[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN106531454A - 一种耐老化四氧化三钴纳米线碳气凝胶复合超级电容器正极材料及其制备方法 - Google Patents

一种耐老化四氧化三钴纳米线碳气凝胶复合超级电容器正极材料及其制备方法 Download PDF

Info

Publication number
CN106531454A
CN106531454A CN201611245038.0A CN201611245038A CN106531454A CN 106531454 A CN106531454 A CN 106531454A CN 201611245038 A CN201611245038 A CN 201611245038A CN 106531454 A CN106531454 A CN 106531454A
Authority
CN
China
Prior art keywords
parts
carbon aerogels
appropriate amount
positive electrode
ageing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611245038.0A
Other languages
English (en)
Inventor
夏斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongling City Shengmeida Electronic Manufacturing Co Ltd
Original Assignee
Tongling City Shengmeida Electronic Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongling City Shengmeida Electronic Manufacturing Co Ltd filed Critical Tongling City Shengmeida Electronic Manufacturing Co Ltd
Priority to CN201611245038.0A priority Critical patent/CN106531454A/zh
Publication of CN106531454A publication Critical patent/CN106531454A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种耐老化四氧化三钴纳米线碳气凝胶复合超级电容器正极材料,由下列重量份的原料制成:间苯二酚35‑38、甲醛溶液70‑76、碳酸钠适量、丙酮适量、炭黑适量、羧甲基纤维素钠适量、丁苯橡胶适量、去离子水适量、14‑15mol/LKOH浓溶液适量、水合氯化钴10‑12、尿素56‑60、硝酸亚铈1.2‑1.3、泡沫镍1.2‑1.5、乙二醇15‑18、柠檬酸3‑4。本发明使用水合氯化钴、尿素在碳气凝胶孔隙中生成四氧化三钴纳米线,使得电容器的比电容升高,保持良好的蓄电性能;通过使用硝酸亚铈、乙二醇、柠檬酸对泡沫镍进行改性,在泡沫镍的孔隙中形成了纳米氧化铈,提高了电极材料的蓄电性和耐老化性。

Description

一种耐老化四氧化三钴纳米线碳气凝胶复合超级电容器正极 材料及其制备方法
技术领域
本发明涉及电容器正极材料技术领域,尤其涉及一种耐老化四氧化三钴纳米线碳气凝胶复合超级电容器正极材料及其制备方法。
背景技术
超级电容器是当今发展最有前景的动力电源之一,具有循环寿命长、功率密度大、组装方式简单、运行较安全等特点,适用于电动汽车和混合动力汽车电源、便携仪器设备以及应急设备的后备电源等。但是随着储能技术的不断发展,超级电容器对于高比能量、高比功率的性能要求越来越高。电极材料是超级电容器储能的关键部件之一,而目前商业化碳电极材料主要是活性炭,由于活性炭存在低导电性、孔径不可控性、比表面积利用率低等问题,因此制备优异性能的纳米多孔碳材料日益迫切。碳气凝胶作为一种纳米多孔碳材料,被认为是一种优良的超级电容器电极材料,具有比表面积高、孔径分布可控、密度可调、导电性良好等特性,在储电、储氢等方面受到人们的广泛重视。碳气凝胶最早是在1989年由美国LawrenceLivermore国家实验室PEKALA将间苯二酚与甲醛混合,在Na2CO3催化剂作用下,经超临界干燥制备出RF气凝胶,碳化后得到了碳气凝胶。由于工业化需求,采用廉价的常压干燥技术制备碳气凝胶获得了成功,甚至可以制备多孔结构的RF和碳气凝胶薄膜,大幅降低了制备成本。为了提高碳气凝胶超级电容器的电化学性能,采取调节活化工艺改善碳气凝胶的孔径分布、比表面积的方法,可以增加碳气凝胶电极材料的电容量,其中包括活化时间和活化速率等。提高碳气凝胶比表面积和改善电化学性能常用的方法有KOH化学湿法活化和CO2物理活化法,目的是造孔以获得更高比表面积的碳气凝胶。为了进一步提高碳气凝胶比表面积和比电容量,还可以使用CO2和KOH两步活化法。本文通过优化前驱体与催化剂配比参数制备出性能良好的碳气凝胶,采用3种活化工艺对所获得的碳气凝胶进行活化,研究了不同活化工艺对碳气凝胶比表面积和比电容量的影响。
碳气凝胶具有很多材料难以企及的优点,但是由于使用粘结剂,电极的稳定性差,电导率较低,能量密度低,功率密度低,需要改进,还需要提高正极材料的耐老化性能。
发明内容
本发明目的就是为了弥补已有技术的缺陷,提供一种耐老化四氧化三钴纳米线碳气凝胶复合超级电容器正极材料及其制备方法。
本发明是通过以下技术方案实现的:
一种耐老化四氧化三钴纳米线碳气凝胶复合超级电容器正极材料,由下列重量份的原料制成:间苯二酚35-38、甲醛溶液70-76、碳酸钠适量、丙酮适量、炭黑适量、羧甲基纤维素钠适量、丁苯橡胶适量、去离子水适量、14-15mol/LKOH浓溶液适量、水合氯化钴10-12、尿素56-60、硝酸亚铈1.2-1.3、泡沫镍1.2-1.5、乙二醇15-18、柠檬酸3-4。
所述耐老化四氧化三钴纳米线碳气凝胶复合超级电容器正极材料的制备方法,包括以下步骤:
(1)将摩尔比为1∶2的间苯二酚和甲醛溶于去离子水中,加入碳酸钠溶液,均匀搅拌2-2.3h,间苯二酚与碳酸钠的摩尔比为1500,溶质质量分数为30-32%,将溶液密封置于烘箱,在30℃处理1天,然后在50℃处理1天,然后在90℃处理3天,得到湿凝胶,再用丙酮充分替换湿凝胶,进行常压干燥,在N2保护下碳化,再与KOH浓溶液混合,真空干燥,在N2保护下升温至900℃处理2-3小时,冷却,洗涤、干燥,得到碳气凝胶;
(2)将水合氯化钴、尿素加入去离子水中,搅拌至溶解得到溶液,氯化钴浓度为0.04mol/L、尿素浓度为0.2mol/L,按体积比碳气凝胶:溶液=1:2-2.5加入碳气凝胶,放入干燥箱中,在94-97℃下反应8-9小时,取出碳气凝胶,在45-48℃下干燥,再置于马沸炉中在250-260℃下处理2-2.5小时,自然冷却,得到改性碳气凝胶;
(3)将硝酸亚铈与8-9重量份的去离子水混合,再加入乙二醇、柠檬酸混合均匀,在85-87℃下搅拌4-5小时,在110-114℃下干燥,在700-740℃下煅烧2-2.3小时,研磨粉碎,得到粉末,
(4)按碳气凝胶∶炭黑∶羧甲基纤维素钠∶丁苯橡胶=84∶10∶1∶5称料,送入球磨机球磨0.5-0.7h,加入水和丁苯橡胶、粉末,再次球磨2-2.3h得到浆料,将浆料用涂布机均匀地涂布在厚度为20-22μm的铝箔上,在85-90℃烘干,得到正极材料。
负极材料配比为中间相炭微球∶炭黑∶羧甲基纤维素钠∶丁苯橡胶=90∶6∶2∶2,制备工艺和正极片相同,得到均匀浆料后,均匀地涂布在厚度为12-13μm的铜箔上,85-90℃烘干。将得到的正负极片分别冲成直径为13mm的圆片和35mm×40mm的矩形,刮去极耳处粉料,用压片机将极片压实;电解液为1mol/L的LiPF6。
本发明的优点是:本发明使用水合氯化钴、尿素在碳气凝胶孔隙中生成四氧化三钴纳米线,使得电容器的比电容升高,碳气凝胶不易塌陷,增加充放电次数,保持良好的蓄电性能;通过使用硝酸亚铈、乙二醇、柠檬酸对泡沫镍进行改性,在泡沫镍的孔隙中形成了纳米氧化铈,提高了电极材料的蓄电性和耐老化性。
具体实施方式
一种耐老化四氧化三钴纳米线碳气凝胶复合超级电容器正极材料,由下列重量份(公斤)的原料制成:间苯二酚35、甲醛溶液70、碳酸钠适量、丙酮适量、炭黑适量、羧甲基纤维素钠适量、丁苯橡胶适量、去离子水适量、14mol/LKOH浓溶液适量、水合氯化钴10、尿素56、硝酸亚铈1.2、泡沫镍1.2、乙二醇15、柠檬酸3。
所述耐老化四氧化三钴纳米线碳气凝胶复合超级电容器正极材料的制备方法,包括以下步骤:
(1)将摩尔比为1∶2的间苯二酚和甲醛溶于去离子水中,加入碳酸钠溶液,均匀搅拌2h,间苯二酚与碳酸钠的摩尔比为1500,溶质质量分数为30%,将溶液密封置于烘箱,在30℃处理1天,然后在50℃处理1天,然后在90℃处理3天,得到湿凝胶,再用丙酮充分替换湿凝胶,进行常压干燥,在N2保护下碳化,再与KOH浓溶液混合,真空干燥,在N2保护下升温至900℃处理2小时,冷却,洗涤、干燥,得到碳气凝胶;
(2)将水合氯化钴、尿素加入去离子水中,搅拌至溶解得到溶液,氯化钴浓度为0.04mol/L、尿素浓度为0.2mol/L,按体积比碳气凝胶:溶液=1:2加入碳气凝胶,放入干燥箱中,在94℃下反应8小时,取出碳气凝胶,在45℃下干燥,再置于马沸炉中在250℃下处理2小时,自然冷却,得到改性碳气凝胶;
(3)将硝酸亚铈与8重量份的去离子水混合,再加入乙二醇、柠檬酸混合均匀,在85℃下搅拌4小时,在110℃下干燥,在700℃下煅烧2小时,研磨粉碎,得到粉末,
(4)按碳气凝胶∶炭黑∶羧甲基纤维素钠∶丁苯橡胶=84∶10∶1∶5称料,送入球磨机球磨0.5h,加入水和丁苯橡胶、粉末,再次球磨2h得到浆料,将浆料用涂布机均匀地涂布在厚度为20μm的铝箔上,在85℃烘干,得到正极材料。
负极材料配比为中间相炭微球∶炭黑∶羧甲基纤维素钠∶丁苯橡胶=90∶6∶2∶2,制备工艺和正极片相同,得到均匀浆料后,均匀地涂布在厚度为12μm的铜箔上,85℃烘干。将得到的正负极片分别冲成直径为13mm的圆片和35mm×40mm的矩形,刮去极耳处粉料,用压片机将极片压实;电解液为1mol/L的LiPF6。
该实施例的电极材料制成的电容器的比电容为308F/g,在电流密度为20A/g时,循环1000次,比电容维持初始比电容的84.8%,循环稳定性好。

Claims (2)

1.一种耐老化四氧化三钴纳米线碳气凝胶复合超级电容器正极材料,其特征在于:由下列重量份的原料制成:间苯二酚35-38、甲醛溶液70-76、碳酸钠适量、丙酮适量、炭黑适量、羧甲基纤维素钠适量、丁苯橡胶适量、去离子水适量、14-15mol/LKOH浓溶液适量、水合氯化钴10-12、尿素56-60、硝酸亚铈1.2-1.3、泡沫镍1.2-1.5、乙二醇15-18、柠檬酸3-4。
2.根据权利要求1所述耐老化四氧化三钴纳米线碳气凝胶复合超级电容器正极材料的制备方法,其特征在于包括以下步骤:
(1)将摩尔比为1∶2的间苯二酚和甲醛溶于去离子水中,加入碳酸钠溶液,均匀搅拌2-2.3h,间苯二酚与碳酸钠的摩尔比为1500,溶质质量分数为30-32%,将溶液密封置于烘箱,在30℃处理1天,然后在50℃处理1天,然后在90℃处理3天,得到湿凝胶,再用丙酮充分替换湿凝胶,进行常压干燥,在N2保护下碳化,再与KOH浓溶液混合,真空干燥,在N2保护下升温至900℃处理2-3小时,冷却,洗涤、干燥,得到碳气凝胶;
(2)将水合氯化钴、尿素加入去离子水中,搅拌至溶解得到溶液,氯化钴浓度为0.04mol/L、尿素浓度为0.2mol/L,按体积比碳气凝胶:溶液=1:2-2.5加入碳气凝胶,放入干燥箱中,在94-97℃下反应8-9小时,取出碳气凝胶,在45-48℃下干燥,再置于马沸炉中在250-260℃下处理2-2.5小时,自然冷却,得到改性碳气凝胶;
(3)将硝酸亚铈与8-9重量份的去离子水混合,再加入乙二醇、柠檬酸混合均匀,在85-87℃下搅拌4-5小时,在110-114℃下干燥,在700-740℃下煅烧2-2.3小时,研磨粉碎,得到粉末,
(4)按碳气凝胶∶炭黑∶羧甲基纤维素钠∶丁苯橡胶=84∶10∶1∶5称料,送入球磨机球磨0.5-0.7h,加入水和丁苯橡胶、粉末,再次球磨2-2.3h得到浆料,将浆料用涂布机均匀地涂布在厚度为20-22μm的铝箔上,在85-90℃烘干,得到正极材料。
CN201611245038.0A 2016-12-29 2016-12-29 一种耐老化四氧化三钴纳米线碳气凝胶复合超级电容器正极材料及其制备方法 Pending CN106531454A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611245038.0A CN106531454A (zh) 2016-12-29 2016-12-29 一种耐老化四氧化三钴纳米线碳气凝胶复合超级电容器正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611245038.0A CN106531454A (zh) 2016-12-29 2016-12-29 一种耐老化四氧化三钴纳米线碳气凝胶复合超级电容器正极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106531454A true CN106531454A (zh) 2017-03-22

Family

ID=58338374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611245038.0A Pending CN106531454A (zh) 2016-12-29 2016-12-29 一种耐老化四氧化三钴纳米线碳气凝胶复合超级电容器正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106531454A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786120A (zh) * 2019-01-25 2019-05-21 内蒙古科技大学 利用离子液体制备金属/碳气凝胶复合纳米材料的方法
CN110364715A (zh) * 2019-07-19 2019-10-22 深圳职业技术学院 一种锂离子电池CA/Co3O4/C复合负极材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1785815A (zh) * 2005-08-28 2006-06-14 内蒙古科技大学 一种高比表面积纳米氧化铈的制备方法
CN101468795A (zh) * 2007-12-25 2009-07-01 成都思摩纳米技术有限公司 高比表面碳气凝胶的制备
CN103215104A (zh) * 2013-04-24 2013-07-24 南京理工大学 一种复合金属氧化物载氧体及其制备方法
CN103280339A (zh) * 2013-04-12 2013-09-04 上海大学 一种用于超级电容器的氧化铈电极的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1785815A (zh) * 2005-08-28 2006-06-14 内蒙古科技大学 一种高比表面积纳米氧化铈的制备方法
CN101468795A (zh) * 2007-12-25 2009-07-01 成都思摩纳米技术有限公司 高比表面碳气凝胶的制备
CN103280339A (zh) * 2013-04-12 2013-09-04 上海大学 一种用于超级电容器的氧化铈电极的制备方法
CN103215104A (zh) * 2013-04-24 2013-07-24 南京理工大学 一种复合金属氧化物载氧体及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FANG ZHANG等: ""Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors"", 《JOURNAL OF POWER SOURCES》 *
GUANGLIN SUN等: ""Incorporation of homogeneous Co3O4 into a nitrogen-doped carbon aerogel via a facile in situ synthesis method: implications for high performance asymmetric supercapacitors"", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786120A (zh) * 2019-01-25 2019-05-21 内蒙古科技大学 利用离子液体制备金属/碳气凝胶复合纳米材料的方法
CN110364715A (zh) * 2019-07-19 2019-10-22 深圳职业技术学院 一种锂离子电池CA/Co3O4/C复合负极材料的制备方法

Similar Documents

Publication Publication Date Title
Ke et al. Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation
Yu et al. Facile synthesis of nitrogen-doped carbon nanosheets with hierarchical porosity for high performance supercapacitors and lithium–sulfur batteries
Feng et al. Nitrogen-doped lignin-derived porous carbons for supercapacitors: Effect of nanoporous structure
Li et al. Nitrogen-containing carbon spheres with very large uniform mesopores: the superior electrode materials for EDLC in organic electrolyte
Yang et al. Sulfur impregnated in a mesoporous covalent organic framework for high performance lithium–sulfur batteries
CN105789571B (zh) 多孔碳球包裹的硅/二氧化硅纳米复合材料及其制备方法和应用
Kuang et al. In situ construction of bamboo charcoal derived SiOx embedded in hierarchical porous carbon framework as stable anode material for superior lithium storage
Yan et al. Boosting chem-insertion and phys-adsorption in S/N co-doped porous carbon nanospheres for high-performance symmetric Li-ion capacitors
CN107946086A (zh) 一种以石墨烯为粘结剂的超级电容器柔性自支撑全炭电极及其制备方法
Li et al. CoNi-embedded nitrogen-enriched porous carbon framework for long-life lithium–sulfur batteries
Zhao et al. Boron-doped three-dimensional porous carbon framework/carbon shell encapsulated silicon composites for high-performance lithium-ion battery anodes
Liang et al. Hierarchical nanoarchitectonics of ordered mesoporous carbon from lignin for high-performance supercapacitors
CN106848312A (zh) 一种改性多孔石墨烯、改性多孔石墨烯负极电极片及其制备方法
Kim et al. A simple and green approach to develop porous carbons from biomass lignin for advanced asymmetric supercapacitors
Jiang et al. A three-dimensional network structure Si/C anode for Li-ion batteries
He et al. Embedding silicon in biomass-derived porous carbon framework as high-performance anode of lithium-ion batteries
Zhu et al. Dual-defect site regulation on MOF-derived P-Co 3 O 4@ NC@ O v-NiMnLDH carbon arrays for high-performance supercapacitors
Tang et al. Enhancement in electrochemical performance of nitrogen-doped hierarchical porous carbon-based supercapacitor by optimizing activation temperature
CN111825126A (zh) 一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法
Jing et al. Facile synthesis of 3D binder-free N-doped carbon nanonet derived from silkworm cocoon for Li–O 2 battery
Wang et al. Job-synergistic engineering from Fe3N/Fe sites and sharp-edge effect of hollow star-shaped nitrogen-doped carbon structure for high-performance zinc-air batteries
Ruan et al. Three-dimensional sp 2 carbon networks prepared by ultrahigh temperature treatment for ultrafast lithium–sulfur batteries
Yu et al. Multi-cavity carbon nanofiber film decorated with Co-N x doped CNTs for lithium–sulfur batteries with high-areal-capacity
Hoseini et al. Synthesis of soybean-derived porous carbon as selenium host for high-performance lithium-selenium batteries
Xu et al. Sodium carboxymethylcellulose/MXene/zeolite imidazolium framework-67-derived 3D porous carbon aerogel for high-performance asymmetric supercapacitors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170322

WD01 Invention patent application deemed withdrawn after publication