于该相位中心。2 . The array antenna of claim 1 , wherein the array antenna has a phase center, and the array antenna is symmetrical about the phase center. 3 . 3.如权利要求1所述的阵列天线,其中该多个蜿蜒件的长度相关于该偏移角度的大小。3. The array antenna of claim 1, wherein the lengths of the plurality of serpentines are related to the magnitude of the offset angle. 4.如权利要求1所述的阵列天线,其中该阵列天线由该阵列天线的一端进行馈入。4. The array antenna of claim 1, wherein the array antenna is fed from one end of the array antenna. 5.一种天线系统,该天线系统设置于一第一平面,该天线系统包括:5. An antenna system, the antenna system being arranged on a first plane, the antenna system comprising: 至少一阵列天线,该至少一阵列天线形成至少一主波束,该至少一主波束朝向至少一波束方向;以及at least one array antenna, the at least one array antenna forms at least one main beam, the at least one main beam faces at least one beam direction; and 至少一偏移阵列天线,该至少一偏移阵列天线形成至少一偏移主波束,该至少一偏移主波束朝向至少一偏移波束方向;at least one offset array antenna, the at least one offset array antenna forms at least one offset main beam, and the at least one offset main beam faces at least one offset beam direction; 其中,该至少一波束方向与该至少一偏移波束方向具有非零的角度差;Wherein, the at least one beam direction and the at least one offset beam direction have a non-zero angle difference; 其中该至少一偏移阵列天线的每一偏移阵列天线包括:Wherein each offset array antenna of the at least one offset array antenna includes: 多个偏移辐射体,该多个偏移辐射体具有多个中心线,该多个偏移辐射体设置于该第一平面且排列于一偏移直线,该偏移直线贯穿该多个中心线;以及A plurality of offset radiators, the plurality of offset radiators have a plurality of center lines, the plurality of offset radiators are disposed on the first plane and arranged on an offset straight line, the offset straight line runs through the plurality of centers line; and 多个蜿蜒件,该多个蜿蜒件在该第一平面上连接该多个偏移辐射体,以使得该多个蜿蜒件和该多个偏移辐射体沿该偏移直线相互串连成一序列;a plurality of serpentine pieces connecting the plurality of offset radiators on the first plane, so that the plurality of serpentine pieces and the plurality of offset radiators are in series with each other along the offset straight line connected in a sequence; 其中,该至少一偏移波束方向与一法线方向之间具有非零度的至少一偏移角度,该法线方向垂直于该第一平面。Wherein, there is at least one offset angle that is non-zero degree between the at least one offset beam direction and a normal direction, and the normal direction is perpendicular to the first plane. 6.如权利要求5所述的天线系统,其中该多个蜿蜒件的长度相关于该至少一偏移角度的大小。6. The antenna system of claim 5, wherein the lengths of the plurality of serpentines are related to the magnitude of the at least one offset angle. 7.如权利要求5所述的天线系统,其中该至少一阵列天线的每一阵列天线包括多个第一辐射体以及多个直线连接件,该多个第一辐射体排列于一第一直线,该多个直线连接件连接该多个第一辐射体,且该第一直线与该偏移直线相互平行。7 . The antenna system of claim 5 , wherein each array antenna of the at least one array antenna comprises a plurality of first radiators and a plurality of linear connectors, and the plurality of first radiators are arranged in a first straight line. 8 . a line, the plurality of linear connectors connect the plurality of first radiators, and the first straight line and the offset straight line are parallel to each other. 8.如权利要求5所述的天线系统,其中该至少一偏移阵列天线具有至少一偏移相位中心,该至少一阵列天线具有至少一第一相位中心,该至少一偏移相位中心与该至少一第一相位中心相互对齐。8. The antenna system of claim 5, wherein the at least one offset array antenna has at least one offset phase center, the at least one array antenna has at least a first phase center, and the at least one offset phase center is the same as the At least one first phase center is aligned with each other. 9.如权利要求5所述的天线系统,其中该至少一偏移阵列天线包括一第一偏移阵列天线及一第二偏移阵列天线,该第一偏移阵列天线的馈入位置为该天线系统的一第一侧,该第二偏移阵列天线的馈入位置为该天线系统的一第二侧。9 . The antenna system of claim 5 , wherein the at least one offset array antenna comprises a first offset array antenna and a second offset array antenna, and the feeding position of the first offset array antenna is the A first side of the antenna system, the feeding position of the second offset array antenna is a second side of the antenna system. 10.如权利要求5所述的天线系统,还包括:10. The antenna system of claim 5, further comprising: 一传送阵列天线,该传送阵列天线用来传送一信号;a transmit array antenna, the transmit array antenna is used to transmit a signal; 一处理单元,该处理单元耦接于该至少一偏移阵列天线、该至少一阵列天线及该传送阵列天线;a processing unit, the processing unit is coupled to the at least one offset array antenna, the at least one array antenna and the transmission array antenna; 其中,该处理单元控制该至少一偏移阵列天线、该至少一阵列天线及该传送阵列天线,使得该天线系统操作于一比幅单脉冲模式或一比相单脉冲模式。Wherein, the processing unit controls the at least one offset array antenna, the at least one array antenna and the transmitting array antenna, so that the antenna system operates in an amplitude-compared monopulse mode or a phase-comparison monopulse mode. 11.如权利要求10所述的天线系统,其中当该天线系统操作于该比幅单脉冲模式时,该天线系统在一第一方向进行角度辨识。11. The antenna system of claim 10, wherein the antenna system performs angle identification in a first direction when the antenna system operates in the amplitude ratio monopulse mode. 12.如权利要求11所述的天线系统,其中当该天线系统操作于该比相单脉冲模式时,该天线系统在一第二方向进行角度辨识,该第二方向与该第一方向垂直。12. The antenna system of claim 11, wherein when the antenna system operates in the phase comparison monopulse mode, the antenna system performs angle identification in a second direction, the second direction being perpendicular to the first direction. 13.如权利要求10所述的天线系统,其中该天线系统利用该至少一偏移阵列天线的一第一偏移阵列天线及该至少一阵列天线的一第一阵列天线,操作于该比幅单脉冲模式;该天线系统利用该第一偏移阵列天线及该第一阵列天线,操作于该比相单脉冲模式。13. The antenna system of claim 10, wherein the antenna system operates at the ratio using a first offset array antenna of the at least one offset array antenna and a first array antenna of the at least one array antenna monopulse mode; the antenna system operates in the phase comparison monopulse mode using the first offset array antenna and the first array antenna. 14.如权利要求10所述的天线系统,该天线系统利用该至少一阵列天线的一第一阵列天线、一第二阵列天线其中之一,以及该至少一偏移阵列天线的一第一偏移阵列天线,操作于该比幅单脉冲模式;该天线系统利用该第一阵列天线、该第二阵列天线、该第一偏移阵列天线其中之二,操作于该比相单脉冲模式。14. The antenna system of claim 10, wherein the antenna system utilizes one of a first array antenna, a second array antenna of the at least one array antenna, and a first bias of the at least one offset array antenna The shifted array antenna operates in the amplitude-compared monopulse mode; the antenna system utilizes two of the first array antenna, the second array antenna, and the first shifted array antenna to operate in the phase-compared monopulse mode. 15.如权利要求10所述的天线系统,该天线系统利用该至少一阵列天线的一第一阵列天线、一第二阵列天线其中之一,以及该至少一偏移阵列天线的一第一偏移阵列天线、一第二偏移阵列天线其中之一,操作于该比幅单脉冲模式;该天线系统利用该第一阵列天线、该第二阵列天线、该第一偏移阵列天线、该第二偏移阵列天线其中之二,操作于该比相单脉冲模式。15. The antenna system of claim 10, wherein the antenna system utilizes one of a first array antenna, a second array antenna of the at least one array antenna, and a first bias of the at least one offset array antenna One of a shifted array antenna and a second shifted array antenna, operating in the amplitude-contrast single pulse mode; the antenna system utilizes the first array antenna, the second array antenna, the first shifted array antenna, the first Two of the two offset array antennas operate in the phase-compared monopulse mode. 16.如权利要求10所述的天线系统,该天线系统利用该至少一偏移阵列天线的一第一偏移阵列天线及一第二偏移阵列天线,操作于该比幅单脉冲模式;该天线系统利用该至少一阵列天线的一第一阵列天线、该至少一阵列天线的一第二阵列天线、该第一偏移阵列天线、该第二偏移阵列天线其中之二,操作于该比相单脉冲模式,其中该第一偏移阵列天线的馈入位置为该天线系统的一第一侧,该第二偏移阵列天线的馈入位置为该天线系统的一第二侧。16. The antenna system of claim 10, wherein the antenna system operates in the amplitude ratio monopulse mode using a first offset array antenna and a second offset array antenna of the at least one offset array antenna; the The antenna system utilizes two of a first array antenna of the at least one array antenna, a second array antenna of the at least one array antenna, the first offset array antenna, and the second offset array antenna to operate in the ratio. Phase monopulse mode, wherein the feeding position of the first offset array antenna is a first side of the antenna system, and the feeding position of the second offset array antenna is a second side of the antenna system.
CN201510979037.8A 2015-12-23 2015-12-23 Array Antennas and Antenna Systems Active CN106911013B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510979037.8A CN106911013B (en) 2015-12-23 2015-12-23 Array Antennas and Antenna Systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510979037.8A CN106911013B (en) 2015-12-23 2015-12-23 Array Antennas and Antenna Systems

Publications (2)

Publication Number Publication Date
CN106911013A CN106911013A (en) 2017-06-30
CN106911013B true CN106911013B (en) 2020-06-12

Family

ID=59199907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510979037.8A Active CN106911013B (en) 2015-12-23 2015-12-23 Array Antennas and Antenna Systems

Country Status (1)

Country Link
CN (1) CN106911013B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412668A (en) * 2018-12-19 2019-03-01 惠州Tcl移动通信有限公司 Array antenna beam adjustment equipment, system and adjusting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1516361A (en) * 2002-12-19 2004-07-28 株式会社Ntt都科摩 Directinoal beam communication system, method basic station and controller
CN1985187A (en) * 2004-07-16 2007-06-20 富士通天株式会社 Monopulse radar apparatus and antenna switch
CN105098382A (en) * 2014-05-09 2015-11-25 启碁科技股份有限公司 Radio frequency system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2918506B1 (en) * 2007-07-06 2010-10-22 Thales Sa ANTENNA COMPRISING A SERPENTINE POWER SUPPLY GUIDE PARALLEL TO A PLURALITY OF RADIANT GUIDES AND METHOD OF MANUFACTURING SUCH ANTENNA

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1516361A (en) * 2002-12-19 2004-07-28 株式会社Ntt都科摩 Directinoal beam communication system, method basic station and controller
CN1985187A (en) * 2004-07-16 2007-06-20 富士通天株式会社 Monopulse radar apparatus and antenna switch
CN105098382A (en) * 2014-05-09 2015-11-25 启碁科技股份有限公司 Radio frequency system

Also Published As

Publication number Publication date
CN106911013A (en) 2017-06-30

Similar Documents

Publication Publication Date Title
US11619734B2 (en) Integrated MIMO and SAR radar antenna architecture
US8344943B2 (en) Low-profile omnidirectional retrodirective antennas
EP2940907B1 (en) Antenna system
TWI583055B (en) Array antenna and antenna system
US9685714B2 (en) Radar array antenna
CN111656213B (en) Radar and antenna built in radar
WO2018094660A1 (en) Antenna assembly and unmanned aerial vehicle
CN103178357A (en) Microwave antenna and antenna element
CN110764059B (en) Method for transmitting and receiving vertical beam three-coordinate phased array radar
CN105161861A (en) Antenna device of frequency modulation continuous wave radar
EP2950390A1 (en) Patch array antenna and apparatus for transmitting and receiving radar signal including the same
US8854264B2 (en) Two-dimensional antenna arrays for beamforming applications
CN112213720A (en) Radar detection device and radar detection system
JP6456716B2 (en) Antenna unit
CN106911013B (en) Array Antennas and Antenna Systems
KR101688587B1 (en) Microstrip antenna of vehicle radar system
CN106814348B (en) Radar antenna system
TWI528638B (en) Radio-frequency system
US10804600B2 (en) Antenna and radiator configurations producing magnetic walls
JP2009076986A (en) Microstrip array antenna and phase monopulse radar device
RU2695934C1 (en) Mimo antenna array with wide viewing angle
JP2014222831A (en) Feeder circuit for multibeam antenna, and multibeam antenna with the same
WO2023108340A1 (en) Antenna apparatus, radar, detection apparatus, and terminal
Iwasa et al. Millimeter-wave MIMO radar with unequally spaced L/T-shaped arrays
CN113615001A (en) 2D electronic beam steered antennas using multiple pre-shaped beams

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant