[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN106784752B - 锂离子电池多孔结构Si/Cu复合电极及其制造方法 - Google Patents

锂离子电池多孔结构Si/Cu复合电极及其制造方法 Download PDF

Info

Publication number
CN106784752B
CN106784752B CN201710183177.3A CN201710183177A CN106784752B CN 106784752 B CN106784752 B CN 106784752B CN 201710183177 A CN201710183177 A CN 201710183177A CN 106784752 B CN106784752 B CN 106784752B
Authority
CN
China
Prior art keywords
collector
combination electrode
active material
porous structure
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710183177.3A
Other languages
English (en)
Other versions
CN106784752A (zh
Inventor
黄婷
崔梦雅
肖荣诗
杨武雄
武强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201710183177.3A priority Critical patent/CN106784752B/zh
Priority to PCT/CN2017/080802 priority patent/WO2018170976A1/zh
Publication of CN106784752A publication Critical patent/CN106784752A/zh
Priority to US16/428,100 priority patent/US11063264B2/en
Application granted granted Critical
Publication of CN106784752B publication Critical patent/CN106784752B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1134Inorganic fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/006Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0492Chemical attack of the support material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/76Containers for holding the active material, e.g. tubes, capsules
    • H01M4/762Porous or perforated metallic containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/244Leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明公开了一种锂离子电池多孔结构Si/Cu复合电极及其制造方法。该复合电极包括活性物质、块体多孔Cu和集流体。其中的活性物质Si嵌入在块体多孔Cu中,块体多孔Cu与集流体冶金结合,起到“粘结剂”和“导电剂”的双重作用,既缓解活性物质Si颗粒的粉化和脱落,又提高电子传输效率,同时多孔结构增大活性物质Si与电解质的接触面积,加快嵌锂化合的反应效率。该复合电极的制造方法是:首先采用粉末冶金和扩散焊接技术,以Si、Cu、Al粉末为原材料,在Cu集流体上制备Si‑Cu‑Al前驱体合金,然后利用化学脱合金的方法脱去Si‑Cu‑Al前驱体合金中的Al元素,获得具有多孔结构的Si/Cu复合电极。

Description

锂离子电池多孔结构Si/Cu复合电极及其制造方法
技术领域
本发明涉及锂离子电池负极结构及其制造方法,具体地说,涉及一种具有多孔结构的Si/Cu复合电极及其制造方法,属于先进制造技术领域。
背景技术
锂离子电池(Lithium Ion Batteries,LIBs)具有高容量、无记忆效应、快速可逆充放电和高库伦效率等优点,已经广泛应用于手机、笔记本电脑以及电动汽车和储能领域。目前,锂离子电池负极材料主要集中在石墨,已经接近理论比容量372mAh/g,难以进一步满足对更高能量/密度应用的需求。锂离子电池的负极材料中,Si因为高的嵌锂能力(理论比容量达4200mAh/g)、储备丰富及对环境无污染而引起广泛关注。
然而,Si在充放电过程当中存在严重的粉化脱落以及导电性迅速衰减等问题,这些成为其作为负极材料的阻碍。Si在充放电过程中主要发生两种相的反应:
(1)单晶非晶化LiXSi(a-LiXSi)
(2)非晶化金属间化合物Li15Si4(i-Li15Si4)
在这种相反应中,Si的不均匀的体积膨胀(体积变化可以达到270%)产生的应力最终造成了Si的粉化以及Si从集流体上脱落并与集流体失去电接触,最终导致负极结构导电性的减弱。目前理论研究和实验结果证明通过在Si上增加石墨导电包裹层或降低Si的负载密度可以优化Si电极性能,这两种方式都会降低Si的质量装载能力,因此限制了总容量的提升和实际应用。目前,具有较好稳定性的Si电极中活性材料Si的质量装载量仅为0.1-3.5mg/cm2。例如,Li等人通过电化学刻蚀的方法合成了大尺寸的海绵体介孔Si材料,材料内部的孔隙可以很好的容纳Si的体积膨胀,并通过化学气相沉积法在材料表面覆盖了C层,然后通过添加导电剂和粘结剂,将负极材料涂覆在集流体表面,活性物质的装载量不高,约为2mg/cm2,其首次充放电库伦效率为~56%,第二次开始维持在99.4%,面积比容量仅为~1.5mAh/cm2。(Li,X.,et al.,Mesoporous silicon sponge as an anti-pulverizationstructure for high-performance lithium-ion battery anodes.Nat Commun,2014.5:p.4105.)Yi等人合成了由石墨烯层包裹的Si-C复合材料,将其涂覆在集流体表面,首次库伦效率为64%,第二次循环开始平均的库伦效率为99.51%,但活性物质Si的装载量(3.18mg/cm2)和面积比容量(3.2mAh/cm2)同样不高。(Yi,R.,et al.,Dual conductivenetwork-enabled graphene/Si–C composite anode with high areal capacity forlithium-ion batteries.Nano Energy,2014.6:p.211-218.)
因此,如何提高Si的负载量并避免Si在高负载条件下体积膨胀造成的粉化和脱落问题,是提高电极容量和性能的关键。
发明内容
本发明的目的在于提供一种与集流体冶金结合具有多孔结构的Si/Cu复合电极及其制造方法。本发明的技术方案如下。
一种锂离子电池的多孔电极,包括:
块体多孔金属,其具有连续的多孔结构;
活性物质,其嵌入到所述块体多孔金属的多孔结构之中;
集流体,其与所述块体多孔金属冶金结合。
优选地,所述块体多孔金属的材料为Cu。
优选地,所述集流体的材料为Cu。
优选地,所述活性物质为Si颗粒。
本发明还提供了一种锂离子电池,包括根据以上技术方案中任一项所述的多孔电极。
本发明还提供了一种制备多孔电极的方法,其包括以下步骤:
将Si、Cu、Al三种粉末充分混合后压制成型;
将压制成型的Si/Cu/Al材料与Cu集流体压合在一起放入真空炉中进行烧结和扩散焊接,形成Si-Cu-Al前驱体合金,并实现前驱体合金与集流体的冶金结合;
采用化学腐蚀法脱去Si-Cu-Al前驱体合金中的Al元素,最终得到与集流体冶金结合的多孔Si/Cu复合电极。
优选地,所述Si、Cu、Al三种粉末的重量百分比为8~25%Si、50~72%Cu、其余为Al。
优选地,所述真空烧结和扩散焊接温度为450-550℃,压力为0.2-1.0MPa,时间为0.5-1.5h。
优选地,所述化学腐蚀法所用的腐蚀剂选自氢氧化钠、氢氧化钾、盐酸、硫酸、硝酸、磷酸、氢氟酸。
优选地,所述化学腐蚀法所用的腐蚀剂的浓度为1-5mol/L,腐蚀时间为4-10h。
本发明的优点是:1)活性物质Si嵌入块体多孔Cu中,多孔Cu起到“导电剂”和“粘结剂”的双重作用,既可以缓解活性物质Si颗粒因为体积效应造成的粉化和脱落,又可以提高电子传输效率,同时多孔结构增大Si与电解质的接触面积,加快嵌锂化合的反应效率。因此,该复合电极可以在活性物质Si高质量装载条件下,获得优良的综合性能,即高容量及优良的循环性能。2)将传统的粉末冶金、扩散焊接和脱合金技术相结合,实现锂离子电池负极材料-结构-功能一体化制造,制造方法技术成熟,简单易行。
附图说明
图1是本发明的锂离子电池多孔结构Si/Cu复合电极示意图。
图2是图1实施例前驱体合金截面SEM图及EDS元素分布图。
图3是图1实施例烧结和扩散焊后的前驱体合金XRD图。
图4是图1实施例前驱体脱合金后截面SEM图。
具体实施方式
下面结合具体的实施例对本发明作进一步详细的描述,但本发明不限于以下实施例。
此处,术语“多孔结构”系指由小颗粒堆积成具有孔状结构的电极结构,以利于物质反应与传递。
此处,术语“活性物质”系指具有嵌锂能力的材料。
此处,术语“粘结剂”系指为了连接活性物质而添加的可在烧结前或烧结过程中除掉或不除掉的物质。
此处,术语“导电剂”系指为了保证电极具有良好的充放电性能,在极片制作时通常加入一定量的导电物质,其在活性物质之间、活性物质与集流体之间起到收集微电流的作用,以减小电极的接触电阻加速电子的移动速率,同时也能有效地提高离子在电极材料中的迁移速率,从而提高电极的充放电效率。
此处,术语“集流体”系指汇集电流的结构或零件,其功用主要是将电池活性物质产生的电流汇集起来并对外输出。
此处,术语“粉末”系指干燥、分散的固体颗粒组成的细微粒子。
如图1所示,一种锂离子电池的多孔电极,包括块体多孔金属,其具有连续的多孔结构;活性物质,其嵌入到所述块体多孔金属的多孔结构之中;集流体,其与所述块体多孔金属冶金结合。
优选地,所述块体多孔金属的材料为Cu。在一优选的实施例中,所述块体多孔金属的孔径范围为10~20μm。
优选地,所述集流体的材料可以为Cu、不锈钢、Ni。
优选地,所述活性物质为Si颗粒。在一优选的实施例中,所述活性物质的粒径范围为100nm~45μm。
活性物质Si嵌入块体多孔Cu中,块体多孔Cu与集流体冶金结合,起到“导电剂”和“粘结剂”的双重作用。
针对这种复合电极结构特点,本发明还提供了相应的制造方法,具体步骤如下。
步骤1:将一定比例的Si、Cu、Al三种粉末充分混合后压制成型。
步骤2:将压制成型的Si/Cu/Al材料与Cu集流体压合在一起放入真空炉中进行烧结和扩散焊接,形成Si-Cu-Al前驱体合金,并实现前驱体合金与集流体的冶金结合。
步骤3:采用化学腐蚀法脱去Si-Cu-Al前驱体合金中的Al元素,最终得到与集流体冶金结合的多孔Si/Cu复合电极。
优选地,制备该复合电极前驱体材料的重量百分比为8~25%Si、50~72%Cu,其余为Al。Si含量过低时,电池容量不高,Si含量过高时,必然使Cu或Al含量降低。Cu含量过低时,难以形成连续的多孔Cu结构,电池循环过程中活性物质Si易粉化脱落;而Al含量过低时,孔隙率低,电解液不能充分与活性物质Si接触,降低嵌锂和脱锂的反应速率。Cu含量过高时,无论是减小Si还是Al的含量,均会减小活性物质的负载量,带来不利影响。Al含量过高时亦然。
优选地,所述真空烧结和扩散焊接温度为450-550℃,压力为0.2-1.0MPa,时间为0.5-1.5h。
优选地,所述化学腐蚀法所用的腐蚀剂选自氢氧化钠、氢氧化钾、盐酸、硫酸、硝酸、磷酸、氢氟酸。
优选地,所述化学腐蚀法所用的腐蚀剂的浓度为1-5mol/L,腐蚀时间为4-10h。
实施例1
原料:Si、Cu、Al粉末,重量百分比为Si:Cu:Al=10:72:18,Si粉末目数为-325目,Cu粉末目数为-300目,铝粉末目数为-325目。
腐蚀液:3mol/L的HCl溶液。
制备过程:
步骤一、压制成型
采用上海新诺SYP-30T型压片机,将混合后的Si/Cu/Al粉末压制成型,压力:0.4MPa,时间:5min,得到直径为8mm,厚度约为200μm的压制成型的Si/Cu/Al材料。该材料的前驱体合金截面SEM图及EDS元素分布如图2所示。
步骤二、烧结和扩散焊接
采用北京航天金翔设备有限公司的真空扩散焊接炉HT-QA-25,将压制成型的Si/Cu/Al材料与Cu集流体紧密贴合,置于真空炉中加热至470℃,并施加压力0.4MPa,保温保压45min,原子相互扩散而形成牢固的冶金结合。烧结和扩散焊接后的前驱体合金XRD图如图3所示。
步骤三、化学脱合金处理
将烧结和扩散焊得到的样品浸入到3mol/L的HCl溶液中腐蚀4-10h,然后经去离子水洗涤2次,随后置于质量百分比为2%HF乙醇溶液中搅拌2小时,溶解Si表面可能存在的SiO2,再用去离子水、无水乙醇分别多次洗涤,得到了多孔结构Si/Cu复合电极,截面SEM图如图4所示。
实施例2
原料:Si、Cu、Al粉末,重量百分比为Si:Cu:Al=14:72:14,Si粉末目数为-325目,Cu粉末目数为-300目,铝粉末目数为-325目。
腐蚀液:3mol/L的HCl溶液。
制备过程:
步骤一、压制成型
采用上海新诺SYP-30T型压片机,将混合后的Si/Cu/Al粉末压制成型,压力:0.4MPa,时间:5min,得到直径为8mm,厚度约为200μm的压制成型的Si/Cu/Al材料。
步骤二、烧结和扩散焊接
采用北京航天金翔设备有限公司的真空扩散焊接炉HT-QA-25,将压制成型的Si/Cu/Al材料与Cu集流体紧密贴合,置于真空炉中加热至470℃,并施加压力0.4MPa,保温保压45min,原子相互扩散而形成牢固的冶金结合。
步骤三、化学脱合金处理
将烧结和扩散焊得到的样品浸入到3mol/L的HCl溶液中腐蚀4-10h,然后经去离子水洗涤2次,随后置于质量百分比为2%HF乙醇溶液中搅拌2小时,溶解Si表面可能存在的SiO2,再用去离子水、无水乙醇分别多次洗涤,得到了多孔结构Si/Cu复合电极。
实施例3
原料:Si、Cu、Al粉末,重量百分比为Si:Cu:Al=25:50:25,Si粉末目数为-325目,Cu粉末目数为-300目,铝粉末目数为-325目。
腐蚀液:3mol/L的HCl溶液。
制备过程:
步骤一、压制成型
采用上海新诺SYP-30T型压片机,将混合后的Si/Cu/Al粉末压制成型,压力:0.4MPa,时间:5min,得到直径为8mm,厚度约为200μm的压制成型的Si/Cu/Al材料。
步骤二、烧结和扩散焊接
采用北京航天金翔设备有限公司的真空扩散焊接炉HT-QA-25,将压制成型的Si/Cu/Al材料与Cu集流体紧密贴合,置于真空炉中加热至470℃,并施加压力0.4MPa,保温保压45min,原子相互扩散而形成牢固的冶金结合。
步骤三、化学脱合金处理
将烧结和扩散焊得到的样品浸入到3mol/L的HCl溶液中腐蚀4-10h,然后经去离子水洗涤2次,随后置于质量百分比为2%HF乙醇溶液中搅拌2小时,溶解Si表面可能存在的SiO2,再用去离子水、无水乙醇分别多次洗涤,得到了多孔结构Si/Cu复合电极。
电化学性能测试
对实施例1所制备的多孔结构Si/Cu复合电极进行性能测试,测试过程中采用武汉蓝电CT2001D测试系统,电流密度取100mA/g,测试结果的面积比容量达9.6mAh/cm2,首次放电库伦效率为76%,从第二次充放电开始,库伦效率维持在93%以上。可见,本发明的复合电极具有良好的综合性能。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (2)

1.一种制备多孔电极的方法,其包括:
将Si、Cu、Al三种粉末充分混合后压制成型;
将压制成型的Si/Cu/Al材料与Cu集流体压合在一起放入真空炉中进行烧结和扩散焊接,形成Si-Cu-Al前驱体合金,并实现前驱体合金与集流体的冶金结合;
采用化学腐蚀法脱去Si-Cu-Al前驱体合金中的Al元素,最终得到与集流体冶金结合的多孔Si/Cu复合电极;
所述Si、Cu、Al三种粉末的重量百分比为8~25%Si、50~72%Cu、其余为Al;
真空烧结和扩散焊接温度为450-550℃,压力为0.2-1.0MPa,时间为0.5-1.5h;
所述化学腐蚀法所用的腐蚀剂选自盐酸、硫酸、硝酸、磷酸。
2.根据权利要求1所述的方法,其特征在于,所述化学腐蚀法所用的腐蚀剂的浓度为1-5mol/L,腐蚀时间为4-10h。
CN201710183177.3A 2017-03-24 2017-03-24 锂离子电池多孔结构Si/Cu复合电极及其制造方法 Active CN106784752B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710183177.3A CN106784752B (zh) 2017-03-24 2017-03-24 锂离子电池多孔结构Si/Cu复合电极及其制造方法
PCT/CN2017/080802 WO2018170976A1 (zh) 2017-03-24 2017-04-17 锂离子电池多孔结构Si/Cu复合电极及其制造方法
US16/428,100 US11063264B2 (en) 2017-03-24 2019-05-31 Porous structure Si Cu composite electrode of lithium ion battery and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710183177.3A CN106784752B (zh) 2017-03-24 2017-03-24 锂离子电池多孔结构Si/Cu复合电极及其制造方法

Publications (2)

Publication Number Publication Date
CN106784752A CN106784752A (zh) 2017-05-31
CN106784752B true CN106784752B (zh) 2019-11-22

Family

ID=58966410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710183177.3A Active CN106784752B (zh) 2017-03-24 2017-03-24 锂离子电池多孔结构Si/Cu复合电极及其制造方法

Country Status (3)

Country Link
US (1) US11063264B2 (zh)
CN (1) CN106784752B (zh)
WO (1) WO2018170976A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863487B (zh) * 2017-08-23 2020-07-17 中航锂电(洛阳)有限公司 一种锂硫电池正极及其制备方法,锂硫电池电芯及锂硫电池
CN107732190B (zh) * 2017-09-30 2020-08-11 山西沃特海默新材料科技股份有限公司 一种利用水雾化制备铜-铝-硅合金粉末的方法及其应用
CN108390016A (zh) * 2018-02-13 2018-08-10 广州广华精容能源技术有限公司 一种高弹性多孔电极的制备方法
EP3547424B1 (en) * 2018-03-29 2024-06-05 Toyota Jidosha Kabushiki Kaisha Anode, and sulfide solid-state battery
CN109346713B (zh) * 2018-10-08 2021-03-26 北京理工大学 钠离子电池硅负极材料
CN109546082A (zh) * 2018-11-07 2019-03-29 惠州市豪鹏科技有限公司 一种负极极片及其制备方法和锂离子电池
CN109742385A (zh) * 2019-01-07 2019-05-10 国联汽车动力电池研究院有限责任公司 一种硅基合金材料及其制备的锂离子电池负极材料
CN109817883B (zh) * 2019-01-21 2021-04-23 珠海冠宇电池股份有限公司 一种锂电池极片及其制备方法及锂电池
CN114156438A (zh) * 2021-12-07 2022-03-08 南京宇博瑞材料科技有限公司 一种高性能多孔Cu-Si合金薄膜负极材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683655A (zh) * 2012-04-26 2012-09-19 上海杉杉科技有限公司 锂离子电池三维多孔硅基复合负极材料及其制备方法
CN105932295A (zh) * 2016-04-22 2016-09-07 清华大学深圳研究生院 金属锂二次电池及其负极和多孔铜集流体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140037022A (ko) * 2010-12-21 2014-03-26 고쿠리츠다이가쿠호진 도호쿠다이가쿠 나노 다공성 세라믹 복합 금속
KR101385602B1 (ko) * 2011-12-14 2014-04-21 엠케이전자 주식회사 이차 전지용 음극 활물질 및 그 제조 방법
TWI565127B (zh) * 2013-10-31 2017-01-01 Lg化學股份有限公司 陽極活性材料及製備彼之方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683655A (zh) * 2012-04-26 2012-09-19 上海杉杉科技有限公司 锂离子电池三维多孔硅基复合负极材料及其制备方法
CN105932295A (zh) * 2016-04-22 2016-09-07 清华大学深圳研究生院 金属锂二次电池及其负极和多孔铜集流体

Also Published As

Publication number Publication date
US20190288294A1 (en) 2019-09-19
US11063264B2 (en) 2021-07-13
WO2018170976A1 (zh) 2018-09-27
CN106784752A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106784752B (zh) 锂离子电池多孔结构Si/Cu复合电极及其制造方法
CN107507972B (zh) 硅碳负极材料的制备方法、硅碳负极材料以及锂离子电池
CN109273680B (zh) 一种多孔硅碳负极材料及其制备方法和锂离子电池
KR101621133B1 (ko) 리튬이온전지 3d다공성 실리카계 복합 음극재료 및 그 제조방법
CN106848199B (zh) 一种锂离子电池纳米硅/多孔碳复合负极材料及其制备方法和应用
CN103633306B (zh) 一种硅碳复合负极材料及其制备方法和锂离子电池
CN107742702A (zh) 三维“面‑线‑面”结构的碳纳米管和二氧化锡改性碳化钛锂离子电池负极材料及制备方法
CN109103443B (zh) 硅基负极材料及其制备方法
CN102593418A (zh) 一种碳硅复合材料及其制备方法、含该材料的锂离子电池
CN111785949B (zh) 一种改性导电聚合物包覆硅基负极材料及制备方法和应用
CN110335993B (zh) 一种锂离子电池用的球形纳米多孔硅/氧化硅/碳复合材料及其制备方法
CN104638253A (zh) 一种作为锂离子电池负极的Si@C-RG核壳结构复合材料的制备方法
CN104538585B (zh) 空心多孔微米级硅球、硅基负极材料及锂离子电池制备方法
CN108682803A (zh) 一种提高锂离子电池硅负极材料性能的方法
Lei et al. CNTs–Cu composite layer enhanced Sn–Cu alloy as high performance anode materials for lithium-ion batteries
CN110600699B (zh) 一种三维有序介孔mof材料的制备方法
CN108987704A (zh) 一种具有多孔结构的锂离子电池硅碳复合负极材料的制备方法及其应用
CN104638248A (zh) 一种石墨烯/铅化合物复合材料的制备方法
CN115188949A (zh) 一种中间相碳微球-硅碳复合负极材料的制备方法
WO2023213113A1 (zh) 硅碳复合负极材料的制备方法及其应用
CN116995200A (zh) 一种多元素掺杂的多孔硅核壳型复合材料及其制备方法和应用
CN111952595B (zh) 一种基于尖端效应的无枝晶金属负极载体及其制备方法
CN111261856B (zh) 一种碳片笼包覆多孔硅材料及其制备方法和应用
CN107425184A (zh) 一种硅‑多孔碳电极材料及其制备方法和应用
CN110931746A (zh) 一种硅-锡-石墨烯复合物电极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant