CN106656453A - Synchronous device and method in narrowband wireless communication terminal - Google Patents
Synchronous device and method in narrowband wireless communication terminal Download PDFInfo
- Publication number
- CN106656453A CN106656453A CN201710064995.1A CN201710064995A CN106656453A CN 106656453 A CN106656453 A CN 106656453A CN 201710064995 A CN201710064995 A CN 201710064995A CN 106656453 A CN106656453 A CN 106656453A
- Authority
- CN
- China
- Prior art keywords
- sampling
- correlation
- module
- sliding
- frequency offset
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004891 communication Methods 0.000 title claims abstract description 27
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title claims description 35
- 238000005070 sampling Methods 0.000 claims abstract description 112
- 238000001514 detection method Methods 0.000 claims abstract description 23
- 238000012545 processing Methods 0.000 claims abstract description 17
- 238000009825 accumulation Methods 0.000 claims abstract description 11
- 239000000872 buffer Substances 0.000 claims description 5
- 238000010606 normalization Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 2
- 230000003139 buffering effect Effects 0.000 claims 1
- 230000002596 correlated effect Effects 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000010267 cellular communication Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 101150071746 Pbsn gene Proteins 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000013256 coordination polymer Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 241000854350 Enicospilus group Species 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0079—Receiver details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2668—Details of algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0014—Carrier regulation
- H04L2027/0024—Carrier regulation at the receiver end
- H04L2027/0026—Correction of carrier offset
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
本发明公开了一种应用于窄带无线通信系统终端的同步检测装置,包括降采样模块,滑动自相关模块和差分互相关模块。其中降采样模块按照OFDM符号时长以及固定的降采样图案对接收到的1.92MHz时域信号降采样为240kHz信号。滑动自相关模块将10ms无线帧处理窗长内的采样点数据逐位移动作为起始位置t,并以长度为11个OFDM符号时长作为滑动窗口,将滑动窗口内的11组采样点间隔两组之间进行相关累加。差分互相关模块对获得的初步同步序列差分成近似相等的两部分,并与本地生成的主同步序列进行互相关累加。采用本发明所公开的同步检测装置可以在窄带无线通信系统低信噪比、大频偏的应用场景下仍能较佳地检测到主同步信号,且其实现复杂度是较低的,满足了窄带无线通信终端低成本的要求。
The invention discloses a synchronous detection device applied to a narrow-band wireless communication system terminal, which includes a down-sampling module, a sliding autocorrelation module and a differential cross-correlation module. The down-sampling module down-samples the received 1.92MHz time-domain signal into a 240kHz signal according to the OFDM symbol duration and a fixed down-sampling pattern. The sliding autocorrelation module moves the sampling point data bit by bit within the 10ms wireless frame processing window length as the starting position t, and uses the length of 11 OFDM symbols as the sliding window, and separates the 11 groups of sampling points in the sliding window into two groups Correlation accumulation between them. The differential cross-correlation module divides the obtained preliminary synchronization sequence into two parts that are approximately equal, and performs cross-correlation accumulation with the locally generated main synchronization sequence. The synchronous detection device disclosed in the present invention can still detect the main synchronous signal preferably in the application scenario of a narrowband wireless communication system with a low signal-to-noise ratio and a large frequency offset, and its implementation complexity is low, satisfying the Low-cost requirements for narrowband wireless communication terminals.
Description
技术领域technical field
本发明涉及移动通信领域,具体而言,涉及一种在未来的物联网网络中应用于窄带蜂窝通信终端的同步装置和方法。The present invention relates to the field of mobile communication, in particular to a synchronization device and method applied to narrowband cellular communication terminals in a future Internet of Things network.
背景技术Background technique
在最近的通信市场上IoT(物联网)成为行业亮点,诸多运营商和设备上展示了其最新创新成果和应用案例。其中,窄带无线通信技术(NB-Iot)是运营商进军物联网市场的关键。窄带无线通信系统自身具备的低功耗、广覆盖、低成本、大容量等优势,使其可以广泛应用于多种垂直行业,如远程抄表、资产跟踪、智能停车、智慧农业等。3GPP标准的首个版本预计在2016年6月发布,预计窄带无线通信会在LPWA市场的多个技术竞争中脱颖而出,成为领先运营商的最佳选择。In the recent communication market, IoT (Internet of Things) has become a bright spot in the industry, and many operators and devices have demonstrated their latest innovations and application cases. Among them, narrowband wireless communication technology (NB-Iot) is the key for operators to enter the Internet of Things market. The narrowband wireless communication system has the advantages of low power consumption, wide coverage, low cost, and large capacity, so it can be widely used in a variety of vertical industries, such as remote meter reading, asset tracking, smart parking, smart agriculture, etc. The first version of the 3GPP standard is expected to be released in June 2016. It is expected that narrowband wireless communication will stand out from multiple technical competitions in the LPWA market and become the best choice for leading operators.
首个版本的窄带无线通信支持3种运营模式(standalone, in-band, guard-band),包括:The first version of narrowband wireless communication supports 3 operating modes (standalone, in-band, guard-band), including:
■ Standalone:利用现有GERAN系统的频谱,取代一个或多个GSM载波■ Standalone: Use the frequency spectrum of the existing GERAN system to replace one or more GSM carriers
■ Guard-band:利用LTE载波保护间隔内未利用的资源块■ Guard-band: Utilize unused resource blocks within the LTE carrier guard interval
■ In-band:利用普通LTE载波内资源块。■ In-band: Utilize resource blocks within common LTE carriers.
在窄带无线通信的网络部署中,基站可使用的带宽资源是宽泛的,但对于一个特定的 窄带无线通信终端设备来说,其上、下行带宽最大都只占有180kHz(即一个PRB),当与传统的LTE共用带宽部署时,窄带无线通信系统的下行同步导频只能在特定的PRB上发送,这些特定的PRB与100kHz栅格点相差为固定的2.5kHz或者7.5kHz,称为锚定PRB。In the network deployment of narrowband wireless communication, the bandwidth resources available to the base station are wide, but for a specific narrowband wireless communication terminal equipment, its uplink and downlink bandwidth only occupy a maximum of 180kHz (that is, one PRB). When the traditional LTE shared bandwidth is deployed, the downlink synchronization pilot of the narrowband wireless communication system can only be sent on specific PRBs. The difference between these specific PRBs and the 100 kHz grid point is fixed at 2.5 kHz or 7.5 kHz, called anchor PRBs .
窄带无线通信系统的下行同步导频包括主、辅同步导频两种,主同步信号用于获取网络的时间、频域同步,辅同步信号用于确定小区ID,本发明所涉及的技术方案是窄带无线通信系统的主同步序列的检测。3gpp首个版本的窄带无线通信系统中主同步导频(NPSS)的特性包括:The downlink synchronization pilot of the narrowband wireless communication system includes primary and secondary synchronization pilots. The primary synchronization signal is used to obtain time and frequency domain synchronization of the network, and the secondary synchronization signal is used to determine the cell ID. The technical solution involved in the present invention is Detection of the primary synchronization sequence for narrowband wireless communication systems. The characteristics of the Primary Synchronization Pilot (NPSS) in the narrowband wireless communication system of the first version of 3gpp include:
■NPSS传输周期是一个无线帧长(10ms)■The NPSS transmission period is a wireless frame length (10ms)
■NPSS使用每个无线帧中子帧5的后 11 OFDM符号,并且占用各个符号上的11个子载波传输,从子载波0到子载波10■NPSS uses the last 11 OFDM symbols of subframe 5 in each radio frame, and occupies 11 subcarriers on each symbol for transmission, from subcarrier 0 to subcarrier 10
■NPSS在每个OFDM符号采用相同的ZC序列作为基序列,ZC根序列为 u=5,在频域生成,ZC序列有良好的时域和频域相关性■NPSS uses the same ZC sequence as the base sequence in each OFDM symbol, and the ZC root sequence is u=5, which is generated in the frequency domain. The ZC sequence has good time domain and frequency domain correlation
■NPSS在不同的OFDM符号之间采用随机图样的二进制加扰序列。■ NPSS uses random pattern binary scrambling sequences between different OFDM symbols.
由于窄带无线通信的终端设备必须具备低成本的特点,晶振精度较低,因此带来较大的初始频偏,此外如上所述,在和传统LTE同网络部署模式下,窄带无线通信系统下行同步导频所在的锚定PRB和100kHz的扫频栅格间存在着2.5/7.5kHz的频偏,两种因素的叠加导致在窄带无线通信终端设备在初始同步时最多可能达到25kHz以上的初始频偏。Since the terminal equipment of narrowband wireless communication must have the characteristics of low cost, the precision of the crystal oscillator is low, so it brings a large initial frequency offset. In addition, as mentioned above, in the same network deployment mode as the traditional LTE, the downlink synchronization of the narrowband wireless communication system There is a frequency offset of 2.5/7.5kHz between the anchor PRB where the pilot is located and the 100kHz scanning grid. The superposition of the two factors leads to an initial frequency offset of more than 25kHz at most when the narrowband wireless communication terminal equipment is initially synchronized. .
并且,窄带无线通信终端设备往往部署在极低的低信噪比网络环境中,如何在强噪声背景中检测到同步信号也是需要克服的技术难题。Moreover, narrowband wireless communication terminal equipment is often deployed in an extremely low SNR network environment, and how to detect synchronization signals in a strong noise background is also a technical problem that needs to be overcome.
传统LTE系统中的主同步检测方法,例如申请号为20101038021的发明《一种3GPPLTE下行初始主同步检测方法》,或者是申请号为2013103796348的发明《一种用于TD-LTE小区切换的快速下行主同步方法》,以及申请号为201010111963的发明《一种LTE系统中LTE主同步信号检测与序列生成方法及装置》,其所披露的都是通过将接收到的序列与本地生成的序列互相关的方法来检测(或者判断)同步信号的存在。针对窄带无线通信的系统,由于其同步序列较短且工作在极低信噪比以及较大初始频偏的环境下,应用传统LTE系统中使用的频域数据互相关的同步序列检测方法是根本无法找到相关峰的。The primary synchronization detection method in the traditional LTE system, such as the invention with the application number 20101038021 "A 3GPP LTE downlink initial primary synchronization detection method", or the invention with the application number 2013103796348 "A fast downlink method for TD-LTE cell handover Master Synchronization Method", and the invention with application number 201010111963 "A Method and Device for LTE Master Synchronization Signal Detection and Sequence Generation in LTE System", which discloses the cross-correlation of the received sequence with the locally generated sequence The method to detect (or determine) the existence of synchronization signals. For narrowband wireless communication systems, since the synchronization sequence is short and works in an environment with extremely low signal-to-noise ratio and large initial frequency offset, it is fundamental to apply the synchronization sequence detection method of cross-correlation of frequency domain data used in traditional LTE systems Unable to find relevant peaks.
发明内容Contents of the invention
针对现有技术中存在的上述缺陷和不足,本发明的目的在于提供一种应用于物联网窄带蜂窝通信终端的同步装置和方法,在极低的信噪比以及较大的频偏环境下仍能较好地实现主同步信号的检测,并且其实现成本是较低的。In view of the above defects and deficiencies in the prior art, the purpose of the present invention is to provide a synchronization device and method applied to narrowband cellular communication terminals of the Internet of Things, which can still be synchronized in the environment of extremely low signal-to-noise ratio and large frequency deviation. The detection of the main synchronization signal can be better realized, and its realization cost is relatively low.
根据本发明的一个方面,提供了一种用于窄带蜂窝通信终端的同步装置,包括以下各模块,如图1所示。According to one aspect of the present invention, a synchronization device for a narrowband cellular communication terminal is provided, including the following modules, as shown in FIG. 1 .
M101降采样模块,用于将采样率为1.92MHz的时域采样信号降采样为240kHz的信号。The M101 down-sampling module is used for down-sampling the time-domain sampling signal with a sampling rate of 1.92MHz to a 240kHz signal.
所述降采样模块将每1ms(一个子帧长度)的1920个采样点分成14个OFDM符号时长,第1和第7个OFDM符号时长内的降采样图案为{10,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8},其它OFDM符号长度内的降采样图案为{9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8}。The downsampling module divides 1920 sampling points per 1 ms (one subframe length) into 14 OFDM symbol durations, and the downsampling patterns in the first and seventh OFDM symbol durations are {10,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8}, the downsampling pattern in other OFDM symbol lengths is {9,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8}.
M201滑动自相关模块,用于初步确定主同步序列存在和初步的位置。The M201 sliding autocorrelation module is used to initially determine the existence and preliminary position of the main synchronous sequence.
所述滑动自相关模块还包括一个数据缓存器,缓存上一个10ms无线帧最后11个OFDM时长的降采样后的数据,因此滑动自相关模块一次处理的总数据长度是当前10ms无线帧以及上一10ms无线帧最后11个OFDM符号的和。The sliding autocorrelation module also includes a data buffer, which caches the downsampled data of the last 11 OFDM durations of the last 10ms wireless frame, so the total data length processed by the sliding autocorrelation module at one time is the current 10ms wireless frame and the previous one. The sum of the last 11 OFDM symbols of a 10ms radio frame.
所述滑动自相关模块将处理窗口内的采样点数据逐位移动作为起始位置t,并取出时长为11个OFDM符号的降采样后数据,作为一个滑动窗口,然后将滑动窗口内的采样点分成11组,间隔两组之间的采样点乘以对应的加扰序列后,进行相关累加,并对多个10ms无线帧处理窗口的多组滑动自相关结果进行alpha滤波,最后对各滑动窗的滑动自相关结果进行功率归一化。The sliding autocorrelation module moves the sampling point data in the processing window bit by bit as the starting position t, and takes out the down-sampled data whose duration is 11 OFDM symbols as a sliding window, and then takes the sampling point in the sliding window It is divided into 11 groups, and the sampling points between the two groups are multiplied by the corresponding scrambling sequence, and the correlation accumulation is performed, and the alpha filtering is performed on the multiple sets of sliding autocorrelation results of multiple 10ms wireless frame processing windows, and finally each sliding window The sliding autocorrelation results were normalized by power.
若存在一个滑动窗的滑动自相关结果大于预设值的门限值,则启动差分互相关模块。If the sliding autocorrelation result of a sliding window is greater than the threshold value of the preset value, the differential cross-correlation module is started.
进一步地,所述滑动自相关模块还包含有小数倍的频偏估计和校准子模块,根据获得的滑动自相关结果的相位值进行小数倍频偏估计和校准,所述的小数倍频偏估计按照下式进行估算,Further, the sliding autocorrelation module also includes a fractional multiple frequency offset estimation and calibration sub-module, which performs fractional multiple frequency offset estimation and calibration according to the phase value of the obtained sliding autocorrelation result, and the fractional multiple The frequency offset estimation is estimated according to the following formula,
其中,arctan{At}表示对滑动自相关的结果取相位值,1.92MHz是初始时域数据的采样率,137是一个OFDM符号时长的采样点数。Among them, arctan{A t } means to take the phase value of the sliding autocorrelation result, 1.92MHz is the sampling rate of the initial time domain data, and 137 is the number of sampling points of an OFDM symbol duration.
M301差分互相关模块,用于进一步确定是否存在NPSS信号。 The M301 differential cross-correlation module is used to further determine whether there is an NPSS signal.
所述差分互相关模块的处理数据对象是从滑动自相关模块获得的一个滑动窗口内的187个点的采样序列,将所述的187点采样序列差分成近似等长的两段,例如,第一段长度为97点,第二段长度为98点,或者,第一段长度为98点,第二段长度为97点,所述的两段序列分别与本地生成的NPSS时域序列进行共轭乘累加后,将两段结果进行相关合并,若相关合并结果大于预设定的门限值,则确认NPSS存在。The processing data object of the differential cross-correlation module is a sampling sequence of 187 points in a sliding window obtained from the sliding autocorrelation module, and the difference of the 187-point sampling sequence is divided into two sections of approximately equal length, for example, the first One section has a length of 97 points, and the second section has a length of 98 points, or, the first section has a length of 98 points, and the second section has a length of 97 points. After the yoke multiplication and accumulation, the results of the two sections are correlated and combined, and if the correlated combined result is greater than the preset threshold value, it is confirmed that the NPSS exists.
进一步地,所述相关合并还包括对每个10ms无线帧内的合并结果进行功率归一化。Further, the correlation merging also includes performing power normalization on the merging results in each 10ms radio frame.
较优地,在差分相关模块中还包括对接收序列进行整数倍的频偏估计和校准的子模块,所述整数倍的频偏估计和校准子模块在频偏范围内枚举出所有可能的整数倍频偏值,尝试每一种所述整数倍频偏值对本地生成的NPSS时域序列进行调制,并使用调制后的本地NPSS序列进行差分相关,找出使得差分互相关结果的最大值,其对应的整数倍频偏值即为估计值。然后,综合所述的小数倍频偏估计值和整数倍频偏估计值之和为总频偏估计值,按照采样点的采样时刻进行相位校准。Preferably, the differential correlation module also includes a submodule for performing integer multiple frequency offset estimation and calibration on the received sequence, and the integer multiple frequency offset estimation and calibration submodule enumerates all possible frequency offsets within the frequency offset range. Integer multiplication frequency offset value, try each of the integer multiplication frequency offset values to modulate the locally generated NPSS time-domain sequence, and use the modulated local NPSS sequence for differential correlation to find the maximum value of the differential cross-correlation result , and its corresponding integer multiple frequency offset value is the estimated value. Then, the sum of the estimated fractional multiple frequency offset and the integer multiple frequency offset estimate is integrated into the total frequency offset estimate, and the phase calibration is performed according to the sampling time of the sampling point.
更优地,在差分相关模块中还包括定时估计的子模块,即先产生高采样率的所述本地NPSS时域序列,然后尝试不同的初始采样点偏移并进行下采样,生成所述的本地NPSS时域序列,然后进行所述的差分互相关,并找出使得差分互相关值最大的初始偏移值,作为估计的定时偏移量。More preferably, the submodule of timing estimation is also included in the differential correlation module, that is, the local NPSS time domain sequence with a high sampling rate is generated first, and then different initial sampling point offsets are tried and down-sampled to generate the The local NPSS time-domain sequence is then subjected to the differential cross-correlation, and an initial offset value that maximizes the differential cross-correlation value is found as an estimated timing offset.
本发明装置的有益效果是:为窄带无线通信终端实现在低信噪比、大初始频偏环境下仍能正确检测到主同步序列提供了解决方案,区别于传统的将接收信号与本地序列相关的方案,本发明提供的方案性能更优,由于采样本发明方案能获得多个10ms无线帧之间的合并增益,在具体的工程实践中就可以用更长的同步时间来换取同步接入的准确率,因此适应于窄带无线通信低时延敏感、高恶劣环境下接入的性能要求。在较优配置下,本发明所公开的装置在检测NPSS信号的过程中还执行了小数倍和整数倍频偏的估计和校准,这就进一步提高了抗大频偏的性能。更优配置下,本发明所公开的装置还能进行初步的定时估计,这就为后续的下行数据接收创造了更好的条件,提升了接收机的整体性能。本发明装置已经进行了多次仿真实验和评估,根据3gpp协议约定,按照3gpp约定的仿真配置,使用本发明所公开的装置可以获得95%以上的检测成功率,在较优配置下可以达到定时同步在4Tsamp以内(其中Tsamp对应1.92MHz采样间隔),频率同步误差在50Hz范围内。The beneficial effect of the device of the present invention is that it provides a solution for the narrowband wireless communication terminal to correctly detect the primary synchronization sequence in the environment of low signal-to-noise ratio and large initial frequency offset, which is different from the traditional method of correlating the received signal with the local sequence The scheme provided by the present invention has better performance, because the scheme of the present invention can obtain the combination gain between multiple 10ms wireless frames by sampling, and in specific engineering practice, a longer synchronization time can be exchanged for synchronous access Accuracy, so it is suitable for the performance requirements of narrowband wireless communication with low delay sensitivity and high harsh environment access. Under the optimal configuration, the device disclosed in the present invention also performs estimation and calibration of frequency offsets of fractional multiples and integer multiples during the process of detecting NPSS signals, which further improves the performance of resisting large frequency offsets. Under a more optimal configuration, the device disclosed in the present invention can also perform preliminary timing estimation, which creates better conditions for subsequent downlink data reception and improves the overall performance of the receiver. The device of the present invention has been subjected to multiple simulation experiments and evaluations. According to the 3gpp protocol agreement, according to the simulation configuration agreed by 3gpp, the detection success rate of more than 95% can be obtained by using the device disclosed in the invention, and the timing can be achieved under the optimal configuration. The synchronization is within 4T samp (where T samp corresponds to 1.92MHz sampling interval), and the frequency synchronization error is within 50Hz.
根据本发明的另一个方面,提供了一种用于窄带蜂窝通信终端的同步检测方法,其包括以下若干过程。According to another aspect of the present invention, a synchronization detection method for a narrowband cellular communication terminal is provided, which includes the following processes.
S101降采样过程,将1.92MHz采样率的时域信号以OFDM符号为单位长度,按照固定降采样图案降采样为240kHz采样率的信号;所述的固定降采样图案如本发明的装置部分的描述。S101 down-sampling process, the time-domain signal with a sampling rate of 1.92MHz is taken as a unit length of OFDM symbols, and is down-sampled to a signal with a sampling rate of 240kHz according to a fixed down-sampling pattern; the fixed down-sampling pattern is as described in the device part of the present invention .
S201滑动自相关过程,将10ms无线帧处理窗长内的采样点数据逐位移动作为起始位置t,并以长度为11个OFDM符号时长作为滑动窗口,将所述滑动窗口内的采样点分成11组,间隔两组之间的采样点进行相关累加。S201 Sliding autocorrelation process, move the sampling point data in the 10ms wireless frame processing window bit by bit as the starting position t, and use the length of 11 OFDM symbols as the sliding window, divide the sampling points in the sliding window into There are 11 groups, and the sampling points between the two groups are correlated and accumulated.
较优地,所述的滑动自相关过程中还包括根据自相关结果进行小数倍频偏估计和校准的子过程。Preferably, the sliding autocorrelation process further includes a sub-process of estimating and calibrating the fractional multiple frequency offset according to the autocorrelation result.
若所述滑动自相关过程计算获得的滑动自相关大于门限值,则启动差分互相关过程。If the sliding autocorrelation calculated by the sliding autocorrelation process is greater than the threshold value, the differential cross-correlation process is started.
S301差分互相关过程,将所述滑动自相关过程所获得的滑动窗口内的同步序列差分成等长两部分,并与本地生成的同步序列进行互相关累加。S301 Differential cross-correlation process, dividing the synchronous sequence in the sliding window obtained by the sliding autocorrelation process into two parts of equal length, and performing cross-correlation accumulation with the locally generated synchronous sequence.
较优地,所述的差分互相关过程中还包括对整数倍频偏进行估计和校准的子过程。Preferably, the differential cross-correlation process further includes a sub-process of estimating and calibrating integer multiple frequency offsets.
更优地,所述的差分互相关过程中还包括对定时的估计子过程。More preferably, the differential cross-correlation process further includes a timing estimation sub-process.
若所述差分互相关过程所获得的互相关结果大于门限值,则确认所检测出的序列是主同步序列。If the cross-correlation result obtained by the differential cross-correlation process is greater than the threshold value, it is confirmed that the detected sequence is the primary synchronization sequence.
附图说明Description of drawings
图1为本发明涉及的一种同步装置的模块结构示意图。FIG. 1 is a schematic diagram of a module structure of a synchronization device involved in the present invention.
图2为降采样图案示意图。FIG. 2 is a schematic diagram of a downsampling pattern.
图3为实践中随机抽取1ms时间长度内实际子帧采样点和采样图案的对照关系示意图。FIG. 3 is a schematic diagram of a control relationship between actual subframe sampling points and sampling patterns within a time length of 1 ms randomly selected in practice.
图4为 NPSS序列物理映射示意图。Figure 4 is a schematic diagram of the physical mapping of NPSS sequences.
图5为 实践中存在的10ms处理窗口与实际无线帧位置对照示意图。Fig. 5 is a schematic diagram of the comparison between the 10ms processing window existing in practice and the actual wireless frame position.
图6为滑动自相关示意图。Figure 6 is a schematic diagram of sliding autocorrelation.
图7为定时估计中尝试不同定时偏移的示意图。FIG. 7 is a schematic diagram of trying different timing offsets in timing estimation.
具体实施方式detailed description
以下通过特定的具体实例说明本发明的实施方式,此处所描述的具体实施例仅用以解释本发明,但并不用于限定本发明。本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。The implementation of the present invention will be described below through specific examples. The specific examples described here are only used to explain the present invention, but are not intended to limit the present invention. Those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification.
请参阅附图,NPSS检测装置所含的模块如图1所示,包括降采样模块,滑动自相关模块(AutoCorr),粗互相关模块和细互相关模块。Please refer to the accompanying drawings, the modules contained in the NPSS detection device are shown in Figure 1, including a downsampling module, a sliding autocorrelation module (AutoCorr), a rough cross-correlation module and a fine cross-correlation module.
M101降采样模块M101 Downsampling Module
降采样模块实现从采样率1.92MHz到240K的降采样,降采样前每个子帧输入为1ms的1920=(137*14+2)个采样点,降采样后每个子帧输出238=(17*14)个采样点,并且按照下面的固定降采样图案进行: The downsampling module realizes downsampling from a sampling rate of 1.92MHz to 240K. Before downsampling, each subframe inputs 1920=(137*14+2) sampling points of 1ms, and after downsampling, each subframe outputs 238=(17* 14) sampling points, and follow the fixed downsampling pattern below:
将每个子帧的1920个采样点记成14组(14个OFDM符号),第1组的采样点是138个,第2-6组的采样点是137个,第7组的采样点是138个,第8-14组的采样点是137个。 第1-第6组记为时隙1(slot1),第7-第14组记为时隙2(slot2),每个时隙的第1组记为首个OFDM符号,剩余的组记为非首个OFDM符号。The 1920 sampling points of each subframe are recorded as 14 groups (14 OFDM symbols), the sampling points of the first group are 138, the sampling points of the 2-6 groups are 137, and the sampling points of the 7th group are 138 There are 137 sampling points in groups 8-14. Groups 1-6 are marked as slot 1 (slot1), groups 7-14 are marked as slot 2 (slot2), the first group of each slot is marked as the first OFDM symbol, and the remaining groups are marked as non- The first OFDM symbol.
每个时隙的首个OFDM符号(即第1和第7组)降采样图案为{10,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8};如图2 上半部分所示,先每隔10个点下采样1一个点,对剩余的采样点每隔8个点下采样1个点,并以此类推。The downsampling pattern of the first OFDM symbol (i.e. group 1 and 7) of each slot is {10,8,8,8,8,8,8,8,8,8,8,8,8,8 ,8,8,8}; as shown in the upper part of Figure 2, first down-sample one point every 10 points, down-sample one point every eight points for the remaining sampling points, and so on.
非首个OFDM符号(即第2-6组,第8-14组)采样图案为{9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8};如图2下半部分所示,先每隔9个点下采样1一个点,对剩余的采样点每隔8个点下采样1个点,并以此类推。The non-first OFDM symbol (ie group 2-6, group 8-14) sampling pattern is {9,8,8,8,8,8,8,8,8,8,8,8,8,8 ,8,8,8}; As shown in the lower part of Figure 2, first down-sample one point every nine points, down-sample one point every eight points for the remaining sampling points, and so on.
这样,每个OFDM符号降采样后的点数都是17个点,每个1ms时长内包含采样点数为238=(17*14)。In this way, the number of down-sampled points of each OFDM symbol is 17 points, and the number of sampling points included in each 1ms duration is 238=(17*14).
图3所示为实践中随机抽取1ms时间长度内实际子帧采样点和采样图案的对照关系示意,假设随机抽取到的1ms时间窗起始位置对应的是上一子帧的最后一个OFDM符号,而第一组的采样图案为{10,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8},因此对应到子帧内前17个降采样后的数据是原始CP段内的第1点,数据段内第2,第10,…, 第122点,接下来降采样窗口对应的是本子帧的第一个OFDM符号, 采样图案是{9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8},因此对应到降采样后子帧内的17个数据是原始CP段内的第3点,数据段内第1,第9,…,第122点,第三个降采样窗口对应的是本子帧的第二个OFDM符号,采样图案仍然是{9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8},因此对应到子帧内降采样后的17个数据是原始CP段内的第2点,数据段内第1,第9,…, 第122点,依次类推。Figure 3 shows the comparison relationship between the actual subframe sampling point and the sampling pattern within the random sampling time length of 1 ms in practice, assuming that the starting position of the randomly selected 1 ms time window corresponds to the last OFDM symbol of the previous sub-frame, The sampling pattern of the first group is {10,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8}, so it corresponds to the subframe The first 17 downsampled data are the 1st point in the original CP segment, the 2nd, 10th, ..., 122nd points in the data segment, and the next downsampling window corresponds to the first OFDM symbol of this subframe, The sampling pattern is {9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8}, so it corresponds to 17 in the subframe after downsampling The first data is the 3rd point in the original CP segment, the 1st, 9th, ..., 122nd points in the data segment, the third downsampling window corresponds to the second OFDM symbol of this subframe, and the sampling pattern is still { 9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8}, so the 17 data corresponding to the downsampling in the subframe are the original The 2nd point in the CP segment, the 1st, 9th, ..., 122nd points in the data segment, and so on.
由此可以看出,采用上述固定采样图案进行降采样可以保证在每个OFDM符号时间长度内降采样后的点数个数相同,并且保证原始OFDM符号降采样后采样位置间的误差保持在最大1个采样点,大部分OFDM采样位置无误差,从而一方面降低了后续滑动自相关的运算量,同时又最大限度减小了由于降采样给滑动自相关带来的性能下降。It can be seen that, using the above fixed sampling pattern for downsampling can ensure that the number of points after downsampling in each OFDM symbol time length is the same, and ensure that the error between sampling positions after downsampling of the original OFDM symbol remains at a maximum of 1 sampling points, most of the OFDM sampling positions are error-free, which on the one hand reduces the calculation amount of subsequent sliding autocorrelation, and at the same time minimizes the performance degradation caused by downsampling to sliding autocorrelation.
M201滑动自相关模块M201 Sliding Autocorrelation Module
图4所示如在协议[36.211]中的约定,窄带无线通信系统的主同步码NB-PSS序列在频域上是短序列,频域上占用11个RE,在时域上占用11个连续的OFDM符号并且经过加扰后发送。As shown in Figure 4, as stipulated in the protocol [36.211], the primary synchronization code NB-PSS sequence of the narrowband wireless communication system is a short sequence in the frequency domain, occupying 11 REs in the frequency domain and 11 consecutive REs in the time domain The OFDM symbols are sent after being scrambled.
经过降采样后1ms的采样点数是238个,滑动自相关模块的一次处理对象是每个无线帧(10ms)窗口时间内的接收时域数据,实际滑动自相关模块还包括一个数据缓存器,缓存上一个无线帧窗口内最后11个OFDM符合的数据,即11*17个采样点,因此,滑动自相关模块的实际一次处理对象包括一个无线帧降采样后的2380个采样点+11*17降采样点,共2567个降采样点的数据。After downsampling, the number of sampling points in 1ms is 238. The primary processing object of the sliding autocorrelation module is the received time domain data within the window time of each wireless frame (10ms). The actual sliding autocorrelation module also includes a data buffer. The data of the last 11 OFDM matches in the last wireless frame window, that is, 11*17 sampling points, therefore, the actual one-time processing object of the sliding autocorrelation module includes 2380 sampling points + 11*17 downsampling of a wireless frame after downsampling Sampling points, the data of a total of 2567 downsampling points.
增加滑动自相关模块中的数据缓存器的有益效果是防止数据漏检,如图5所示,可能存在的场景是,当前10ms处理窗口的起始位置正好位于真实发送NPSS子帧的帧内部,增加了11个OFDM符号时长的数据缓存就可以保证增长后的滑动自相关处理窗口内一定保存有至少一个完整的NPSS序列。The beneficial effect of increasing the data buffer in the sliding autocorrelation module is to prevent missing data detection, as shown in Figure 5, a possible scenario is that the starting position of the current 10ms processing window is just inside the frame that actually sends the NPSS subframe, The addition of 11 OFDM symbol duration data buffers can ensure that at least one complete NPSS sequence must be stored in the increased sliding autocorrelation processing window.
如图6所示,将处理窗口内的采样点数据逐位移动作为起始位置t,并从长度为11个OFDM符号(即187个采样点)的时长窗口内取出采样点,作为一个滑动窗口。As shown in Figure 6, the sampling point data in the processing window is moved bit by bit as the starting position t, and the sampling point is taken from the time window with a length of 11 OFDM symbols (that is, 187 sampling points) as a sliding window .
然后将一个滑动窗口内的187个采样点分成11组,每组17个采样点,如图6所示间隔两组之间的采样点进行相关累加,在相关累计中还需要乘以每个OFDM符号的加扰序列,如下式所示,Then divide the 187 sampling points in a sliding window into 11 groups, with 17 sampling points in each group. As shown in Figure 6, the sampling points between the two groups are correlated and accumulated, and each OFDM needs to be multiplied in the correlation accumulation. The scrambling sequence of symbols, as shown in the following formula,
上式中,、是接收到的从第t个采样点起的第m个OFDM符号时长的采样点序列,sm、sm+1是这两个OFDM符号序列对应的加扰码,*表示对序列中每个点取共轭运算。In the above formula, , is the received sampling point sequence of the m-th OFDM symbol duration from the t-th sampling point, s m and s m+1 are the scrambling codes corresponding to the two OFDM symbol sequences, and * means that each Take the conjugate operation.
较优地,在工程实践中还包括对连续无线帧(10ms)窗口上自相关结果的alpha滤波运算Preferably, in engineering practice, it also includes an alpha filter operation on the autocorrelation results on the continuous wireless frame (10ms) window
从而获得分集合并增益,进一步提高检测的准确程度。Thereby, a diversity combining gain is obtained, and the accuracy of detection is further improved.
然后,对滑动相关结果进行功率归一化,Then, the sliding correlation results are power normalized,
判断归一化后的滑动自相关结果是否大于预定义的门限值,若大于则认为该无线帧窗口内含有NPSS,大致起始位置在第t个采样点,并转入下一个粗互相关模块,否则转到下一个无线帧窗口的判断。Judging whether the normalized sliding autocorrelation result is greater than the predefined threshold value, if it is greater than, it is considered that the wireless frame window contains NPSS, and the approximate starting position is at the tth sampling point, and it is transferred to the next coarse cross-correlation module, otherwise go to the judgment of the next wireless frame window.
工程中较优地,还包括根据滑动自相关结果对降采样信号进行小数倍频偏估计和校准。Preferably in engineering, it also includes estimating and calibrating the fractional multiple frequency offset of the downsampled signal according to the sliding autocorrelation result.
如上所述,由于初始采样率是1.92MHz,一个OFDM符号包含的采样点数是137个,因此一个OFDM符号时间长度是137/1.92MHz,在一个OFDM符号时间长度上由频偏所造成的相位旋转是:As mentioned above, since the initial sampling rate is 1.92MHz, the number of sampling points contained in one OFDM symbol is 137, so the time length of one OFDM symbol is 137/1.92MHz, and the phase rotation caused by the frequency offset in the time length of one OFDM symbol yes:
其中θ即是自相关结果的相位值。 Where θ is the phase value of the autocorrelation result.
因此,频偏的估计值: Therefore, the estimated value of frequency offset:
需要指出的是,当真实的频偏值在一个OFDM符号上造成的相位旋转小于π,上式中的估计结果即是完整的频偏值,但在通常情况下,如背景技术所述,由于窄带无线通信系统非常大的初始频偏都会造成大于π的相位旋转,因此上式中的估计结果只是频偏值的小数部分,称为小数倍频偏值。It should be pointed out that when the phase rotation caused by the real frequency offset value on one OFDM symbol is less than π, the estimation result in the above formula is the complete frequency offset value. A very large initial frequency offset in a narrowband wireless communication system will cause a phase rotation greater than π, so the estimation result in the above formula is only a fractional part of the frequency offset value, which is called a fractional frequency offset value.
最后,按照估计出的小数倍频偏值对滑动窗内的降采样序列进行频偏校准,Finally, the frequency offset calibration is performed on the downsampling sequence in the sliding window according to the estimated fractional frequency offset value,
其中,λi是第i个采样点的采样时刻。Among them, λ i is the sampling moment of the i-th sampling point.
M301差分互相关模块 M301 differential cross-correlation module
差分互相关模块仅在滑动自相关判断满足存在NPSS的条件下启动,作用是确认NPSS的存在以及估计和校准整数倍频偏,在优选情况下还包括消除定时偏差。The differential cross-correlation module starts only when the sliding autocorrelation judgment meets the condition of NPSS, and its function is to confirm the existence of NPSS and estimate and calibrate the integer multiple frequency offset, and in the preferred case, it also includes eliminating timing offset.
首先,按照协议规定生成无频偏的本地序列,记为di,di的采样率与降采样接收序列相同,并按照不同的整数倍频偏来调制di。First, a local sequence without frequency offset is generated according to the protocol, denoted as d i , the sampling rate of d i is the same as that of the downsampled received sequence, and di is modulated according to different integer multiple frequency offsets .
背景技术中介绍了窄带无线通信系统在小区搜索时遇到最大频偏为±25.5KHz,在这个范围内存在5种可能的整数频偏,分别是,上述频偏值都落在最大频偏范围内。The background technology introduces that the narrowband wireless communication system encounters a maximum frequency deviation of ±25.5KHz during cell search, and there are five possible integer frequency deviations within this range, which are , the above frequency offset values all fall within the maximum frequency offset range.
采用枚举法,尝试上述假设中的每一种整数倍频偏对初始的本地序列进行调制。Using the enumeration method, try each integer multiple frequency offset in the above assumptions to modulate the initial local sequence.
然后,将调制后的本地序列与滑动自相关输出的采样序列相关,对11个OFDM符号时长内的NPSS序列分成近似等长的两段进行差分相关,即将长度为187点的本地序列以及接收采样序列均分成两段,第一段长度为94点,第二段长度为93点(或者也可以分割成第一段93点,第二段94点),并将两者进行相关,Then, the modulated local sequence is correlated with the sampling sequence output by sliding autocorrelation, and the NPSS sequence within 11 OFDM symbol durations is divided into two sections of approximately equal length for differential correlation, that is, the local sequence with a length of 187 points and the received sampling The sequence is divided into two sections, the length of the first section is 94 points, and the length of the second section is 93 points (or it can also be divided into 93 points for the first section and 94 points for the second section), and the two are correlated.
其中*表示取共轭运算。Where * means to take the conjugate operation.
在本领域的惯常技术方法中,求互相关多数是通过一个完整的接收序列和本地序列进行相关运算来获得的,但在本发明方案中,是将完整的同步序列拆分成近似等长的两段,再分别和本地序列进行相关而获得的。这是由于,按照协议规定,NPSS在不同的无线帧可以映射到不同的天线端口发送,因此如果采样惯常手段,对一个子帧长度(187点)的NPSS本地序列和接收序列进行直接相关就无法再在多个无线帧窗口间进行合并以获取合并增益;而本方案采用子帧内两段先差分再相关,一个子帧内部的天线端口是不变的,不同无线帧间差分相关的结果仍然可以合并,因此规避了无线帧间天线端口间切换的问题,从而获取合并增益。In the usual technical methods in this field, most of the cross-correlation is obtained by performing a correlation operation on a complete receiving sequence and the local sequence, but in the scheme of the present invention, the complete synchronization sequence is split into approximately equal-length The two segments are obtained by correlating with the local sequence respectively. This is because, according to the protocol, NPSS can be mapped to different antenna ports for transmission in different wireless frames. Therefore, if the sampling method is conventional, it is impossible to directly correlate the NPSS local sequence and the received sequence with a subframe length (187 points). Then combine multiple wireless frame windows to obtain the combined gain; while in this scheme, two segments in a subframe are differentially correlated first, and the antenna port inside a subframe remains unchanged, and the result of differential correlation between different wireless frames remains the same. Can be combined, thus avoiding the problem of switching between antenna ports between wireless frames, thereby obtaining a combined gain.
将本10ms无线帧内的差分相关结果进行功率归一化,并将多个10ms无线帧窗口内的差分相关结果进行合并Normalize the differential correlation results in this 10ms wireless frame, and combine the differential correlation results in multiple 10ms wireless frame windows
其中,是上一个10ms无线帧窗口内的归一化的结果。in, is the result of normalization within the last 10ms radio frame window.
若差分互相关结果大于门限值,则找出一个使得差分互相关结果最大的k值,If the differential cross-correlation result is greater than the threshold value, then find a k value that maximizes the differential cross-correlation result,
认为差分互相关确认NPSS信号已经成功检测,其所对应的频偏值即是整数倍频偏估计结果。It is considered that the differential cross-correlation confirms that the NPSS signal has been detected successfully, and its corresponding frequency offset value is the result of integer times frequency offset estimation.
总频偏估计结果是小数倍和整数倍频偏估计结果之和。The total frequency offset estimation result is the sum of the fractional times and integer times frequency offset estimation results .
对接收到的NPSS序列进行频偏校准,Perform frequency offset calibration on the received NPSS sequence,
其中,λi是第i个采样点的采样时刻。Among them, λ i is the sampling moment of the i-th sampling point.
在工程中的较优情况下,差分互相关模块还包括初步定时估计的处理。如前面的描述,初始本地序列di的采样率与降采样接收序列相同(即为240kHz)。若需要初步估计定时的处理,则首先生成高采样率的本地序列,然后尝试多种的初始采样点偏移并进行下采样,例如生成的本地序列采样率为1.92MHz,如图7所示,尝试的采样点偏移分别是j=0,1,2,….7点,下采样率为8,对应的下采样序列记为,下采样后的序列仍然是240kHz,然后进行如前所述的差分互相关,并找出最大的差分互相关结果,In the preferred case in engineering, the differential cross-correlation module also includes the processing of preliminary timing estimates. As previously described, the sampling rate of the initial local sequence d i is the same as the downsampled received sequence (ie 240kHz). If it is necessary to preliminarily estimate the timing, first generate a local sequence with a high sampling rate, and then try a variety of initial sampling point offsets and perform downsampling. For example, the sampling rate of the generated local sequence is 1.92MHz, as shown in Figure 7. The attempted sampling point offsets are j=0, 1, 2, ... 7 points, the downsampling rate is 8, and the corresponding downsampling sequence is recorded as , the sequence after downsampling is still 240kHz, then perform the differential cross-correlation as mentioned above, and find the maximum differential cross-correlation result,
其所对应的采样点偏移j即为初始的定时估计量。The corresponding sampling point offset j is the initial timing estimate.
按照3gpp约定的仿真配置(如表1),使用本发明所公开的装置可以获得95%以上的检测成功率,在较优配置下可以达到定时同步在4Tsamp以内(其中Tsamp对应1.92MHz采样间隔),频率同步误差在50Hz范围内According to the simulation configuration agreed by 3gpp (as shown in Table 1), the detection success rate of more than 95% can be obtained by using the device disclosed in the present invention, and the timing synchronization can be achieved within 4T samp under the optimal configuration (where T samp corresponds to 1.92MHz sampling interval), the frequency synchronization error is within 50Hz
表1 性能仿真条件 Table 1 Performance simulation conditions
Claims (9)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911187338.1A CN111106923B (en) | 2017-02-05 | 2017-02-05 | Synchronization device in narrow-band wireless communication terminal |
CN201911195757.XA CN110932837B (en) | 2017-02-05 | 2017-02-05 | Synchronous detection device applied to narrow-band wireless communication system terminal |
CN201911187364.4A CN111106924B (en) | 2017-02-05 | 2017-02-05 | Synchronous detection device applied to narrow-band wireless communication system terminal |
CN201911187605.5A CN111342948B (en) | 2017-02-05 | 2017-02-05 | Synchronous detection device applied to narrow-band wireless communication system terminal |
CN201710064995.1A CN106656453B (en) | 2017-02-05 | 2017-02-05 | Synchronization device in narrow-band wireless communication terminal |
CN201911187310.8A CN110798304B (en) | 2017-02-05 | 2017-02-05 | Synchronization device in narrow-band wireless communication terminal |
CN201911187573.9A CN111106892B (en) | 2017-02-05 | 2017-02-05 | Synchronous detection method in narrow-band wireless communication terminal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710064995.1A CN106656453B (en) | 2017-02-05 | 2017-02-05 | Synchronization device in narrow-band wireless communication terminal |
Related Child Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911187364.4A Division CN111106924B (en) | 2017-02-05 | 2017-02-05 | Synchronous detection device applied to narrow-band wireless communication system terminal |
CN201911187338.1A Division CN111106923B (en) | 2017-02-05 | 2017-02-05 | Synchronization device in narrow-band wireless communication terminal |
CN201911187573.9A Division CN111106892B (en) | 2017-02-05 | 2017-02-05 | Synchronous detection method in narrow-band wireless communication terminal |
CN201911195757.XA Division CN110932837B (en) | 2017-02-05 | 2017-02-05 | Synchronous detection device applied to narrow-band wireless communication system terminal |
CN201911187310.8A Division CN110798304B (en) | 2017-02-05 | 2017-02-05 | Synchronization device in narrow-band wireless communication terminal |
CN201911187605.5A Division CN111342948B (en) | 2017-02-05 | 2017-02-05 | Synchronous detection device applied to narrow-band wireless communication system terminal |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106656453A true CN106656453A (en) | 2017-05-10 |
CN106656453B CN106656453B (en) | 2020-08-21 |
Family
ID=58845346
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911187364.4A Expired - Fee Related CN111106924B (en) | 2017-02-05 | 2017-02-05 | Synchronous detection device applied to narrow-band wireless communication system terminal |
CN201911195757.XA Active CN110932837B (en) | 2017-02-05 | 2017-02-05 | Synchronous detection device applied to narrow-band wireless communication system terminal |
CN201911187573.9A Active CN111106892B (en) | 2017-02-05 | 2017-02-05 | Synchronous detection method in narrow-band wireless communication terminal |
CN201911187338.1A Active CN111106923B (en) | 2017-02-05 | 2017-02-05 | Synchronization device in narrow-band wireless communication terminal |
CN201710064995.1A Active CN106656453B (en) | 2017-02-05 | 2017-02-05 | Synchronization device in narrow-band wireless communication terminal |
CN201911187310.8A Active CN110798304B (en) | 2017-02-05 | 2017-02-05 | Synchronization device in narrow-band wireless communication terminal |
CN201911187605.5A Active CN111342948B (en) | 2017-02-05 | 2017-02-05 | Synchronous detection device applied to narrow-band wireless communication system terminal |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911187364.4A Expired - Fee Related CN111106924B (en) | 2017-02-05 | 2017-02-05 | Synchronous detection device applied to narrow-band wireless communication system terminal |
CN201911195757.XA Active CN110932837B (en) | 2017-02-05 | 2017-02-05 | Synchronous detection device applied to narrow-band wireless communication system terminal |
CN201911187573.9A Active CN111106892B (en) | 2017-02-05 | 2017-02-05 | Synchronous detection method in narrow-band wireless communication terminal |
CN201911187338.1A Active CN111106923B (en) | 2017-02-05 | 2017-02-05 | Synchronization device in narrow-band wireless communication terminal |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911187310.8A Active CN110798304B (en) | 2017-02-05 | 2017-02-05 | Synchronization device in narrow-band wireless communication terminal |
CN201911187605.5A Active CN111342948B (en) | 2017-02-05 | 2017-02-05 | Synchronous detection device applied to narrow-band wireless communication system terminal |
Country Status (1)
Country | Link |
---|---|
CN (7) | CN111106924B (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107231326A (en) * | 2017-05-19 | 2017-10-03 | 大连理工大学 | A kind of cell searching system in NB IoT system down links |
CN107743059A (en) * | 2017-08-23 | 2018-02-27 | 重庆邮电大学 | A method for detecting the number of antenna ports for narrowband Internet of Things |
CN108123774A (en) * | 2017-12-27 | 2018-06-05 | 中山大学花都产业科技研究院 | A kind of narrowband Internet of Things down link synchronisation method and its system |
CN108965189A (en) * | 2018-07-02 | 2018-12-07 | 天津市德力电子仪器有限公司 | It is a kind of applied to the symbol timing synchronization method for resisting big frequency deviation in NB-IOT system |
CN109302364A (en) * | 2017-12-12 | 2019-02-01 | 上海创远仪器技术股份有限公司 | A kind of frequency deviation estimating method for NB_IoT system |
CN109428848A (en) * | 2017-08-29 | 2019-03-05 | 苏州优尼赛信息科技有限公司 | Downlink primary synchronization signal essence synchronous detection and estimation method in a kind of NB-loT system |
CN109729034A (en) * | 2017-10-27 | 2019-05-07 | 电信科学技术研究院 | A kind of timing method, device and terminal |
CN109768852A (en) * | 2019-02-27 | 2019-05-17 | 东南大学 | Method, device and storage medium for realizing precise symbol synchronization processing based on computer software system |
CN109802904A (en) * | 2017-11-16 | 2019-05-24 | 中国移动通信有限公司研究院 | A kind of frequency deviation estimating method and terminal of narrowband Internet of Things NB-IoT |
CN110034838A (en) * | 2018-01-12 | 2019-07-19 | 北京松果电子有限公司 | Signal synchronizing method and device, storage medium and electronic equipment |
CN110198208A (en) * | 2018-02-26 | 2019-09-03 | 普天信息技术有限公司 | A kind of the ascending pilot frequency design method and transmitting terminal, receiving end of narrow-band communication system |
CN110199506A (en) * | 2019-04-18 | 2019-09-03 | 北京小米移动软件有限公司 | Frequency deviation determines method and apparatus and resource block sending method and device |
CN110392424A (en) * | 2019-07-04 | 2019-10-29 | 南京理工大学 | A Timing Method for Downlink Synchronization Signal in Narrowband System |
CN110601719A (en) * | 2019-09-26 | 2019-12-20 | 北京智联安科技有限公司 | Simplified algorithm for coarse synchronization autocorrelation of NB-IoT (NB-IoT) terminal |
CN110636602A (en) * | 2019-09-27 | 2019-12-31 | 广州粒子微电子有限公司 | NB-IoT downlink synchronization method and related operation module thereof |
CN111030959A (en) * | 2019-12-26 | 2020-04-17 | 江苏科大亨芯半导体技术有限公司 | NBIOT frequency domain time frequency synchronization method |
CN111093253A (en) * | 2019-12-27 | 2020-05-01 | 重庆物奇科技有限公司 | Main synchronization signal fine search method of narrow-band Internet of things NB-IoT |
CN111093252A (en) * | 2019-12-27 | 2020-05-01 | 重庆物奇科技有限公司 | Rapid hierarchical searching method for narrow-band Internet of things NB-IoT |
CN111479311A (en) * | 2019-01-24 | 2020-07-31 | 三星电子株式会社 | Wireless communication device including synchronization signal detector and cell search method thereof |
CN112039811A (en) * | 2020-07-01 | 2020-12-04 | 武汉梦芯科技有限公司 | Calculation method in time frequency synchronization process |
WO2021128159A1 (en) * | 2019-12-26 | 2021-07-01 | 哈尔滨海能达科技有限公司 | Synchronization detection method and device |
CN113422748A (en) * | 2021-06-23 | 2021-09-21 | 广州粒子微电子有限公司 | Method and device for estimating frequency offset in narrowband Internet of things and storage medium |
CN113709857A (en) * | 2021-08-26 | 2021-11-26 | 中山大学 | Downlink synchronous preprocessing method for narrow-band Internet of things system |
CN118367960A (en) * | 2024-06-20 | 2024-07-19 | 上海三菲半导体有限公司 | Data packet detection method and receiver |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112039816B (en) * | 2020-07-31 | 2022-08-16 | 中国电子科技集团公司第七研究所 | Downlink synchronization method for narrow-band Internet of things system |
CN114567532A (en) * | 2021-10-18 | 2022-05-31 | 北京智联安科技有限公司 | Optimization method applied to NB-IoT fine synchronization |
CN116962123B (en) * | 2023-09-20 | 2023-11-24 | 大尧信息科技(湖南)有限公司 | Raised cosine shaping filter bandwidth estimation method and system of software defined framework |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101753505A (en) * | 2008-12-22 | 2010-06-23 | 北京信威通信技术股份有限公司 | Method for synchronizing downlink time and frequency of OFDM system |
CN101924725A (en) * | 2009-06-17 | 2010-12-22 | 国民技术股份有限公司 | Frame synchronization method and device for OFDM system |
CN102130883A (en) * | 2011-04-15 | 2011-07-20 | 重庆邮电大学 | A method for time-frequency synchronization in TD-LTE system |
CN102457870A (en) * | 2010-10-21 | 2012-05-16 | 电信科学技术研究院 | Primary synchronization signal detection method and device and cell search method and system |
EP2456106A1 (en) * | 2010-11-22 | 2012-05-23 | Sequans Communications | Cell search method for a downlink channel of an OFDMA transmission system |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6111919A (en) * | 1999-01-20 | 2000-08-29 | Intellon Corporation | Synchronization of OFDM signals |
CN101652946B (en) * | 2007-03-29 | 2013-03-06 | 松下电器产业株式会社 | OFDM receiving device and OFDM receiving method |
US8532201B2 (en) * | 2007-12-12 | 2013-09-10 | Qualcomm Incorporated | Methods and apparatus for identifying a preamble sequence and for estimating an integer carrier frequency offset |
CN101582870B (en) * | 2008-05-15 | 2013-01-16 | 中兴通讯股份有限公司 | Method and device for realizing synchronization |
US8139614B2 (en) * | 2008-06-06 | 2012-03-20 | Maxim Integrated Products, Inc. | Robust narrowband symbol and frame synchronizer for power-line communication |
US8363635B2 (en) * | 2008-08-20 | 2013-01-29 | Wei Chi Liu | Method and system for reducing power consumption of signal synchronization |
CN102148785B (en) * | 2010-02-05 | 2014-03-12 | 中兴通讯股份有限公司 | Methods and devices for detecting main synchronous signal and generating sequence in LTE (Long Term Evolution) system |
CN102122997B (en) * | 2011-03-21 | 2014-03-19 | 中兴通讯股份有限公司 | Method, device and terminal for detecting long term evolution (LTE) master synchronizing signal |
CN102695263B (en) * | 2011-03-23 | 2016-08-03 | 上海无线通信研究中心 | A kind of LTE system descending time synchronization method of robust |
CN102938931B (en) * | 2011-08-15 | 2016-05-18 | 重庆航讯时代科技有限责任公司 | Asynchronous up-link access method and device on a large scale |
CN102413079B (en) * | 2011-11-10 | 2014-09-03 | 复旦大学 | Initial fraction frequency offset estimation method used in downlink of 3 generation partnership project long term evolution (3GPP-LTE) system |
CN102694763B (en) * | 2012-05-31 | 2014-12-31 | 重庆邮电大学 | Method for assessing integer frequency offset of TD-LTE system |
US20140169488A1 (en) * | 2012-12-17 | 2014-06-19 | Qualcomm Incorporated | Narrow-band preamble for orthogonal frequency-division multiplexing system |
US9497733B2 (en) * | 2013-02-13 | 2016-11-15 | Qualcomm Incorporated | Single-frequency network (SFN) operation for machine-type communications (MTC) coverage enhancements |
CN104065604B (en) * | 2013-03-21 | 2017-09-29 | 联想(北京)有限公司 | Signal synchronizing method, receiving terminal and system |
CN104427564B (en) * | 2013-08-27 | 2018-02-02 | 工业和信息化部电信研究院 | A kind of main synchronous method of fast downlink for the switching of TD LTE cells |
WO2016120770A1 (en) * | 2015-01-27 | 2016-08-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Cell search for a narrowband machine-to-machine system |
-
2017
- 2017-02-05 CN CN201911187364.4A patent/CN111106924B/en not_active Expired - Fee Related
- 2017-02-05 CN CN201911195757.XA patent/CN110932837B/en active Active
- 2017-02-05 CN CN201911187573.9A patent/CN111106892B/en active Active
- 2017-02-05 CN CN201911187338.1A patent/CN111106923B/en active Active
- 2017-02-05 CN CN201710064995.1A patent/CN106656453B/en active Active
- 2017-02-05 CN CN201911187310.8A patent/CN110798304B/en active Active
- 2017-02-05 CN CN201911187605.5A patent/CN111342948B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101753505A (en) * | 2008-12-22 | 2010-06-23 | 北京信威通信技术股份有限公司 | Method for synchronizing downlink time and frequency of OFDM system |
CN101924725A (en) * | 2009-06-17 | 2010-12-22 | 国民技术股份有限公司 | Frame synchronization method and device for OFDM system |
CN102457870A (en) * | 2010-10-21 | 2012-05-16 | 电信科学技术研究院 | Primary synchronization signal detection method and device and cell search method and system |
EP2456106A1 (en) * | 2010-11-22 | 2012-05-23 | Sequans Communications | Cell search method for a downlink channel of an OFDMA transmission system |
CN102130883A (en) * | 2011-04-15 | 2011-07-20 | 重庆邮电大学 | A method for time-frequency synchronization in TD-LTE system |
Non-Patent Citations (2)
Title |
---|
QUALCOMM INCORPORATED: "NB-PSS and NB-SSS Design (Revised)", 《3GPP R1-161981》 * |
高原: "3GPP TD-LTE系统下行同步技术的研究", 《中国优秀硕士学位论文全文数据库》 * |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107231326A (en) * | 2017-05-19 | 2017-10-03 | 大连理工大学 | A kind of cell searching system in NB IoT system down links |
CN107231326B (en) * | 2017-05-19 | 2020-04-14 | 大连理工大学 | A Cell Search System in Downlink of NB-IoT System |
CN107743059A (en) * | 2017-08-23 | 2018-02-27 | 重庆邮电大学 | A method for detecting the number of antenna ports for narrowband Internet of Things |
CN109428848A (en) * | 2017-08-29 | 2019-03-05 | 苏州优尼赛信息科技有限公司 | Downlink primary synchronization signal essence synchronous detection and estimation method in a kind of NB-loT system |
CN109428848B (en) * | 2017-08-29 | 2021-03-26 | 苏州优尼赛信息科技有限公司 | Method for detecting and estimating fine synchronization of downlink primary synchronization signal in NB-loT system |
CN109729034B (en) * | 2017-10-27 | 2020-10-16 | 电信科学技术研究院 | Timing method, device and terminal |
CN109729034A (en) * | 2017-10-27 | 2019-05-07 | 电信科学技术研究院 | A kind of timing method, device and terminal |
CN109802904B (en) * | 2017-11-16 | 2021-08-06 | 中国移动通信有限公司研究院 | A frequency offset estimation method and terminal for narrowband Internet of Things NB-IoT |
CN109802904A (en) * | 2017-11-16 | 2019-05-24 | 中国移动通信有限公司研究院 | A kind of frequency deviation estimating method and terminal of narrowband Internet of Things NB-IoT |
CN109302364A (en) * | 2017-12-12 | 2019-02-01 | 上海创远仪器技术股份有限公司 | A kind of frequency deviation estimating method for NB_IoT system |
CN108123774B (en) * | 2017-12-27 | 2019-10-25 | 中山大学花都产业科技研究院 | A downlink synchronization method and system for narrowband internet of things |
CN108123774A (en) * | 2017-12-27 | 2018-06-05 | 中山大学花都产业科技研究院 | A kind of narrowband Internet of Things down link synchronisation method and its system |
CN110034838A (en) * | 2018-01-12 | 2019-07-19 | 北京松果电子有限公司 | Signal synchronizing method and device, storage medium and electronic equipment |
CN110198208A (en) * | 2018-02-26 | 2019-09-03 | 普天信息技术有限公司 | A kind of the ascending pilot frequency design method and transmitting terminal, receiving end of narrow-band communication system |
CN110198208B (en) * | 2018-02-26 | 2021-08-06 | 普天信息技术有限公司 | Uplink pilot frequency design method of narrow-band communication system, transmitting end and receiving end |
CN108965189A (en) * | 2018-07-02 | 2018-12-07 | 天津市德力电子仪器有限公司 | It is a kind of applied to the symbol timing synchronization method for resisting big frequency deviation in NB-IOT system |
CN111479311A (en) * | 2019-01-24 | 2020-07-31 | 三星电子株式会社 | Wireless communication device including synchronization signal detector and cell search method thereof |
US11930468B2 (en) | 2019-01-24 | 2024-03-12 | Samsung Electronics Co., Ltd. | Wireless communication apparatus including synchronization signal detector and cell searching method thereof |
CN109768852A (en) * | 2019-02-27 | 2019-05-17 | 东南大学 | Method, device and storage medium for realizing precise symbol synchronization processing based on computer software system |
CN109768852B (en) * | 2019-02-27 | 2021-08-13 | 东南大学 | Method, device and storage medium for realizing precise symbol synchronization processing based on computer software system |
CN110199506B (en) * | 2019-04-18 | 2022-04-22 | 北京小米移动软件有限公司 | Frequency offset determination method and device and resource block sending method and device |
US12088445B2 (en) | 2019-04-18 | 2024-09-10 | Beijing Xiaomi Mobile Software Co., Ltd. | Methods and apparatuses for frequency-offset determination and resource block transmission |
CN110199506A (en) * | 2019-04-18 | 2019-09-03 | 北京小米移动软件有限公司 | Frequency deviation determines method and apparatus and resource block sending method and device |
CN110392424A (en) * | 2019-07-04 | 2019-10-29 | 南京理工大学 | A Timing Method for Downlink Synchronization Signal in Narrowband System |
CN110392424B (en) * | 2019-07-04 | 2021-07-13 | 南京理工大学 | A timing method of downlink synchronization signal in narrowband system |
CN110601719A (en) * | 2019-09-26 | 2019-12-20 | 北京智联安科技有限公司 | Simplified algorithm for coarse synchronization autocorrelation of NB-IoT (NB-IoT) terminal |
CN110636602A (en) * | 2019-09-27 | 2019-12-31 | 广州粒子微电子有限公司 | NB-IoT downlink synchronization method and related operation module thereof |
CN110636602B (en) * | 2019-09-27 | 2022-02-11 | 广州粒子微电子有限公司 | NB-IoT downlink synchronization method and related operation module thereof |
CN111030959B (en) * | 2019-12-26 | 2021-05-11 | 江苏科大亨芯半导体技术有限公司 | Frequency domain time-frequency synchronization method of NB-IoT |
WO2021128159A1 (en) * | 2019-12-26 | 2021-07-01 | 哈尔滨海能达科技有限公司 | Synchronization detection method and device |
CN111030959A (en) * | 2019-12-26 | 2020-04-17 | 江苏科大亨芯半导体技术有限公司 | NBIOT frequency domain time frequency synchronization method |
CN111093252B (en) * | 2019-12-27 | 2021-09-28 | 重庆物奇科技有限公司 | Rapid hierarchical searching method for narrow-band Internet of things NB-IoT |
CN111093252A (en) * | 2019-12-27 | 2020-05-01 | 重庆物奇科技有限公司 | Rapid hierarchical searching method for narrow-band Internet of things NB-IoT |
CN111093253A (en) * | 2019-12-27 | 2020-05-01 | 重庆物奇科技有限公司 | Main synchronization signal fine search method of narrow-band Internet of things NB-IoT |
WO2022001267A1 (en) * | 2020-07-01 | 2022-01-06 | 武汉梦芯科技有限公司 | Method for calculation during time and frequency synchronization process |
CN112039811B (en) * | 2020-07-01 | 2023-06-30 | 武汉梦芯科技有限公司 | Calculation method in time-frequency synchronization process |
CN112039811A (en) * | 2020-07-01 | 2020-12-04 | 武汉梦芯科技有限公司 | Calculation method in time frequency synchronization process |
CN113422748A (en) * | 2021-06-23 | 2021-09-21 | 广州粒子微电子有限公司 | Method and device for estimating frequency offset in narrowband Internet of things and storage medium |
CN113422748B (en) * | 2021-06-23 | 2022-07-26 | 广州粒子微电子有限公司 | Method and device for estimating frequency offset in narrowband Internet of things and storage medium |
CN113709857A (en) * | 2021-08-26 | 2021-11-26 | 中山大学 | Downlink synchronous preprocessing method for narrow-band Internet of things system |
CN118367960A (en) * | 2024-06-20 | 2024-07-19 | 上海三菲半导体有限公司 | Data packet detection method and receiver |
Also Published As
Publication number | Publication date |
---|---|
CN111106924B (en) | 2022-03-04 |
CN111342948B (en) | 2022-01-28 |
CN110932837A (en) | 2020-03-27 |
CN111106923A (en) | 2020-05-05 |
CN111106892B (en) | 2021-08-24 |
CN111106923B (en) | 2021-11-19 |
CN110798304B (en) | 2021-10-01 |
CN110798304A (en) | 2020-02-14 |
CN111342948A (en) | 2020-06-26 |
CN111106924A (en) | 2020-05-05 |
CN106656453B (en) | 2020-08-21 |
CN111106892A (en) | 2020-05-05 |
CN110932837B (en) | 2021-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106656453B (en) | Synchronization device in narrow-band wireless communication terminal | |
CN106972915B (en) | A signal transmission method and narrowband wireless terminal | |
KR101824399B1 (en) | Bluetooth signal receiving method and device using improved packet detection and symbol timing acquisition | |
US9107158B2 (en) | Robust downlink timing synchronization method in LTE system | |
JP2013535153A (en) | Method and apparatus for detecting start of frame delimiter | |
US20160381581A1 (en) | Carrier frequency offset estimation for wireless communication | |
WO2013104281A1 (en) | Method and system for spectrum sensing | |
KR102280878B1 (en) | Method for estimation a arrival time of radio, and a device for action the method | |
CN110249542B (en) | Digital radio communication | |
EP3091477A1 (en) | Rfid reader and method for adjusting a frame length of an rfid system comprising an rfid reader | |
CN102857249B (en) | Mobile terminal synchronization search procedure receiver method to set up | |
CN103379077A (en) | Frame synchronization and symbol synchronization method and device in wireless communication system | |
WO2012171407A1 (en) | Method and device for determining time synchronization location | |
US7443938B2 (en) | Method and system for synchronization between transmitter and receiver in a communication system | |
CN108738124B (en) | Timing synchronization method and device | |
CN104023386B (en) | Transmitting terminal, receiving terminal and its frame synchornization method, frame synchronization system | |
GB2484701A (en) | Efficient processing of a short training sequence in a wireless communications system | |
CN103988475B (en) | A kind of carrier frequency bias estimation and device | |
CN108462990A (en) | The method and apparatus of Network Synchronization | |
JP4054032B2 (en) | Frame synchronization detection method | |
JP5407556B2 (en) | Digital radio and control method thereof | |
EP3439256B1 (en) | Synchronization device and method | |
CN111355568A (en) | Differential processing method and device for synchronous code with time repetition characteristic | |
WO2005032159A2 (en) | Method and apparatus for performing modulation/demodulation in a wireless communication system | |
WO2013167739A1 (en) | Preamble detection in presence of carrier offset |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20191030 Address after: 430000 No. 14 South Central Road, Wuchang District, Hubei, Wuhan Applicant after: Xiao Hui Address before: Jiangsu city of Suzhou province Xiangcheng District 215000 yuan street and Peak Garden District Building 9 garden room 110 Applicant before: SUZHOU VITERBI INFORMATION TECHNOLOGY CO.,LTD. |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200717 Address after: Room 310, building 1, No. 669, high speed railway, Taihu street, Changxing County, Huzhou City, Zhejiang Province Applicant after: ZHEJIANG CENTRAL CORPORATION OF TECHNOLOGY AND TECHNOLOGY Co.,Ltd. Address before: 430000 No. 14 South Central Road, Wuchang District, Hubei, Wuhan Applicant before: Xiao Hui |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: Synchronization device in narrowband wireless communication terminal Effective date of registration: 20220923 Granted publication date: 20200821 Pledgee: Changxin Zhejiang rural commercial bank Limited by Share Ltd. Pledgor: ZHEJIANG CENTRAL CORPORATION OF TECHNOLOGY AND TECHNOLOGY Co.,Ltd. Registration number: Y2022980016110 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
CP03 | Change of name, title or address |
Address after: 313100 room 310, building 1, No. 669, Gaotie railway, Taihu street, Changxing County, Huzhou City, Zhejiang Province Patentee after: ZHEJIANG SINKERIOT TECHNOLOGY CO.,LTD. Country or region after: China Address before: Room 310, Building 1, No. 669, Gaotie Road, the Taihu Lake Street, Changxing County, Huzhou City, Zhejiang Province Patentee before: ZHEJIANG CENTRAL CORPORATION OF TECHNOLOGY AND TECHNOLOGY Co.,Ltd. Country or region before: China |
|
CP03 | Change of name, title or address |