[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN106906240A - 运用CRISPR‑Cas9系统敲除大麦VE合成通路中的关键基因HPT的方法 - Google Patents

运用CRISPR‑Cas9系统敲除大麦VE合成通路中的关键基因HPT的方法 Download PDF

Info

Publication number
CN106906240A
CN106906240A CN201710194580.6A CN201710194580A CN106906240A CN 106906240 A CN106906240 A CN 106906240A CN 201710194580 A CN201710194580 A CN 201710194580A CN 106906240 A CN106906240 A CN 106906240A
Authority
CN
China
Prior art keywords
product
barley
pcr
grna
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710194580.6A
Other languages
English (en)
Inventor
边红武
曾章慧
刘翠翠
韩凝
朱睦元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710194580.6A priority Critical patent/CN106906240A/zh
Publication of CN106906240A publication Critical patent/CN106906240A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及大麦转基因材料的构建,旨在提供一种运用CRISPR‑Cas9系统敲除大麦VE合成通路中的关键基因HPT的方法。该方法包括下述步骤:gRNA靶位点的选择、gRNA片段的克隆、GG(gRNA‑gRNA)片段的连接、连接产物的PCR扩增、纯化产物和目标载体的酶切、纯化产物和目标载体的连接反应、连接产物转化大肠杆菌感受态、农杆菌介导的大麦转基因、阳性转基因植株的筛选、突变体测序。本发明利用先进的基因编辑技术‑CRISPR‑Cas9系统对大麦VE合成通路中的关键基因(HPT)进行靶向基因编辑,获得有效的功能缺失突变体,为大麦中生物活性物质的研究创造条件。

Description

运用CRISPR-Cas9系统敲除大麦VE合成通路中的关键基因HPT 的方法
技术领域
本发明涉及大麦转基因材料的构建,特别涉及运用CRISPR-Cas9系统敲除HvHPT(MLOC_37476)基因的应用。
背景技术
维生素E(vitamin E,VE)是由光合生物合成的生育酚类化合物的总称。根据侧链是否饱和,VE可以分为生育酚(tocophero1)和生育三烯酚(tocotrieno1)两大类。根据芳香环上甲基位置和数目的不同,每类又可分为α,β,γ,δ四种形式,其中,α-生育酚活性最高。近些年来,由于生育三烯酚在某些方面更优越的生物学特性,备受人们关注。不仅表现在抗氧化活性,在降胆固醇、预防糖尿病、促进骨吸收、抗癌、神经保护等方面也有一定的作用。
大麦是世界上四大粮食作物之一,主要用于食品生产、动物饲养、啤酒制造等领域。另外,由于大麦含有丰富的生物活性物质如β-葡聚糖、酚类物质、维生素E等,也常被用作功能食品开发的原料。大麦谷粒,含有丰富的生育三烯酚,大概占VE总含量的70%,是研究生育三烯酚的好材料。因此利用基因工程手段调控大麦谷粒中的VE合成通路,可以提高大麦生育三烯酚的含量,从而起到增加大麦谷粒营养成分的作用。目前由于大麦突变体库的缺乏,限制了大麦VE合成通路中相关基因的功能研究。
近年来发展起来的以CRISPR-Cas9为代表的新一代基因组编辑技术,为植物基因工程带来了新的革命,已成为基因功能研究和作物品质改良的重要手段之一。运用基于CRISPR-Cas9的基因编辑技术改造相关基因,并通过自交、分子鉴定和后代筛选,获得“非转基因”大麦新材料,可为今后将成果应用于生产实践提供依据和技术支持。但是因为大麦基因转化效率低,稳定转基因材料的获得周期长,目前运用CRISPR-Cas9系统研究大麦基因的报导很少见。因此,应用CRISPR-Cas9技术敲除大麦VE合成通路中的关键基因(HvHPT)而获得的大麦突变体,可为HvHPT基因的功能研究提供可靠材料。
发明内容
本发明要解决的问题是,克服现有技术中的不足,提供一种运用CRISPR-Cas9系统敲除大麦HPT基因的编辑方法,以获得HPT基因突变的理想突变体。
为解决技术问题,本发明的解决方案是:
提供一种运用CRISPR-Cas9系统敲除大麦HPT基因的编辑方法,包括以下步骤:
(1)gRNA靶位点的选择
由于HPT基因位于大麦基因组的七号染色体上,根据CRISPR-Cas9技术的靶位点设计原则,应尽量将gRNA靶位点设计在外显子区并且要设计在基因的5’端(因该基因编码的是蛋白质,5’端编码的正好是蛋白质的功能区域)。
(2)gRNA片段的克隆
以质粒pGTR为模板,用PCR方法克隆四个片段L1、L2、L3、L4部分重叠的片段,引物序列如下,其中F和R分别代表正、反向引物:
L1-F:CGGGTCTCAGGCAGGATG GGCAGTCTGGGCAACAAAGCACCAGTGG
L1-R:CGGGTCTCACCCCTACCCTATTGCACCAGCCGGG
L2-F:TAGGTCTCCGGGGGTAGGGGTGTTTTAGAGCTAGAA
L2-R:CGGGTCTCACATACTGTTCCTTGCACCAGCCGGG
L3-F:TAGGTCTCCTATGCCGAAACGGTTTTAGAGCTAGAA
L3-R:CGGGTCTCACAGTATCGTGTGTGCACCAGCCGGG
L4-F:TAGGTCTCCACTGCAAGCTTCGTTTTAGAGCTAGAA
L4-R:
TAGGTCTCCAAACGGATGAGCGACAGCAAACAAAAAAAAAAGCACCGACTCG
PCR体系为:Phusion酶0.5μL;5×Phusion HF Buffer 10μL;上下游引物各2.5μL;dNTPs 4μL;pGTR plasmid 0.5μL;三蒸水30μL,共50μL体系。
PCR反应条件为:预变性95℃,5min;变性95℃,30s;退火60℃,30s;延伸72℃,30s;共33个循环;最后72℃延伸10min;
PCR反应后,取5-10μL产物,用2%的琼脂糖凝胶电泳检测后,纯化回收目的片段,测定四个PCR产物L1、L2、L3、L4的浓度;
(3)GG(gRNA-gRNA)片段的连接
根据测定的PCR产物浓度,将四个片段等量混合,T7酶连接反应与BsaI酶切反应同时进行;取L1、L2、L3、L4各2μL,与10μL T7ligase buffer、1μLBsaI-HF、0.5μL T7ligase、0.5μL水混合;在PCR仪中进行如下反应:37℃,5min;20℃,10min;30-50个循环;
(4)连接产物的PCR扩增;
连接反应结束后,取连接产物1μL,加19μL水稀释,将稀释后的产物作为模板,进行PCR扩增;PCR结束后,取5μL产物进行电泳检测,并将产物纯化;产物大小为500bp;
引物序列如下,其中F和R分别代表正、反向引物:
S1-F:CGGGTCTCAGGCAGGATGGGCAGTCTGGGCA
S1-R:TAGGTCTCCAAACGGATGAGCGACAGCAAAC
(5)纯化产物和目标载体的酶切
FokI酶切纯化产物暴露黏性末端,同时BsaI酶切空载体pRGEB32;
酶切体系为50μL,包括底物5μL、FokI或BsaI酶5μL、Buffer(cutsmart)10μL;底物包括GG纯化产物和空载体pRGEB32;
酶切时间3-4h,酶切温度37℃;用2%琼脂糖凝胶检测酶切产物,并回收目标产物,测定浓度;
(6)纯化产物和目标载体的连接反应
取酶切回收的GG纯化产物与pRGEB32载体等量混合(50ng),T4DNA ligase 1μL,10×T4DNA ligase Buffer 1μL,加三蒸水至20μL,4℃连接过夜;
(7)连接产物转化大肠杆菌感受态
将连接后的载体转化大肠杆菌感受态细胞,涂板,37℃过夜;挑取单菌落,摇菌6-8h,提取质粒,PCR鉴定目标片段是否连入载体;鉴定正确的质粒送去测序,将测序结果正确的质粒,电转化农杆菌AGL1;
(8)农杆菌介导的大麦转基因
以Golden Promise野生型大麦的幼胚为外植体材料,以AGL1农杆菌进行感染转化,经潮霉素抗性筛选,抗性愈伤组织分化再生获得转基因植株;
(9)阳性转基因植株的筛选
提取转基因植株的基因组DNA,在三个gRNA序列的两侧设计引物,对目的片段进行PCR扩增,利用琼脂糖凝胶电泳和垂直聚丙烯凝胶电泳检测突变体;
(10)突变体测序
将以上突变株系PCR产物进行纯化回收,连接T载体测序,确认获得敲除了大麦HPT基因的突变材料。
发明原理描述:
VE的合成通路比较复杂,生育酚和生育三烯酚有共同的合成前体尿黑酸(homogentisate,HGA)。其中生育三烯酚合成的限速步骤是由尿黑酸牻牛儿基转移酶(homogentisate geranylgeranyl transferase,HGGT)催化HGA和牻牛儿焦磷酸(geranylgeranyl diphosphate,GGDP)的合成反应;而生育酚合成的限速步骤是由尿黑酸植基转移酶(homogentisate phytyltransferase,HPT)催化HGA和植基二磷酸(phytyldiphosphate,PDP)的合成反应。HGGT、HPT分别是生育三烯酚、生育酚合成过程中的关键基因,因此可以通过敲除生育酚合成通路中的关键限速酶基因HPT来调节代谢流,从而起到提高或者分离生育三烯酚组分的作用。
CRISPR-Cas系统可定点修饰(删除、添加、激活、抑制)靶细胞中特定的基因序列,为靶向性编辑基因组序列提供行之有效的技术手段。但是,目前尚无运用该技术敲除大麦VE合成通路中的关键基因HPT的报道。
与现有技术相比,本发明的有益效果在于:
本发明利用先进的基因编辑技术-CRISPR-Cas9系统对大麦VE合成通路中的关键基因(HPT)进行靶向基因编辑,获得有效的功能缺失突变体,为大麦中生物活性物质的研究创造条件。
附图说明
图1为靶向大麦HPT基因的3个gRNA位点示意图;
图2为琼脂糖凝胶电泳检测大片段缺失突变体;
图3为PAGE凝胶电泳检测突变体;
图4为突变株系目的片段测序结果的比较(点状虚线表示缺失碱基,单下划线表示插入碱基)。
具体实施方式
实施例1大麦VE合成通路中的关键限速酶基因敲除株系HPT的获得与鉴定。
本发明所用大麦品种为Hordeum vulgare L.,cv.Golden promise,申请人承诺:从本专利申请之日起20年内向公众发放该大麦品种,以用于实现、利用本发明所述技术方案。
1.gRNA靶位点的选择
由于HPT基因位于大麦基因组的七号染色体上,根据CRISPR-Cas9技术的靶位点设计原则,本发明将gRNA靶位点设计在外显子区并且要设计在HPT基因的5’端(因该基因编码的是蛋白质,5’端编码的正好是蛋白质的功能区域)。如图1所示。
2.gRNA片段的克隆及载体构建
2.1以质粒pGTR为模板,用PCR方法克隆四个片段L1、L2、L3、L4部分重叠的片段,引物序列如下:
L1-F:CGGGTCTCAGGCAGGATG GGCAGTCTGGGCAACAAAGCACCAGTGG(如SEQ ID NO:1所示)
L1-R:CGGGTCTCACCCCTACCCTATTGCACCAGCCGGG(如SEQ ID NO:2所示)
L2-F:TAGGTCTCCGGGGGTAGGGGTGTTTTAGAGCTAGAA(如SEQ ID NO:3所示)
L2-R:CGGGTCTCACATACTGTTCCTTGCACCAGCCGGG(如SEQ ID NO:4所示)
L3-F:TAGGTCTCCTATGCCGAAACGGTTTTAGAGCTAGAA(如SEQ ID NO:5所示)
L3-R:CGGGTCTCACAGTATCGTGTGTGCACCAGCCGGG(如SEQ ID NO:6所示)
L4-F:TAGGTCTCCACTGCAAGCTTCGTTTTAGAGCTAGAA(如SEQ ID NO:7所示)
L4-R:
TAGGTCTCCAAACGGATGAGCGACAGCAAACAAAAAAAAAAGCACCGACTCG(如SEQ ID NO:8所示)
PCR扩增L1片段体系如下:
Phusion酶 0.5μL
5×Buffer 10μL
L1-F 2.5μL
L1-R 2.5μL
三蒸水 30μL
dNTPs 4μL
模板(pGTR plasmid) 0.5μL
总计 50μL
PCR扩增L2片段体系如下:
Phusion酶 0.5μL
5×Buffer 10μL
L2-F 2.5μL
L2-R 2.5μL
三蒸水 30μL
dNTPs 4μL
模板(pGTR plasmid) 0.5μL
总计 50μL
PCR扩增L3片段体系如下:
PCR扩增L4片段体系如下:
Phusion酶 0.5μL
5×Buffer 10μL
L4-F 2.5μL
L4-R 2.5μL
三蒸水 30μL
dNTPs 4μL
模板(pGTR plasmid) 0.5μL
总计 50μL
PCR反应程序为:
PCR反应后,取5-10μL产物,用2%的琼脂糖凝胶电泳检测后纯化回收目的片段,测定产物浓度。L1,L2,L3,L4产物大小约为130bp,200bp,200bp,150bp。
2.2 GG(gRNA-gRNA)片段的连接。
按照上步测定的产物浓度,将4个片段等量混合,T7酶连接。反应体系如下:
试剂 体积(μL)
L1 2
L2 2
L3 2
L4 2
2×T7ligase buffer 10
BsaI-HF 1
T7ligase 0.5
三蒸水 0.5
总体积 20
以上连接反应在PCR仪中进行:37℃,5min;20℃,10min;30-50个循环。
2.3连接产物的PCR扩增
连接反应结束后,取连接产物1μL,加19μL水稀释,将稀释后的产物作为模板,
以S1-F、S1-R为引物进行PCR扩增。
S1-F:CGGGTCTCAGGCAGGATGGGCAGTCTGGGCA(如SEQ ID NO:9所示)
S1-R:TAGGTCTCCAAACGGATGAGCGACAGCAAAC(如SEQ ID NO:10所示)
PCR体系如下:
试剂 体积(μL)
稀释后的GG产物 2.5
S1-F 2.5
S1-R 2.5
2×TaqMix 25
三蒸水 17.5
总体积 50
PCR反应程序为:
取5-10μL PCR产物电泳检测,产物大小约为500bp,并将产物纯化。
2.4将上一步纯化的产物,FokI酶切暴露黏性末端,同时BsaI酶切空载体pRGEB32。
酶切体系为50μL,包括底物5μL、FokI或BsaI酶5μL、Buffer(cutsmart)10μL;底物包括GG纯化产物和空载体pRGEB32;
酶切时间3-4h,作用温度37℃;用2%琼脂糖凝胶检测酶切产物,并回收目标产物,测定浓度;
2.5酶切后的GG连接产物与目标载体pRGEB32的连接。
试剂 体积(μL)
酶切后的GG连接产物 50ng
酶切后的载体pRGEB32 50ng
T4DNA ligase 1
10×T4ligase buffer 1
三蒸水 补至10
总体积 10
3.将连接后的载体转化大肠杆菌感受态细胞,涂板,37℃过夜;挑取单菌落,摇菌6-8h,提取质粒,PCR鉴定目标片段是否连入载体;鉴定正确的质粒送去测序。
PCR鉴定及测序引物为U3-F,UGW-gRNA-R。序列如下:
U3-F:AGTACCACCTCGGCTATCCACA(如SEQ ID NO:11所示)
UGW-gRNA-R:CGCGCTAAAAACGGACTAGC(如SEQ ID NO:12所示)
4.将测序正确的质粒,电转化农杆菌AGL1。
5.农杆菌介导的大麦的遗传转化
以野生型大麦(Hordeum vulgare L.,cv.Golden Promise)的幼胚为材料诱导愈伤组织,以AGL1农杆菌进行感染转化,经潮霉素抗性筛选,抗性愈伤组织分化再生获得转基因植株;
6.阳性转基因植株的筛选
6.1琼脂糖凝胶电泳检测大片段缺失突变体
以叶片为材料,提取转基因植株的基因组DNA,在3个gRNA位点的两侧设计引物进行PCR扩增,1%琼脂糖凝胶电泳检测。(结果见图2)引物序列如下所示:
H1-F:ACCTTTCAGTCAGTGGCTTTGAACT(如SEQ ID NO:13所示)
H2-R:ACCTCCAGCAATCCAGTAAG(如SEQ ID NO:14所示)
6.2 PAGE胶检测小片段变化的突变体
以叶片为材料,提取转基因植株的基因组DNA,在每个gRNA位点两侧设计引物进行PCR。在常规PCR反应结束后,再对PCR产物进行高温变性、复性反应,PCR程序和变性复性步骤如下表:
引物如下所示:
H1-F:ACCTTTCAGTCAGTGGCTTTGAACT(如SEQ ID NO:13所示)
H1-R:TTACAAGAGGCGTTGCTGGTTCATT(如SEQ ID NO:15所示)
H2-F:CCACAACAAATCTACCGTCTC(如SEQ ID NO:16所示)
H2-R:ACCTCCAGCAATCCAGTAAG(如SEQ ID NO:14所示)
结果见图3。
7.突变株系的基因测序
将以上突变株系PCR产物进行纯化回收。大片段缺失的突变体可直接割胶回收测序,小片段变化的突变体则需连接T载体进行测序。测序公司为杭州擎科梓熙生物技术有限公司。测序结果见图4。
测序结果分析,发现了15#株系存在746bp的大片段缺失,获得了敲除大麦HPT基因的理想突变材料。
<110>浙江大学
<120>运用CRISPR-Cas9系统敲除大麦VE合成通路中的关键基因HPT的方法
<160>16
SEQ ID NO:1
<210> 1
<211> 46
<212> DNA
<213> 人工序列
<220>
<223> 用于PCR克隆片段L1的正向引物L1-F
<400> 1
CGGGTCTCAGGCAGGATG GGCAGTCTGGGCAACAAAGCACCAGTGG 46
SEQ ID NO:2
<210> 2
<211> 34
<212> DNA
<213> 人工序列
<220>
<223> 用于PCR克隆片段L1的反向引物L1-R
<400> 2
CGGGTCTCACCCCTACCCTATTGCACCAGCCGGG 34
SEQ ID NO:3
<210> 3
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 用于PCR克隆片段L2的正向引物L2-F
<400> 3
TAGGTCTCCGGGGGTAGGGGTGTTTTAGAGCTAGAA 36
SEQ ID NO:4
<210> 4
<211> 34
<212> DNA
<213> 人工序列
<220>
<223> 用于PCR克隆片段L2的反向引物L2-R
<400> 4
CGGGTCTCACATACTGTTCCTTGCACCAGCCGGG 34
SEQ ID NO:5
<210> 5
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 用于PCR克隆片段L3的正向引物L3-F
<400> 5
TAGGTCTCCTATGCCGAAACGGTTTTAGAGCTAGAA 36
SEQ ID NO:6
<210> 6
<211> 34
<212> DNA
<213> 人工序列
<220>
<223> 用于PCR克隆片段L3的反向引物L3-R
<400> 6
CGGGTCTCACAGTATCGTGTGTGCACCAGCCGGG 34
SEQ ID NO:7
<210> 7
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 用于PCR克隆片段L4的正向引物L4-F
<400> 7
TAGGTCTCCACTGCAAGCTTCGTTTTAGAGCTAGAA 36
SEQ ID NO:8
<210> 8
<211> 52
<212> DNA
<213> 人工序列
<220>
<223> 用于PCR克隆片段L4的反向引物L4-R
<400> 8
TAGGTCTCCAAACGGATGAGCGACAGCAAACAAAAAAAAAAGCACCGACTCG 52
SEQ ID NO:9
<210> 9
<211> 31
<212> DNA
<213> 人工序列
<220>
<223> 用于连接产物PCR扩增正向引物S1-F
<400> 9
CGGGTCTCAGGCAGGATGGGCAGTCTGGGCA 31
SEQ ID NO:10
<210> 10
<211> 31
<212> DNA
<213> 人工序列
<220>
<223> 用于连接产物PCR扩增反向引物S1-R
<400> 10
TAGGTCTCCAAACGGATGAGCGACAGCAAAC 31
SEQ ID NO:11
<210> 11
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 用于PCR鉴定及测序的引物U3-F
<400> 11
AGTACCACCTCGGCTATCCACA 22
SEQ ID NO:12
<210> 12
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 用于PCR鉴定及测序的引物UGW-gRNA-R
<400> 12
CGCGCTAAAAACGGACTAGC 20
SEQ ID NO:13
<210> 13
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 用于电泳检测的PCR扩增引物H1-F
<400> 13
ACCTTTCAGTCAGTGGCTTTGAACT 25
SEQ ID NO:14
<210> 14
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 用于电泳检测的PCR扩增引物H2-R
<400> 14
ACCTCCAGCAATCCAGTAAG 20
SEQ ID NO:15
<210> 15
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 用于PAGE胶检测的PCR扩增引物H1-R
<400> 15
TTACAAGAGGCGTTGCTGGTTCATT 25
SEQ ID NO:16
<210> 16
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 用于PAGE胶检测的PCR扩增引物H2-F
<400> 16
CCACAACAAATCTACCGTCTC 21

Claims (1)

1.运用CRISPR-Cas9系统敲除大麦HPT基因的编辑方法,其特征在于,包括以下步骤:
(1)gRNA靶位点的选择
由于HPT基因位于大麦基因组的七号染色体上,根据CRISPR-Cas9技术的靶位点设计原则,选择gRNA靶位点在基因5’端的外显子区;
(2)gRNA片段的克隆
以质粒pGTR为模板,用PCR方法克隆四个部分重叠的片段L1、L2、L3、L4;其中,
PCR体系为:Phusion酶0.5μL;5×Phusion HF Buffer 10μL;上下游引物各2.5μL;dNTPs 4μL;pGTR plasmid 0.5μL;三蒸水30μL,共50μL体系;上下游引物的序列如SEQ IDNO:1~8所示:
PCR反应条件为:预变性95℃,5min;变性95℃,30s;退火60℃,30s;延伸72℃,30s;共33个循环;最后72℃延伸10min;
PCR反应后,取5~10μL产物,用2%的琼脂糖凝胶电泳检测后,纯化回收目的片段,测定四个PCR产物L1、L2、L3、L4的浓度;
(3)gRNA-gRNA片段的连接
根据测定的PCR产物浓度,将L1、L2、L3、L4四个片段等量混合,T7酶连接反应与BsaI酶切反应同时进行;取L1、L2、L3、L4各2μL,与10μL T7ligase buffer、1μLBsaI-HF、0.5μLT7ligase、0.5μL水混合;在PCR仪中进行如下反应:37℃,5min;20℃,10min;30-50个循环;
(4)连接产物的PCR扩增;
连接反应结束后,取连接产物1μL,加19μL水稀释,将稀释后的产物作为模板,进行PCR扩增;PCR结束后,取5μL产物进行电泳检测,并将产物纯化;产物大小为500bp;
PCR所用引物的序列如SEQ ID NO:9~10所示;
(5)纯化产物和目标载体的酶切
FokI酶切纯化产物暴露黏性末端,同时BsaI酶切空载体pRGEB32;
酶切体系为50μL,包括底物5μL、FokI或BsaI酶5μL、Buffer(cutsmart)10μL;底物包括GG纯化产物和空载体pRGEB32;
酶切时间3-4h,酶切温度37℃;用2%琼脂糖凝胶检测酶切产物,并回收目标产物,测定浓度;
(6)纯化产物和目标载体的连接反应
取酶切回收的GG纯化产物与pRGEB32载体等量混合(50ng),T4DNA ligase 1μL,10×T4DNA ligase Buffer 1μL,加三蒸水至20μL,4℃连接过夜;
(7)连接产物转化大肠杆菌感受态
将连接后的载体转化大肠杆菌感受态细胞,涂板,37℃过夜;挑取单菌落,摇菌6-8h,提取质粒,PCR鉴定目标片段是否连入载体;鉴定正确的质粒送去测序,将测序结果正确的质粒,电转化农杆菌AGL1;
(8)农杆菌介导的大麦转基因
以Golden Promise野生型大麦的幼胚为外植体材料,以AGL1农杆菌进行感染转化,经潮霉素抗性筛选,抗性愈伤组织分化再生获得转基因植株;
(9)阳性转基因植株的筛选
提取转基因植株的基因组DNA,在三个gRNA序列的两侧设计引物,对目的片段进行PCR扩增,利用琼脂糖凝胶电泳和垂直聚丙烯凝胶电泳检测突变体;
(10)突变体测序
将以上突变株系PCR产物进行纯化回收,连接T载体测序,确认获得敲除了大麦HPT基因的突变材料。
CN201710194580.6A 2017-03-29 2017-03-29 运用CRISPR‑Cas9系统敲除大麦VE合成通路中的关键基因HPT的方法 Pending CN106906240A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710194580.6A CN106906240A (zh) 2017-03-29 2017-03-29 运用CRISPR‑Cas9系统敲除大麦VE合成通路中的关键基因HPT的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710194580.6A CN106906240A (zh) 2017-03-29 2017-03-29 运用CRISPR‑Cas9系统敲除大麦VE合成通路中的关键基因HPT的方法

Publications (1)

Publication Number Publication Date
CN106906240A true CN106906240A (zh) 2017-06-30

Family

ID=59194774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710194580.6A Pending CN106906240A (zh) 2017-03-29 2017-03-29 运用CRISPR‑Cas9系统敲除大麦VE合成通路中的关键基因HPT的方法

Country Status (1)

Country Link
CN (1) CN106906240A (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
CN110760538A (zh) * 2019-11-18 2020-02-07 江苏省农业科学院 一种创制枯萎病抗性西瓜种质材料的方法
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105647962A (zh) * 2016-02-15 2016-06-08 浙江大学 运用CRISPR-Cas9系统敲除水稻MIRNA393b茎环序列的基因编辑方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105647962A (zh) * 2016-02-15 2016-06-08 浙江大学 运用CRISPR-Cas9系统敲除水稻MIRNA393b茎环序列的基因编辑方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KABIN XIE ET AL.,: ""Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system"", 《PNAS》 *
王梦瑶: ""运用CRISPR-Cas9系统对大麦维生素E合成相关基因进行编辑的研究"", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *
马春业: ""农杆菌介导miR396基因对大麦愈伤组织的遗传转化"", 《中国优秀硕士学位论文全文数据库 农业科技辑》 *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US12084663B2 (en) 2016-08-24 2024-09-10 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
CN110760538B (zh) * 2019-11-18 2022-12-02 江苏省农业科学院 一种创制枯萎病抗性西瓜种质材料的方法
CN110760538A (zh) * 2019-11-18 2020-02-07 江苏省农业科学院 一种创制枯萎病抗性西瓜种质材料的方法
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2020-05-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Similar Documents

Publication Publication Date Title
CN106906240A (zh) 运用CRISPR‑Cas9系统敲除大麦VE合成通路中的关键基因HPT的方法
Santosh Kumar et al. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010
Wang et al. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system
CN107177625B (zh) 一种定点突变的人工载体系统及定点突变方法
WO2018099256A1 (zh) 一种CRISPR/nCas9介导的定点碱基替换在植物中的应用
CN105647962A (zh) 运用CRISPR-Cas9系统敲除水稻MIRNA393b茎环序列的基因编辑方法
Vicient et al. Variability, recombination, and mosaic evolution of the barley BARE-1 retrotransposon
CN104975029B (zh) 一种调控杨树不定根发育的生长素响应因子基因及其应用
US20200377900A1 (en) Methods and compositions for generating dominant alleles using genome editing
Movahedi et al. Precise exogenous insertion and sequence replacements in poplar by simultaneous HDR overexpression and NHEJ suppression using CRISPR-Cas9
Gupta et al. Modularly assembled multiplex prime editors for simultaneous editing of agronomically important genes in rice
Xu et al. An efficient CRISPR/Cas9 system for simultaneous editing two target sites in Fortunella hindsii
CN106146638B (zh) 一种控制水稻叶片衰老的基因及其编码的蛋白质
CN105969782B (zh) 抗草甘膦基因筛选方法、epsps突变基因和缺陷型菌株及应用
KR20190122595A (ko) 식물의 염기 교정용 유전자 구조체, 이를 포함하는 벡터 및 이를 이용한 염기 교정 방법
Benke et al. An analysis of selection on candidate genes for regulation, mobilization, uptake, and transport of iron in maize
CN104805100B (zh) 水稻基因OsSμBP‑2在延缓植物叶片衰老中的应用
CN111793625A (zh) 一种定点敲除水稻OsAUR2基因的sgRNA的oligo DNA组
CN117487847B (zh) 一种获得橡胶树纯合基因编辑植株的方法
CN113930431B (zh) SEC12-like蛋白基因CPU1及其在提高大豆磷效率方面的应用
CN111988989A (zh) 通过修饰内源性mads盒转录因子改善玉蜀黍中的农艺特征
CN116732048B (zh) 水稻转录因子基因OsbZIP48在获得高锌水稻籽粒和/或调节氮素吸收中的应用
CN112813184B (zh) 小麦TaGS1.1-6A启动子上的分子标记及其应用
CN118910122A (zh) ZmbZIP61蛋白及其编码基因在调控玉米磷含量和地上部生物量的应用
CN118638815A (zh) 水稻硝酸盐转运蛋白基因nrt6及其编码的蛋白质与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170630

RJ01 Rejection of invention patent application after publication