CN106542545B - Step hole ZSM-5 zeolite and preparation method thereof - Google Patents
Step hole ZSM-5 zeolite and preparation method thereof Download PDFInfo
- Publication number
- CN106542545B CN106542545B CN201510612188.XA CN201510612188A CN106542545B CN 106542545 B CN106542545 B CN 106542545B CN 201510612188 A CN201510612188 A CN 201510612188A CN 106542545 B CN106542545 B CN 106542545B
- Authority
- CN
- China
- Prior art keywords
- silicon source
- preparation
- zeolite
- zsm
- polyquaternium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010457 zeolite Substances 0.000 title claims abstract description 91
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 79
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 79
- 238000002360 preparation method Methods 0.000 title claims abstract description 45
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 33
- 239000010703 silicon Substances 0.000 claims abstract description 33
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 27
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 6
- 239000012265 solid product Substances 0.000 claims abstract description 3
- 229920000289 Polyquaternium Polymers 0.000 claims description 32
- 125000002091 cationic group Chemical group 0.000 claims description 14
- 239000004094 surface-active agent Substances 0.000 claims description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 238000001354 calcination Methods 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- 238000002425 crystallisation Methods 0.000 claims description 5
- 230000008025 crystallization Effects 0.000 claims description 5
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- -1 amines Salt Chemical class 0.000 claims description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 230000002209 hydrophobic effect Effects 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 239000004115 Sodium Silicate Substances 0.000 claims description 2
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 claims description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 claims description 2
- 229910052593 corundum Inorganic materials 0.000 claims description 2
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- 235000019353 potassium silicate Nutrition 0.000 claims description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 claims description 2
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 2
- 229910052682 stishovite Inorganic materials 0.000 claims description 2
- 229910052905 tridymite Inorganic materials 0.000 claims description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 2
- 235000019441 ethanol Nutrition 0.000 claims 7
- 244000309464 bull Species 0.000 claims 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims 1
- 230000003213 activating effect Effects 0.000 claims 1
- 125000003158 alcohol group Chemical group 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 claims 1
- 150000002148 esters Chemical class 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 229910052708 sodium Inorganic materials 0.000 claims 1
- 239000011734 sodium Substances 0.000 claims 1
- 235000019795 sodium metasilicate Nutrition 0.000 claims 1
- 238000000967 suction filtration Methods 0.000 claims 1
- 239000011148 porous material Substances 0.000 abstract description 51
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 229920002521 macromolecule Polymers 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000009792 diffusion process Methods 0.000 abstract description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 abstract 1
- 229910004298 SiO 2 Inorganic materials 0.000 abstract 1
- 150000003839 salts Chemical class 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 238000003795 desorption Methods 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 8
- 239000000499 gel Substances 0.000 description 7
- 238000002159 adsorption--desorption isotherm Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 238000000634 powder X-ray diffraction Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000013335 mesoporous material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000002808 molecular sieve Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 3
- DGUACJDPTAAFMP-UHFFFAOYSA-N 1,9-dimethyldibenzo[2,1-b:1',2'-d]thiophene Natural products S1C2=CC=CC(C)=C2C2=C1C=CC=C2C DGUACJDPTAAFMP-UHFFFAOYSA-N 0.000 description 2
- MYAQZIAVOLKEGW-UHFFFAOYSA-N 4,6-dimethyldibenzothiophene Chemical compound S1C2=C(C)C=CC=C2C2=C1C(C)=CC=C2 MYAQZIAVOLKEGW-UHFFFAOYSA-N 0.000 description 2
- AMVQGJHFDJVOOB-UHFFFAOYSA-H aluminium sulfate octadecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O AMVQGJHFDJVOOB-UHFFFAOYSA-H 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000013460 polyoxometalate Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- BGQMOFGZRJUORO-UHFFFAOYSA-M tetrapropylammonium bromide Chemical compound [Br-].CCC[N+](CCC)(CCC)CCC BGQMOFGZRJUORO-UHFFFAOYSA-M 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000002149 hierarchical pore Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000005216 hydrothermal crystallization Methods 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- AMWVZPDSWLOFKA-UHFFFAOYSA-N phosphanylidynemolybdenum Chemical compound [Mo]#P AMWVZPDSWLOFKA-UHFFFAOYSA-N 0.000 description 1
- UYDPQDSKEDUNKV-UHFFFAOYSA-N phosphanylidynetungsten Chemical compound [W]#P UYDPQDSKEDUNKV-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000001988 small-angle X-ray diffraction Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- DAOVYDBYKGXFOB-UHFFFAOYSA-N tris(2-methylpropoxy)alumane Chemical compound [Al+3].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-] DAOVYDBYKGXFOB-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Catalysts (AREA)
Abstract
本发明提供了一种梯级孔ZSM‑5沸石及其制备方法。该制备方法包括:将模板剂与水混合得到溶液;向溶液中加入氢氧化钠、铝源、短链醇、硅源,混合形成凝胶混合物,其中,硅源以SiO2计,铝源以Al2O3计,氢氧化钠、铝源、硅源、模板剂、短链醇和水的摩尔比为(5‑15):1:(30‑100):(0.5‑3):(70‑500):(1000‑8000);对凝胶混合物进行晶化,将固体产物分离、洗涤、干燥,得到ZSM‑5沸石原粉;对ZSM‑5沸石原粉进行焙烧,得到梯级孔ZSM‑5沸石。本发明还提供了一种由上述制备方法制得的梯级孔ZSM‑5沸石。本发明提供的梯级孔ZSM‑5沸石具有有序的大介孔,有利于大分子化合物的有效扩散和反应。
The invention provides a stepped pore ZSM‑5 zeolite and a preparation method thereof. The preparation method comprises: mixing a template agent with water to obtain a solution; adding sodium hydroxide, an aluminum source, a short-chain alcohol, and a silicon source to the solution, and mixing to form a gel mixture, wherein the silicon source is calculated as SiO 2 and the aluminum source is expressed as Al 2 O 3 meter, the molar ratio of sodium hydroxide, aluminum source, silicon source, templating agent, short-chain alcohol and water is (5-15):1:(30-100):(0.5-3):(70- 500): (1000‑8000); crystallize the gel mixture, separate, wash and dry the solid product to obtain ZSM‑5 zeolite raw powder; roast ZSM‑5 zeolite raw powder to obtain stepped hole ZSM‑5 Zeolite. The present invention also provides a stepped pore ZSM‑5 zeolite prepared by the above preparation method. The stepped pore ZSM‑5 zeolite provided by the invention has ordered large mesopores, which is beneficial to the effective diffusion and reaction of macromolecular compounds.
Description
技术领域technical field
本发明涉及一种沸石及其制备方法,特别涉及一种有序的介孔-微孔的梯级孔ZSM-5沸石及其制备方法,属于沸石制备技术领域。The invention relates to a zeolite and a preparation method thereof, in particular to an ordered mesoporous-micropore step-pore ZSM-5 zeolite and a preparation method thereof, belonging to the technical field of zeolite preparation.
背景技术Background technique
微孔沸石由于具有规则排列的微孔孔道和高度晶化的孔壁以及大量均匀分布的活性位,被广泛应用于石油炼制和石油化工领域中。20世纪70年代,Mobil公司利用有机添加剂合成凝胶首先开发了ZSM型沸石。HZSM-5沸石具有酸性中心,负载活性金属后具有加氢性能,因此广泛应用在催化裂化、催化加氢等石油化工领域中。但是常规的ZSM沸石孔径普遍较小,会阻止动力学直径较大的分子的传质,不能表现出良好的催化性能。Microporous zeolites are widely used in petroleum refining and petrochemical fields due to their regularly arranged micropore channels, highly crystalline pore walls and a large number of evenly distributed active sites. In the 1970s, Mobil first developed ZSM zeolite by using organic additives to synthesize gels. HZSM-5 zeolite has an acid center and has hydrogenation performance after loading active metals, so it is widely used in petrochemical fields such as catalytic cracking and catalytic hydrogenation. However, conventional ZSM zeolites generally have small pore sizes, which prevent the mass transfer of molecules with large kinetic diameters, and cannot exhibit good catalytic performance.
有序介孔材料(2nm<直径<50nm)的出现,得到材料学界的高度重视。对于一些不需要强活性中心和反应物与产物分子尺寸较大的催化反应,其催化活性明显高于微孔沸石。但是由于介孔材料孔壁的无定型,使其水热稳定性与催化活性较差,使其广泛应用受到限制。The emergence of ordered mesoporous materials (2nm<diameter<50nm) has been highly valued by the material science community. For some catalytic reactions that do not require strong active centers and the molecular size of reactants and products is large, its catalytic activity is significantly higher than that of microporous zeolites. However, due to the amorphous pore wall of mesoporous materials, their hydrothermal stability and catalytic activity are poor, which limits their wide application.
为了弥补微孔沸石孔径小与有序介孔分子筛的水热稳定性和催化活性差等不足,近来,科学家通过多种方法来制备梯级孔沸石,其中有通过脱硅或脱铝的方法在沸石中产生介孔,采用预晶化后加入介孔模板剂制备含介孔沸石,还有硬模板法合成含介孔的沸石,所得到的含介孔沸石与常规沸石相比,表现出较高的催化活性和选择性,更长的催化寿命和更强抗积炭能力。In order to make up for the shortcomings of the small pore size of microporous zeolites and the poor hydrothermal stability and catalytic activity of ordered mesoporous molecular sieves, scientists have recently prepared step-pore zeolites through various methods, including desilication or dealumination of zeolites. mesoporous zeolite is produced by adding mesoporous template agent after precrystallization, and mesoporous zeolite is synthesized by hard template method. Compared with conventional zeolite, mesoporous zeolite obtained has higher Excellent catalytic activity and selectivity, longer catalytic life and stronger ability to resist carbon deposition.
中国专利申请201010010136.2在纳米级别ZSM-5分子筛上担载Keggin结构多金属氧酸盐(POM),并引入硝酸镍提高催化剂的催化性能,经该催化剂处理后的汽油,可以大幅降低汽油中的硫含量。但是纳米级别的分子筛容易团聚,使催化剂的寿命缩短。Chinese patent application 201010010136.2 supports Keggin structure polyoxometalate (POM) on nano-scale ZSM-5 molecular sieve, and introduces nickel nitrate to improve the catalytic performance of the catalyst. The gasoline treated by this catalyst can greatly reduce the sulfur in gasoline content. However, nano-scale molecular sieves are easy to agglomerate, which shortens the life of the catalyst.
Lizama等人(Applied Catalusis B:Environmental.82.2008.135)报道了采用介孔SBA-15为载体负载磷钨和磷钼,以4,6-二甲基二苯并噻吩为加氢脱硫反应的探针分子。研究结果表明:该有序介孔材料较大的孔径能够允许较大的4,6-二甲基二苯并噻吩分子进入孔道内部发生反应、达到深度加氢脱硫,但是,其孔壁为无定形结构,稳定性差、酸性弱。Lizama et al. (Applied Catalusis B:Environmental.82.2008.135) reported the use of mesoporous SBA-15 as a carrier to load phosphorus tungsten and phosphorus molybdenum, and 4,6-dimethyldibenzothiophene as a hydrodesulfurization reaction. needle molecule. The research results show that the larger pore diameter of the ordered mesoporous material can allow larger 4,6-dimethyldibenzothiophene molecules to enter the pores to react and achieve deep hydrodesulfurization. Fixed structure, poor stability, weak acidity.
赵晓波等人(石油学报,石油加工,22,2006,20)报道了改性纳米ZSM-5沸石在FCC汽油改质中的应用。他们的研究结果表明,水热处理和金属氧化物组合改性的纳米HZSM-5催化剂有着良好的脱硫性能,但其稳定性仍需提高。Zhao Xiaobo et al. (Acta Petroleum Sinica, Petroleum Processing, 22, 2006, 20) reported the application of modified nano ZSM-5 zeolite in FCC gasoline upgrading. Their research results show that the nano-HZSM-5 catalyst modified by hydrothermal treatment and metal oxide combination has good desulfurization performance, but its stability still needs to be improved.
综上所述,提供一种催化活性高并且稳定性好的ZSM-5沸石是本领域亟待解决的问题。In summary, it is an urgent problem to be solved in this field to provide a ZSM-5 zeolite with high catalytic activity and good stability.
发明内容Contents of the invention
为了解决上述问题,本发明的目的在于提供一种梯级孔ZSM-5沸石及其制备方法,该制备方法得到的ZSM-5沸石具有结晶的微孔孔壁,丰富的有序介孔,并且具有较大的比表面积与孔容,有利于大分子化合物的有效扩散和反应。In order to solve the above problems, the object of the present invention is to provide a kind of stepped pore ZSM-5 zeolite and preparation method thereof, the ZSM-5 zeolite obtained by the preparation method has crystallized micropore walls, abundant ordered mesopores, and has The larger specific surface area and pore volume are conducive to the effective diffusion and reaction of macromolecular compounds.
为了达到上述目的,本发明提供了一种梯级孔ZSM-5沸石的制备方法,该制备方法包括以下步骤:In order to achieve the above object, the invention provides a kind of preparation method of step hole ZSM-5 zeolite, and this preparation method comprises the following steps:
步骤一:将模板剂与水混合得到溶液;Step 1: mixing the template agent with water to obtain a solution;
步骤二:向溶液中加入氢氧化钠、铝源、短链醇、硅源,混合形成凝胶混合物,其中,氢氧化钠、铝源、硅源、模板剂、短链醇和水的摩尔比为(5-15):1:(30-100):(0.5-3):(70-500):(1000-8000),所述硅源以SiO2计,铝源以Al2O3计;Step 2: Add sodium hydroxide, aluminum source, short-chain alcohol and silicon source to the solution, and mix to form a gel mixture, wherein the molar ratio of sodium hydroxide, aluminum source, silicon source, templating agent, short-chain alcohol and water is (5-15):1:(30-100):(0.5-3):(70-500):(1000-8000), the silicon source is calculated as SiO2 , and the aluminum source is calculated as Al2O3 ;
步骤三:对凝胶混合物进行晶化,将固体产物分离、洗涤、干燥,得到ZSM-5沸石原粉;Step 3: crystallize the gel mixture, separate, wash and dry the solid product to obtain ZSM-5 zeolite raw powder;
步骤四:对ZSM-5沸石原粉进行焙烧,得到所述梯级孔ZSM-5沸石。Step 4: Roasting the ZSM-5 zeolite raw powder to obtain the stepped pore ZSM-5 zeolite.
本发明提供的梯级孔ZSM-5沸石的制备方法中,优选地,步骤二中,向溶液中加入氢氧化钠搅拌均匀,再加入铝源搅拌均匀,最后加入短链醇与硅源的混合物,搅拌形成凝胶混合物,其中,硅源中的Si与短链醇的摩尔比为1:(1-50)。In the preparation method of the stepped pore ZSM-5 zeolite provided by the present invention, preferably, in step 2, sodium hydroxide is added to the solution and stirred evenly, then the aluminum source is added to stir evenly, and finally the mixture of short-chain alcohol and silicon source is added, Stir to form a gel mixture, wherein the molar ratio of Si in the silicon source to short-chain alcohols is 1:(1-50).
本发明提供的梯级孔ZSM-5沸石的制备方法中,优选地,步骤一和步骤二中的混合温度为20℃-60℃。In the preparation method of the stepped pore ZSM-5 zeolite provided by the present invention, preferably, the mixing temperature in step 1 and step 2 is 20°C-60°C.
本发明提供的梯级孔ZSM-5沸石的制备方法中,优选地,步骤三中的晶化温度为120℃-250℃,晶化时间为12h-240h。In the preparation method of the stepped pore ZSM-5 zeolite provided by the present invention, preferably, the crystallization temperature in step 3 is 120°C-250°C, and the crystallization time is 12h-240h.
本发明提供的梯级孔ZSM-5沸石的制备方法中,优选地,步骤四中的焙烧温度为500℃-650℃,焙烧时间为4h-12h。In the preparation method of the stepped pore ZSM-5 zeolite provided by the present invention, preferably, the calcination temperature in step 4 is 500°C-650°C, and the calcination time is 4h-12h.
本发明提供的梯级孔ZSM-5沸石的制备方法中,优选地,该制备方法中还包括铵交换的步骤,步骤四中对ZSM-5沸石原粉进行焙烧后,进行铵交换,然后经过抽滤、洗涤、干燥和焙烧,得到所述梯级孔ZSM-5沸石。In the preparation method of the stepped pore ZSM-5 zeolite provided by the present invention, preferably, the preparation method also includes the step of ammonium exchange, after the ZSM-5 zeolite raw powder is roasted in step 4, ammonium exchange is carried out, and then after pumping filtering, washing, drying and roasting to obtain the stepped pore ZSM-5 zeolite.
根据本发明的具体实施方式,进行铵交换,将Na型梯级孔ZSM-5沸石转化为H型梯级孔ZSM-5沸石,其中,干燥温度为120℃,干燥时间为6h;焙烧温度为500℃-650℃,焙烧时间为4h-12h。According to a specific embodiment of the present invention, ammonium exchange is performed to convert Na-type stepped-pore ZSM-5 zeolite into H-type stepped-pore ZSM-5 zeolite, wherein the drying temperature is 120° C., and the drying time is 6 hours; the roasting temperature is 500° C. -650℃, the roasting time is 4h-12h.
本发明提供的梯级孔ZSM-5沸石的制备方法中,优选地,采用的模板剂包括双子型聚季铵盐表面活性剂;所述双子型聚季铵盐表面活性剂是由双头阳离子型聚季铵盐与多头阳离子型聚季铵盐形成的。其中,双子型聚季铵盐表面活性剂可以是任意比例的双头阳离子型聚季铵盐与多头阳离子型聚季铵盐形成的。In the preparation method of the stepped pore ZSM-5 zeolite provided by the present invention, preferably, the template used comprises a gemini type polyquaternium surfactant; Polyquaternium salts are formed with multiple cationic polyquaternium salts. Wherein, the gemini-type polyquaternium surfactant can be formed by double-head cationic polyquaternium salts and multi-head cationic polyquaternium salts in any ratio.
本发明提供的梯级孔ZSM-5沸石的制备方法中,优选地,采用的多头阳离子型聚季铵盐选自三聚季铵盐、四聚季铵盐和多聚季铵盐,多头阳离子型聚季铵盐的疏水链为C8-C22的烷基链,聚季铵盐的联结基团为C2-C10的烷基链。In the preparation method of the stepped pore ZSM-5 zeolite provided by the present invention, preferably, the multi-head cationic polyquaternium salt used is selected from trimer quaternary ammonium salt, tetramer quaternary ammonium salt and poly-polyquaternium salt, multi-head cationic polyquaternium salt The hydrophobic chain of the polyquaternium salt is a C 8 -C 22 alkyl chain, and the linking group of the polyquaternium salt is a C 2 -C 10 alkyl chain.
本发明提供的梯级孔ZSM-5沸石的制备方法中,优选地,采用的双子型聚季铵盐表面活性剂为CH3(CH2)15N(CH3)2(CH2)6N(CH3)2(CH2)15CH3Br2和CH3(CH2)15[N(CH3)2(CH2)6]n-1N(CH3)2(CH2)15CH3Brn,n为3-5的整数。In the preparation method of the stepped pore ZSM-5 zeolite provided by the present invention, preferably, the gemini type polyquaternium surfactant used is CH 3 (CH 2 ) 15 N(CH 3 ) 2 (CH 2 ) 6 N( CH 3 ) 2 (CH 2 ) 15 CH 3 Br 2 and CH 3 (CH 2 ) 15 [N(CH 3 ) 2 (CH 2 ) 6 ] n-1 N(CH 3 ) 2 (CH 2 ) 15 CH 3 Br n , n is an integer of 3-5.
本发明提供的梯级孔ZSM-5沸石的制备方法中,优选地,采用的铝源包括无机铝源和有机铝源中的一种或几种的组合;更优选地,采用的无机铝源包括硫酸铝、铝酸钠,所述有机铝源包括C2-C5的三仲烷氧基铝;最优选地,采用的有机铝源包括异丙醇铝、异丁醇铝。In the preparation method of the stepped pore ZSM-5 zeolite provided by the present invention, preferably, the aluminum source used includes one or more combinations of inorganic aluminum source and organic aluminum source; more preferably, the inorganic aluminum source used includes Aluminum sulfate and sodium aluminate. The organic aluminum source includes C 2 -C 5 tri-secondary alkoxide aluminum; most preferably, the organic aluminum source used includes aluminum isopropoxide and aluminum isobutoxide.
本发明提供的梯级孔ZSM-5沸石的制备方法中,优选地,采用的硅源包括无机硅源和有机硅源中的一种或几种的组合;更优选地,采用的无机硅源包括水玻璃、硅溶胶、硅酸钠,所述有机硅源为C2-C5的烷基硅酸酯;最优选地,采用的有机硅源包括正硅酸乙酯、正硅酸丙酯。In the preparation method of the stepped pore ZSM-5 zeolite provided by the present invention, preferably, the silicon source used includes one or more combinations of inorganic silicon source and organic silicon source; more preferably, the inorganic silicon source used includes Water glass, silica sol, sodium silicate, the organosilicon source is C 2 -C 5 alkyl silicate; most preferably, the organosilicon source used includes ethyl orthosilicate and propyl orthosilicate.
本发明提供的梯级孔ZSM-5沸石的制备方法中,优选地,采用的短链醇包括乙醇和C3-C5的仲醇中的一种或几种的组合。In the preparation method of the stepped pore ZSM-5 zeolite provided by the present invention, preferably, the short-chain alcohol used includes one or a combination of ethanol and C 3 -C 5 secondary alcohols.
本发明还提供了一种梯级孔ZSM-5沸石,其是由上述制备方法制备得到的。The present invention also provides a stepped pore ZSM-5 zeolite, which is prepared by the above preparation method.
本发明的制备方法中采用双子型聚季铵盐表面活性剂为模板剂。双子型聚季铵盐表面活性剂与硅源、铝源发生作用,导向ZSM-5结构的形成,同时双子型聚季铵盐表面活性剂中的长烷基链起到阻止硅氧四面体和铝氧四面体生长的作用,反应完成之后,通过焙烧除去模板形成微孔和介孔孔道。In the preparation method of the present invention, a gemini-type polyquaternium surfactant is used as a template. The Gemini polyquaternium surfactant reacts with the silicon source and the Al source, leading to the formation of the ZSM-5 structure, while the long alkyl chain in the Gemini polyquaternium surfactant prevents the formation of silicon-oxygen tetrahedrons and The role of alumina tetrahedron growth, after the reaction is completed, the template is removed by calcination to form micropores and mesoporous channels.
本发明中梯级孔ZSM-5沸石的介孔结构的形成通过以下两种方式:一是由高度晶化的小晶粒堆积而成,二是通过焙烧除去疏水烷基链产生。The formation of the mesoporous structure of the stepped pore ZSM-5 zeolite in the present invention is through the following two methods: one is formed by accumulation of highly crystallized small grains, and the other is generated by roasting to remove hydrophobic alkyl chains.
本发明所提供的制备方法以新型双子型聚季铵盐表面活性剂为模板合成出梯级孔ZSM-5沸石。该沸石具有梯级孔结构,可以使客体大分子进入孔道内而发生反应,且有更多的酸活性位和更强的酸强度。The preparation method provided by the invention uses the novel gemini type polyquaternium surfactant as a template to synthesize the stepped pore ZSM-5 zeolite. The zeolite has a hierarchical pore structure, which can allow macromolecules of the guest to enter the pores to react, and has more acid active sites and stronger acid strength.
附图说明Description of drawings
图1为对比例1和实施例1-4制得的不同孔结构ZSM-5沸石的小角XRD图;Fig. 1 is the small-angle XRD figure of the different pore structure ZSM-5 zeolites that comparative example 1 and embodiment 1-4 make;
图2为对比例1和实施例1-4制得的不同孔结构ZSM-5沸石的大角XRD图;Fig. 2 is the large-angle XRD pattern of the different pore structure ZSM-5 zeolites that comparative example 1 and embodiment 1-4 make;
图3为对比例1和实施例1-4制得的不同孔结构ZSM-5沸石的N2吸附-脱附等温曲线图;Fig. 3 is the N of the different pore structure ZSM-5 zeolites that comparative example 1 and embodiment 1-4 make ; Adsorption-desorption isotherm curve figure;
图4为对比例1和实施例1-4制得的不同孔结构ZSM-5沸石的氨气程序升温脱附曲线。Fig. 4 is the ammonia gas temperature-programmed desorption curves of ZSM-5 zeolites with different pore structures prepared in Comparative Example 1 and Examples 1-4.
具体实施方式Detailed ways
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。In order to have a clearer understanding of the technical features, purposes and beneficial effects of the present invention, the technical solution of the present invention is described in detail below, but it should not be construed as limiting the scope of implementation of the present invention.
对比例1Comparative example 1
本对比例提供了一种ZSM-5沸石,其是通过以下步骤制备得到的:This comparative example provides a kind of ZSM-5 zeolite, and it is prepared through the following steps:
将70.0g去离子水、0.5g氢氧化钠、0.3g十八水合硫酸铝、2.7g四丙基溴化铵混合均匀,逐滴加入6.6g正硅酸乙酯在60℃下搅拌4-6h得到凝胶;Mix 70.0g of deionized water, 0.5g of sodium hydroxide, 0.3g of aluminum sulfate octadecahydrate, and 2.7g of tetrapropylammonium bromide, and add 6.6g of tetrapropylammonium bromide dropwise and stir at 60°C for 4-6h get the gel;
将凝胶转入聚四氟乙烯内衬的不锈钢反应釜中,在150℃水热晶化4天,将水热晶化后的产物抽滤,用去离子水洗涤至pH<9,然后在120℃干燥12h,然后在马弗炉中550℃焙烧除去模板剂,得到Na型常规ZSM-5沸石;The gel was transferred to a polytetrafluoroethylene-lined stainless steel reactor, hydrothermally crystallized at 150°C for 4 days, the hydrothermally crystallized product was suction-filtered, washed with deionized water until pH<9, and then placed in Drying at 120°C for 12 hours, and then calcining in a muffle furnace at 550°C to remove the template agent to obtain Na-type conventional ZSM-5 zeolite;
对上述Na型常规ZSM-5沸石进行铵交换,然后抽滤、洗涤、120℃干燥6h,500℃焙烧4h后得到H型常规ZSM-5沸石,记为Z-0。The above-mentioned Na-type conventional ZSM-5 zeolite was subjected to ammonium exchange, then suction filtered, washed, dried at 120°C for 6 hours, and calcined at 500°C for 4 hours to obtain H-type conventional ZSM-5 zeolite, which was designated as Z-0.
本对比例得到的ZSM-5沸石Z-0的粉末XRD测试结果如图1和图2所示,N2吸附-脱附等温曲线如图3所示,氨气程序升温脱附曲线如图4所示。The powder XRD test result of the ZSM-5 zeolite Z-0 that this comparative example obtains is as shown in Figure 1 and Figure 2 , N The adsorption-desorption isotherm curve is as shown in Figure 3, and the ammonia gas temperature-programmed desorption curve is shown in Figure 4 shown.
实施例1Example 1
本实施例提供了一种梯级孔ZSM-5沸石,其是通过以下步骤制备得到的:This embodiment provides a kind of stepped pore ZSM-5 zeolite, which is prepared through the following steps:
将50g去离子水、1.45g三头聚季铵盐C16C6C6C16Br3与0.38g双头聚季铵盐C16C6C16Br2混合均匀,得到溶液;Mix 50g of deionized water, 1.45g of three-head polyquaternium C 16 C 6 C 6 C 16 Br 3 and 0.38g of double-head polyquaternium C 16 C 6 C 16 Br 2 to obtain a solution;
向溶液中加入0.7g氢氧化钠,搅拌均匀,加入0.6g十八水合硫酸铝,然后加入12.4g乙醇和8.2g正硅酸乙酯的混合物,在40-60℃下搅拌4-6h得到凝胶混合物;Add 0.7g of sodium hydroxide to the solution, stir evenly, add 0.6g of aluminum sulfate octadecahydrate, then add a mixture of 12.4g of ethanol and 8.2g of ethyl orthosilicate, stir at 40-60°C for 4-6h to obtain a condensate glue mixture;
将凝胶混合物转入聚四氟乙烯内衬的不锈钢反应釜中,在150℃水热晶化4天;The gel mixture was transferred to a polytetrafluoroethylene-lined stainless steel reactor, and hydrothermally crystallized at 150°C for 4 days;
对水热晶化得到的产物进行抽滤,用去离子水洗涤至pH<9,然后在120℃干燥12h,将干燥后的样品放入马弗炉中550℃焙烧4h,得到Na型ZSM-5沸石;The product obtained by hydrothermal crystallization was suction-filtered, washed with deionized water until pH<9, then dried at 120°C for 12h, and the dried sample was put into a muffle furnace for calcination at 550°C for 4h to obtain Na-type ZSM- 5 zeolites;
对上述Na型ZSM-5沸石进行铵交换,然后抽滤、洗涤、120℃干燥6h和500℃焙烧4h后得到H型的梯级孔ZSM-5沸石,记为Z-1。The Na-type ZSM-5 zeolite was subjected to ammonium exchange, then suction filtered, washed, dried at 120°C for 6 hours and calcined at 500°C for 4 hours to obtain the H-type stepped-pore ZSM-5 zeolite, which was designated as Z-1.
本实施例得到的梯级孔ZSM-5沸石Z-1的粉末XRD测试结果如图1和图2所示,N2吸附-脱附等温线如图3所示,氨气程序升温脱附曲线如图4所示。The powder XRD test result of the step hole ZSM-5 zeolite Z-1 that the present embodiment obtains is as shown in Figure 1 and Figure 2 , N Adsorption-desorption isotherm is as shown in Figure 3, and ammonia temperature programming desorption curve is as shown in Figure 3 Figure 4 shows.
实施例2Example 2
本实施例提供了一种梯级孔ZSM-5沸石,其是通过以下步骤制备得到的:This embodiment provides a kind of stepped pore ZSM-5 zeolite, which is prepared through the following steps:
制备方法与实施例1概同,区别在于将模板剂换为1.77g四头阳离子型聚季铵盐表面活性剂和0.38g双头阳离子型表面活性剂,其他条件不变,制备得到的H型的梯级孔ZSM-5沸石记为Z-2。The preparation method is generally the same as in Example 1, the difference is that the template agent is replaced by 1.77g four-head cationic polyquaternary ammonium surfactant and 0.38g double-head cationic surfactant, and other conditions remain unchanged, and the prepared H-type The stepped pore ZSM-5 zeolite is denoted as Z-2.
本实施例得到的梯级孔ZSM-5沸石Z-2的粉末XRD测试结果如图1和图2所示,N2吸附-脱附等温线如图3所示,氨气程序升温脱附曲线如图4所示。The powder XRD test result of the step hole ZSM-5 zeolite Z-2 that the present embodiment obtains is as shown in Figure 1 and Figure 2 , N The adsorption-desorption isotherm is as shown in Figure 3, and the ammonia gas temperature-programmed desorption curve is shown in Figure 3 Figure 4 shows.
实施例3Example 3
本实施例提供了一种梯级孔ZSM-5沸石,其是通过以下步骤制备得到的:This embodiment provides a kind of stepped pore ZSM-5 zeolite, which is prepared through the following steps:
制备方法与实施例1概同,区别在于将模板剂换为1.94g三头阳离子聚季铵盐,其他条件不变,制备得到的H型的梯级孔ZSM-5沸石记为Z-3。The preparation method is generally the same as that in Example 1, except that the template agent is replaced with 1.94 g of three-head cationic polyquaternium salt, and other conditions remain unchanged, and the prepared H-type stepped pore ZSM-5 zeolite is recorded as Z-3.
本实施例得到的梯级孔ZSM-5沸石Z-3的粉末XRD测试结果如图1和图2所示,N2吸附-脱附等温线如图3所示,氨气程序升温脱附曲线如图4所示。The powder XRD test result of the step hole ZSM-5 zeolite Z-3 that the present embodiment obtains is as shown in Figure 1 and Figure 2 , N The adsorption-desorption isotherm is as shown in Figure 3, and the ammonia gas temperature-programmed desorption curve is shown in Figure 3 Figure 4 shows.
实施例4Example 4
本实施例提供了一种梯级孔ZSM-5沸石,其是通过以下步骤制备得到的:This embodiment provides a kind of stepped pore ZSM-5 zeolite, which is prepared through the following steps:
制备方法与实施例1概同,区别在于模板剂采用1.54g双头阳离子聚季铵盐,其他条件不变,制备得到的H型的梯级孔ZSM-5沸石记为Z-4。The preparation method is generally the same as that of Example 1, except that 1.54 g of double-headed cationic polyquaternium salt is used as the template, and the other conditions remain unchanged. The prepared H-type stepped-pore ZSM-5 zeolite is recorded as Z-4.
本实施例得到的梯级孔ZSM-5沸石Z-4的粉末XRD测试结果如图1和图2所示,N2吸附-脱附等温线如图3所示,氨气程序升温脱附曲线如图4所示。The powder XRD test result of the step hole ZSM-5 zeolite Z-4 that the present embodiment obtains is as shown in Figure 1 and Figure 2 , N The adsorption-desorption isotherm is as shown in Figure 3, and the ammonia gas temperature-programmed desorption curve is shown in Figure 3 Figure 4 shows.
实施例5Example 5
本实施例对实施例1-4和对比例1得到的不同结构的ZSM-5沸石进行了结构分析,分析结果如表1所示,表1为实施例1-4和对比例1得到的ZSM-5沸石的孔结构参数。This embodiment carries out structural analysis to the ZSM-5 zeolite of the different structure that embodiment 1-4 and comparative example 1 obtain, and analysis result is as shown in table 1, and table 1 is the ZSM that embodiment 1-4 and comparative example 1 obtain Pore structure parameters of -5 zeolites.
表1Table 1
从表1中可以看出,在本发明提供的制备方法制得的梯级孔ZSM-5沸石中,加入双子型聚季铵盐表面活性剂均可导向梯级孔ZSM-5沸石的形成,采用多头季铵盐合成的梯级孔ZSM-5沸石与常规ZSM-5沸石相比,均能大幅度提高其比表面积、孔容和孔径大小,尤其是外比表面积均显著增加,并且多头阳离子型聚季铵盐与双头阳离子聚季铵盐表面活性剂结构相似,具有很好的复配性能,通过两种的混合能够增加介孔的数量,以调节梯级孔ZSM-5沸石中介孔和微孔的比例。As can be seen from Table 1, in the step hole ZSM-5 zeolite that preparation method provided by the present invention makes, adding gemini type polyquaternium surfactant all can lead to the formation of step hole ZSM-5 zeolite, adopt multi-head Compared with conventional ZSM-5 zeolite, the stepped pore ZSM-5 zeolite synthesized by quaternary ammonium salt can greatly increase its specific surface area, pore volume and pore size, especially the external specific surface area is significantly increased, and the multi-head cationic polyquaternary The ammonium salt is similar in structure to the double-headed cationic polyquaternary ammonium salt surfactant, and has good compounding performance. The number of mesopores can be increased by mixing the two, so as to adjust the mesopores and micropores of the stepped pore ZSM-5 zeolite. Proportion.
另外,从图3可以看出,加入了双子型聚季铵盐表面活性剂制得的ZSM-5沸石具有明显的滞后环,表明用新型多头聚季铵盐能同时导向ZSM-5沸石结构和介孔结构,且从图1和图2中可知,本发明制备的ZSM-5沸石的介孔趋于有序化。In addition, it can be seen from Fig. 3 that the ZSM-5 zeolite prepared by adding the gemini type polyquaternium surfactant has obvious hysteresis ring, indicating that the new multi-head polyquaternium can be used to simultaneously guide the ZSM-5 zeolite structure and mesoporous structure, and it can be seen from Fig. 1 and Fig. 2 that the mesopores of the ZSM-5 zeolite prepared by the present invention tend to be ordered.
通过图4可以看出,加入了双子型聚季铵盐表面活性剂制得的ZSM-5沸石的氨气程序升温脱附曲线中对应于弱酸中心的低温脱附峰(150℃-225℃)和对应于强酸中心的高温脱附峰(300℃-450℃)均明显高于常规ZSM-5沸石;且其弱酸位后移,说明加入双子型聚季铵盐表面活性剂制得的ZSM-5沸石具有更高的酸量和酸强度。As can be seen from Figure 4, the ammonia gas temperature-programmed desorption curve of the ZSM-5 zeolite prepared by adding the gemini-type polyquaternium surfactant corresponds to the low-temperature desorption peak (150°C-225°C) of the weak acid center and the high-temperature desorption peak (300°C-450°C) corresponding to the strong acid center are significantly higher than the conventional ZSM-5 zeolite; and its weak acid position shifts backward, indicating that the ZSM- Zeolite 5 has a higher acid number and acid strength.
通过上述实施例可知,通过本发明提供的制备方法制得的梯级孔ZSM-5沸石具有有序的介孔结构,允许客体大分子进入孔道内发生反应,属于很好的介孔材料。It can be seen from the above examples that the stepped pore ZSM-5 zeolite prepared by the preparation method provided by the present invention has an ordered mesoporous structure, which allows guest macromolecules to enter the pores and react, and is a very good mesoporous material.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510612188.XA CN106542545B (en) | 2015-09-23 | 2015-09-23 | Step hole ZSM-5 zeolite and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510612188.XA CN106542545B (en) | 2015-09-23 | 2015-09-23 | Step hole ZSM-5 zeolite and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106542545A CN106542545A (en) | 2017-03-29 |
CN106542545B true CN106542545B (en) | 2018-11-16 |
Family
ID=58365703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510612188.XA Active CN106542545B (en) | 2015-09-23 | 2015-09-23 | Step hole ZSM-5 zeolite and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106542545B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107128947A (en) * | 2017-06-30 | 2017-09-05 | 华南理工大学 | A kind of preparation method of the middle zeolite molecular sieves of micro-diplopore ZSM 5 |
CN109665542B (en) * | 2017-10-17 | 2022-07-12 | 中国石油化工股份有限公司 | Layered molecular sieve and preparation method thereof |
CN112707411B (en) * | 2019-10-24 | 2022-10-11 | 中国石油化工股份有限公司 | Binder-free hierarchical pore ZSM-5 molecular sieve and preparation method and application thereof |
CN115385357B (en) * | 2022-08-25 | 2024-06-18 | 山东京博石油化工有限公司 | HZSM-5 molecular sieve, preparation method thereof and application thereof in light hydrocarbon catalytic cracking |
CN116216739A (en) * | 2023-02-22 | 2023-06-06 | 中国石油大学(北京) | ZSM-5-SBA-15 Composite Molecular Sieve and Its Preparation Method, Hydrofining Catalyst and Its Application |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102416344A (en) * | 2011-10-20 | 2012-04-18 | 中国石油天然气集团公司 | Preparation method of step-pore ZSM-5 zeolite composite material-based FCC gasoline low-temperature sulfur transfer catalyst |
CN102895991A (en) * | 2012-10-16 | 2013-01-30 | 中国石油大学(北京) | Method for preparing fluid catalytic cracking (FCC) gasoline small-molecule sulfur densification catalyst |
CN103007983A (en) * | 2012-10-08 | 2013-04-03 | 太原理工大学 | HZSM-5 molecular sieve based catalyst for producing gasoline from methanol, and preparation method and application thereof |
CN104211085A (en) * | 2013-06-05 | 2014-12-17 | 中国石油天然气股份有限公司 | Core-shell type ZSM-5 molecular sieve and preparation and application thereof |
-
2015
- 2015-09-23 CN CN201510612188.XA patent/CN106542545B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102416344A (en) * | 2011-10-20 | 2012-04-18 | 中国石油天然气集团公司 | Preparation method of step-pore ZSM-5 zeolite composite material-based FCC gasoline low-temperature sulfur transfer catalyst |
CN103007983A (en) * | 2012-10-08 | 2013-04-03 | 太原理工大学 | HZSM-5 molecular sieve based catalyst for producing gasoline from methanol, and preparation method and application thereof |
CN102895991A (en) * | 2012-10-16 | 2013-01-30 | 中国石油大学(北京) | Method for preparing fluid catalytic cracking (FCC) gasoline small-molecule sulfur densification catalyst |
CN104211085A (en) * | 2013-06-05 | 2014-12-17 | 中国石油天然气股份有限公司 | Core-shell type ZSM-5 molecular sieve and preparation and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN106542545A (en) | 2017-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104043477B (en) | ZSM-5/MCM-48 composite molecular sieve, preparation method and application thereof | |
CN106542545B (en) | Step hole ZSM-5 zeolite and preparation method thereof | |
JP5271266B2 (en) | UZM-22 aluminosilicate zeolite, method for its preparation and method for using UZM-22 | |
CN101683620B (en) | Cubic mesoporous molecular sieve catalyst with micropore canals, preparation method and use thereof | |
KR100958149B1 (en) | MM-8 and MM-8HS crystalline aluminosilicate zeolite compositions and methods of using the compositions | |
WO2020078434A1 (en) | Mfi structure molecular sieve rich in mesopore, preparation method therefor, and catalyst containing same and application thereof | |
CN104607255A (en) | Low-L-acid and high-B-acid catalytic cracking catalyst and preparation method thereof | |
WO2020078437A1 (en) | Phosphorus-containing rare-earth-containing mfi structure molecular sieve rich in mesopore, preparation method, and catalyst containing same and application thereof | |
CN108993585A (en) | A kind of bifunctional catalyst and preparation method thereof of the molecular sieve of EUO containing multi-stage porous | |
CN101723405A (en) | Method for preparing ZSM-5 molecular sieves | |
WO2018205841A1 (en) | Method for preparing mesoporous nay-type zeolite molecular sieve | |
CN104843730B (en) | Beta/ZSM - 5 nano composite molecular sieves and preparation method thereof | |
CN104525246B (en) | A kind of preparation method and applications of 5 catalyst of Template-free method little crystal grain Zn ZSM | |
CN103359759A (en) | Preparation method of ZSM-5 molecular sieve with multi-level pore channel structure | |
CN101837990B (en) | Fluorine-containing all-silica MFI zeolite molecular sieve and preparation method thereof | |
JP3926403B2 (en) | Micro-medium pore gel and method for producing the same | |
CN104891525A (en) | Preparation method of strong-acid high-stability mesoporous molecular sieve | |
CN105329914B (en) | Micro- composite mesoporous ZSM-5 zeolite of one kind and preparation method thereof | |
CN109746039B (en) | Hierarchical pore silicon-aluminum catalytic material and preparation method and application thereof | |
CN1834013A (en) | Synthetic process of Beta zeolite and MAPO-5 two-structure molecular sieve | |
CN106582797A (en) | Preparation method for HZSM-5 methanol aromatization molecular sieve catalyst with skeleton containing molybdenum | |
CN106673007A (en) | ZSM-5 (Zeolite Socony Mobil-5) molecular sieve with orderly stacked lamellae and preparation method and application of ZSM-5 molecular sieve | |
Liu et al. | Organic-Free synthesis of hierarchical ZSM-5 via a combined strategy of unstable precursors and postsynthesis steam treatment | |
CN108238613B (en) | Small mesoporous ultrastable Y-type zeolite and preparation method and application thereof | |
JP2007533588A (en) | UZM-16: crystalline aluminosilicate zeolitic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |