[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN106459982A - 用于增加植物生长和产量的方法和组合物 - Google Patents

用于增加植物生长和产量的方法和组合物 Download PDF

Info

Publication number
CN106459982A
CN106459982A CN201580025081.3A CN201580025081A CN106459982A CN 106459982 A CN106459982 A CN 106459982A CN 201580025081 A CN201580025081 A CN 201580025081A CN 106459982 A CN106459982 A CN 106459982A
Authority
CN
China
Prior art keywords
plant
expression
promoter
sequence
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580025081.3A
Other languages
English (en)
Inventor
L·王
T·P·布鲁特内尔
T·C·莫克勒
D·W·布莱恩特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donald Danforth Plant Science Center
Original Assignee
Donald Danforth Plant Science Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donald Danforth Plant Science Center filed Critical Donald Danforth Plant Science Center
Publication of CN106459982A publication Critical patent/CN106459982A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8269Photosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/001Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
    • C12N2830/002Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physiology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

公开了用于增加植物产量的组合物和方法。组合物包含发现用于调节植物中感兴趣基因或核苷酸序列的表达的转录因子。另外,公开了可用于驱动感兴趣的核苷酸序列在植物中表达的启动子和顺式调节元件。公开了使用这类组合物的方法以及转化的植物。

Description

用于增加植物生长和产量的方法和组合物
相关申请的交叉引用
本申请要求2014年5月12日提交的美国临时申请61/991,949和2014年7月11日提交的美国临时申请62/023,432的权益,其通过引用全文纳入本文。
关于通过EFS-WEB以文本文件形式提交的序列表
序列表的正式文本通过EFS-Web以ASCII格式的序列表电子化提交,文件名462655SEQLIST.txt,于2015年5月7日生成,大小1,274KB,与说明书同时提交。该ASCII格式文档中所含的序列表是本说明书一部分且通过引用全文纳入本文。
发明领域
本发明涉及用于控制参与植物生长和发育的基因表达的方法和组合物。
发明背景
持续增加的世界人口和日渐减少的农业可耕种土地供应推动开发具有增加的生物质和产量的植物。常规农作物和园艺改进手段采用选择性育种技术来鉴定具有所需特性的植物。然而,这种选择性育种技术具有几个缺陷,即,这些技术一般是费力的并且产生通常含有异源遗传组件的植物,其可能并不总是导致所需的性状从亲本植物传递下去。分子生物学的进展提供了调节植物种质的手段。植物遗传改造要求分离和操作遗传物质(一般是DNA或RNA的形式)并且随后向植物导入该遗传物质。这种技术具有向作物或植物递送各种改善的经济、农业或园艺性状的能力。
感兴趣的性状包括植物生物质和产量。产量通常定义为可测量的来自作物的有经济价值的产物。这可以量和/或质来定义。产量直接取决于几个因素,例如,器官的数量和尺寸、植物结构(例如,分枝数量)、种子产生、叶衰老等。根发育、营养摄入、胁迫耐受性和早期活力也可能是决定产量的重要因素。因此,优化上述因素可产生增加的植物产量。
种子产量的增加是特别重要的性状,因为许多植物的种子对于人和动物消耗而言是重要的。作物例如玉米、水稻、小麦、油菜和大豆占总人热量摄入的超过一般,无论是通过直接消耗其种子或通过消耗在经加工的种子上产生的肉制品。它们也是工业过程中使用的糖类、油脂和许多类型矿物质的来源。种子含有胚(新芽和根的来源)和胚乳(在萌发期间和幼苗的早期生长期间胚生长的营养源)。种子的发育涉及许多基因,并且需要将代谢物从根、叶和茎转移到生长的种子中。尤其是胚乳,其吸收了糖类、油脂和蛋白质的代谢前体并将它们合成储存大分子以填充谷粒。植物生物质的增加对于饲料作物如苜蓿、青贮玉米和干草而言重要。许多基因参与植物生长和发育。因此,需要调节这些基因的方法。
发明内容
提供了用于为了更高的作物产量而增加植物生长的方法和组合物。组合物包含转录因子和增强子。可使用转录因子通过调节植物中一种或多种感兴趣基因的表达水平和/或表达模式来改变植物生长。可调节调控参与植物生长的转录因子来增加植物生长、增加植物质量和植物产量。提供了增强子元件或顺式调节元件,其可用于改变下游开放阅读框的表达,无论所述的开放阅读框编码转录因子还是任何其他感兴趣的基因。这种增强子元件和转录因子可单独使用或组合使用。
本发明还包括合成启动子和启动子元件。这类启动子可用于表达感兴趣的核苷酸序列。提供可包含本发明的元件的DNA构建体,用这类构建体转化的植物和植物部分。
本发明的实施方式包括:
1.一种改善植物生长的方法,通过改变编码表1中所列的转录因子(TF)或其片段或衍生物的至少一种核苷酸序列的表达。
2.如实施方式1所述的方法,其中至少一种转录因子上调,使得TF的表达相对于对照植物细胞增加。
3.如实施方式1所述的方法,其中至少一种转录因子下调,使得TF的表达相对于对照植物细胞减少。
4.如实施方式1、2或3所述的方法,其中所述改变通过稳定插入至少一种表达构建体来实现,所述表达构建体包含驱动在植物细胞中表达的启动子,所述启动子可操作地连接至编码表1的至少一种转录因子或其片段或衍生物的至少一种核苷酸序列。
5.如实施方式1-4中任一项所述的方法,其中所述片段或变体具有与TF至少80%的序列相同性,其中所述核苷酸序列保留转录因子活性。
6.如实施方式1-4中任一项所述的方法,其中所述片段或变体具有与TF至少90%的序列相同性,其中所述核苷酸序列保留转录因子活性。
7.如实施方式1-4中任一项所述的方法,其中所述片段或变体具有与TF至少95%的序列相同性,其中所述核苷酸序列保留转录因子活性。
8.如实施方式1-3中任一项所述的方法,其中所述改变是通过稳定插入DNA构建体来实现,所述构建体包含至少一个驱动在植物细胞中表达的启动子,所述启动子可操作地连接至一个或多个设计成靶向至少一个表1的转录因子的amiRNA盒。
9.如实施方式1-3中任一项所述的方法,其中所述改变是通过稳定插入转化构建体来实现,所述构建体包含至少一个在植物细胞中可操作的启动子,所述启动子可操作地连接至至少一个设计成靶向至少一个表1的转录因子的RNAi盒。
10.如实施方式1-3中任一项所述的方法,其特征在于,所述改变通过用衍生自植物病毒并包含在植物细胞中驱动表达的至少一个启动子的自复制转化构建体来转化感兴趣的植物物种,所述启动子可操作地连接至编码表1的转录因子的至少一个开放阅读框。
11.如实施方式1-3中任一项所述的方法,其特征在于,所述改变通过用衍生自植物病毒并包含在植物细胞中可操作的至少一个启动子的自复制转化构建体来转化感兴趣的植物物种,所述启动子可操作地连接至设计成靶向表1的转录因子的一个或多个amiRNA盒。
12.如实施方式1-3中任一项所述的方法,其特征在于,所述改变通过用衍生自植物病毒并包含在植物细胞中驱动表达的至少一个启动子的自复制转化构建体来转化感兴趣的植物物种,所述启动子可操作地连接至设计成靶向表1的转录因子的至少一个RNAi盒。
13.如权利要求1-3中任一项所述的方法,其中所述改变通过下述过程实现:将至少一个顺式调节元件在一定位置处插入植物细胞的基因组使得所述顺式调节元件改变表1的TF的表达水平和/或表达概况,其中所述至少一个顺式调节元件包含具有与SEQ ID NO:475-536和543所示的元件至少90%的序列相同性。
14.如实施方式13所述的方法,其中所述至少一个顺式调节元件包含SEQ ID NO:475-536和543所示的核苷酸序列。
15.如实施方式8-14中任一项所述的方法,其中所述启动子是组成型启动子。
16.如实施方式8-14中任一项所述的方法,其中所述启动子是非组成型启动子。
17.如实施方式16所述的方法,其中所述启动子是发育调节的启动子。
18.如实施方式16所述的方法,其中所述启动子是昼夜节律调节或昼调节的启动子。
19.如实施方式16所述的方法,其中所述启动子是组织特异性启动子。
20.如实施方式16所述的方法,其中所述启动子是诱导型启动子。
21.如实施方式16所述的方法,其中所述启动子是光调节的启动子。
22.一种在植物细胞中可操作的合成启动子,包含至少一个可操作连接至在植物细胞中可操作的至少一个核心启动子元件的选自SEQ ID NO:475-536和543所示的顺式调节元件。
23.如实施方式22所述的合成启动器,其包含SEQ ID NO:1或与SEQ ID NO:1有至少80%同源性的序列。
24.一种改变植物细胞中至少一种感兴趣基因的表达的方法,通过向植物细胞的基因组中插入包含可操作地连接至所述至少一种基因的实施方式22的合成启动子的构建体。
25.一种改变植物细胞中至少一种感兴趣基因的表达的方法,包括向植物细胞的基因组中插入包含可操作地连接至设计成靶向所述至少一种感兴趣基因的amiRNA盒的实施方式22的合成启动子的构建体。
26.一种改变植物细胞中一种或多种感兴趣基因的表达的方法,通过向植物细胞的基因组中插入包含可操作地连接至设计成靶向所述至少一种感兴趣基因的RNAi盒的实施方式22的合成启动子的构建体。
27.一种改变植物细胞中至少一种感兴趣基因的表达的方法,包括在靠近所述至少一种感兴趣基因的位置上向植物基因组中插入至少一个SEQ ID NO:475-536和543所示的顺式调节元件以改变所述至少一种感兴趣基因的表达。
28.如实施方式27所述的方法,其中至少一个顺式调节元件插入感兴趣基因的核心启动子元件的上游并且增加所述感兴趣基因的表达。
29.如实施方式27所述的方法,其中至少一个顺式调节元件插入感兴趣基因的核心启动子元件的上游并且改变所述感兴趣基因的表达概况。
30.如实施方式1-21和26-29中任一项所述的方法,其中所述感兴趣的植物是单子叶植物。
31.如实施方式1-21和26-29中任一项所述的方法,其中所述感兴趣的植物是双子叶植物。
32.如实施方式22-25中任一项所述的方法,其中所述合成启动子包含SEQ ID NO:1的序列或者具有与SEQ ID NO:1至少80%同源性的序列。
33.一种分离的多核苷酸或重组DNA,包含编码与表1所示的TF的氨基酸序列有至少90%相同性的多肽的核苷酸序列。
34.如实施方式33所述的分离的多核苷酸或重组DNA,其中所述多肽具有至少95%相同性。
35.如实施方式1-3中任一项所述的方法,其中所述改变是通过表达编码与用于转录调节的结构域融合的编码dCas9蛋白的基因来实现。
36.一种在植物细胞中可操作的合成启动子,包含可操作连接至在植物细胞中可操作的至少一个核心启动子元件的SEQ ID NO:475-536和543所示的顺式调节元件中的至少一种。
37.如实施方式36所述的合成启动子,其中所述启动子包含SEQ ID NO:1所示的序列。
38.一种表达构建体,包含驱动植物中表达并可操作连接至转录因子(TF)的启动子,其中所述核苷酸序列选自与以下所示的序列有至少95%相同性的序列:SEQ ID NO:3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、93、95、97、99、101、103、105、107、109、111、113、115、117、119、121、123、125、127、129、131、133、135、137、139、141、143、145、147、149、151、153、155、157、159、161、163、165、167、169、171、173、175、177、179、181、183、185、187、189、191、193、195、197、199、201、203、205、207、209、211、213、215、217、219、221、223、225、227、229、231、233、235、237和SEQ ID NO:239、241、243、245、247、249、251、253、255、257、259、261、263、265、267、269、271、273、275、277、279、281、283、285、287、289、291、293、295、297、299、301、303、305、307、309、311、313、315、317、319、321、323、325、327、329、331、333、335、337、339、341、343、345、347、349、351、353、355、357、359、361、363、365、367、369、371、373、375、377、379、381、383、385、387、389、391、393、395、397、399、401、403、405、407、409、411、413、415、417、419、421、423、425、427、429、431、433、435、437、439、441、443、445、447、449、451、453、455、457、459、461、463、465、467、469、471、和473。
39.一种用实施方式38的表达构建体转化的植物。
40.实施方式39的植物的转化的种子。
41.如实施方式39所述的植物,其中所述植物是单子叶植物。
42.如实施方式39所述的植物,其中所述植物是双子叶植物。
43.如实施方式38所述的表达构建体,还包含至少一个感兴趣的核苷酸序列。
44.一种表达构建体,包含在植物细胞中可操作的合成启动子,所述启动子包含可操作连接至在植物中可操作的至少一个核心启动子元件的SEQ ID NO:475-536和543所示的顺式调节元件中的至少一种,其中所述合成启动子可操作地连接至核苷酸序列。
45.如实施方式44所述的表达构建体,其中所述核苷酸序列是编码序列。
46.一种用实施方式44的表达构建体转化的植物。
47.实施方式46的植物的转化的种子。
48.如实施方式46所述的植物,其中所述植物是单子叶植物。
49.如实施方式46所述的植物,其中所述植物是双子叶植物。
附图说明
图1:叶肉和维管束鞘特异性表达的候选顺式调节元件。由ELEMENT和CoGe发现了推定顺式调节元件“RGCGR”和“WAAAG”。由Multialin(Corpet 1988Nucleic Acids Res 16:10881-10890)基于来自以下的序列生成比对:高粱(Sb03g029170(SEQ ID NO:544)和Sb01g040720(SEQ ID NO:550))、玉米(GRMZM2G121878(SEQ ID NO:545)和(GRMZM2G001696(SEQ ID NO:549))、水稻(Os01g45274(SEQ ID NO:547)和LOC.Os03g15050(SEQ ID NO:552))和小米(S.italica)(Si003882m(SEQ ID NO:546)和(Si034404m.g(SEQ ID NO:551))。框强调了推定元件;框3表示仅在高粱中发现的推定元件。用于在顶部组图中比对的共有序列示于SEQ ID NO:548,并且用于在底部组图中比对的共有序列示于SEQ ID NO:553。
发明详述
提供了用于通过改变调节编码参与光合作用的蛋白质的基因的转录因子(TF)的表达来对光合作用进行操作的方法和组合物。本发明描述了用于鉴定多种用于调节光合作用过程的转录因子的方法。不受理论限制,通过改变感兴趣的植物中一种或多种这些转录因子的表达水平和/或表达概况,光合代谢被优化。这种光合作用优化在作物植物中提供增加的植物生长和升高的产量。本发明提供了可用于转化感兴趣植物的新TF,并且可用于旨在开发更高产量作物的植物育种项目。提供了编码转录因子的重组核苷酸序列。这类方法和元件公开于Wang等,2014,Nat.Biotechnol.32:1158-1165,其通过引用全文纳入本文。
“重组多核苷酸”包含两个或更多个化学连接的核酸区段的组合,未发现这些区段在自然中直接接合。“直接接合”指2个核酸区段直接相邻并且通过化学键互相连接。在具体实施方式中,重组多核苷酸包含感兴趣的多核苷酸或其活性变体或片段,使得其他化学连接的核酸区段位于感兴趣的多核苷酸的5’、3’或内部。或者,可通过删除序列来形成重组多核苷酸的化学连接的核酸区段。其他化学连接的核酸区段或删除以接合连接的核酸区段的序列可以是任意长度,包括,例如,1、2、3、4、5、6、7、8、9、10、15、20或更多核苷酸。本文公开了用于制备这种重组多核苷酸的各种方法,例如,通过化学合成或通过遗传工程技术对多核苷酸的分离区段进行操作。在具体实施方式中,重组多核苷酸可包含重组DNA序列或重组RNA序列。“重组多核苷酸的片段”包含两个或更多个化学连接的氨基酸区段的组合中的至少一个,未发现这些区段在自然中直接接合。
“重组多核苷酸构建体”包含两个或更多个可操作连接的核酸区段,未发现这些区段在自然中可操作连接。重组多核苷酸构建体的非限制性示例包括可操作连接至异源序列的感兴趣的多核苷酸或其活性变体或片段,该异源序列辅助感兴趣序列的表达、自体复制和/或基因组插入。这类异源且可操作连接的序列包括,例如,启动子、终止序列、增强子等,或表达盒的任意组分;质粒、粘粒、病毒、自体复制序列、噬菌体、或者线性或环状单链或双链DNA或RNA核苷酸序列;和/或编码异源多肽的序列。
“重组多肽”包含两个或更多个化学连接的氨基酸区段的组合,未发现这些区段在自然中直接接合。在具体实施方式中,重组多肽包含额外的化学连接的氨基酸区段,其位于重组多肽的N-端、C-端或内部。或者,可通过删除至少一个氨基酸来形成重组多肽的化学连接的氨基酸区段。其他化学连接的氨基酸区段或删除的化学连接的氨基酸区段的序列可以是任意长度,包括,例如,1、2、3、4、5、6、7、8、9、10、15、20或更多氨基酸。
“改变”或“调节”TF的表达水平是指表达上调或下调。认识到在一些情况中,通过增加一种或多种本发明的TF的表达水平(即上调表达)来增加植物生长和产量。类似地,在一些情况中,通过降低一种或多种本发明的TF的表达水平,即下调表达来增加植物生长和产量。因此,本发明包括上调或下调一种或多种本发明的TF。另外,该方法包括在感兴趣的植物中上调至少一种TF并下调至少一种TF。调节转基因植物中本发明的TF中的至少一种的浓度和/或活性是指相对于天然对照植物、植物部分或没有导入本发明序列的细胞,浓度和/或活性增加或降低至少1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、或90%。认识到可通过选择启动子或使用增强子来控制TF的表达水平。例如,如果需要30%增加,可选择启动子来提供合适的表达水平。例如,可通过测定植物中TF的水平来直接测量TF的表达水平。“转录因子活性”是指转录因子结合特定DNA序列,从而控制遗传信息从DNA转录成信使RNA的速率的能力。
为了成功地对候选TF的表达水平和/或表达概况进行操作,可使用遗传工具,包括启动子和增强子元件。本发明描述了通过对转录数据的生物信息学分析鉴定到的多种新增强子元件和顺式调节元件。可使用增强子元件中的至少一个来增加感兴趣的下游基因的表达。或者,增强子元件中的至少一个可与启动子如最小启动子元件结合以产生具有所需表达概况的新启动子。
在许多C4植物中,维管束鞘和叶肉细胞有非常不同的功能。在这些C4植物中,需要以细胞特异性或细胞优选的方式表达一种或多种感兴趣基因,使得基因产物主要在叶肉和维管束鞘细胞中积累。这可通过用一种或多种本文所述的顺式调节元件转化感兴趣的植物来完成。另外,这些顺式调节元件可在C3、C4或CAM植物中使用以细胞特异性或非细胞特异性的方式增强一种或多种感兴趣基因的表达。另外,这些顺式调节元件可用于设计用于表达感兴趣基因的新合成启动子。另外,可使用这些顺式调节元件通过例如基因组编辑方法来改变植物基因组中天然基因的表达。
使用本发明的组合物来改变植物中感兴趣基因,尤其是参与光合作用的基因的表达。因此,可与对照植物相比调节TF的表达。“对象植物或植物细胞”是其中已经实现感兴趣基因的遗传改变如转化,或者是源自如此改变的植物或细胞并包含改变的植物或植物细胞。“对照”或“对照植物”或“对照植物细胞”提供了测量对象植物或植物细胞的表型变化的参照点。因此,根据本发明的方法,表达水平高于或低于对照植物中的表达水平。
一种对照植物或植物细胞可包含,例如:(a)野生型植物或细胞,即具有与用于产生对象植物或细胞的遗传改变的起始材料相同的基因型;(b)与起始材料有相同基因型的植物或植物细胞,但其已经用无效构建体(即,用对感兴趣的性状没有已知影响的构建体,如包含标记基因的构建体)转化;(c)植物或植物细胞,其是对象植物或植物细胞的后代中的非转化分离体;(d)与对象植物或植物细胞在遗传上相同但没有接触会诱导感兴趣基因表达的条件或刺激的植物或植物细胞;或(e)在不表达感兴趣基因的条件下的对象植物或植物细胞本身。
虽然本发明以转化的植物描述,应认识到本发明的转化的生物体可包括植物细胞、植物原生质体、植物可再生的植物组织培养物、植物愈伤组织、植物块、和在植物或植物部分中完整的植物细胞如胚胎、花粉、胚珠、种子、叶、花、枝条、果实、仁、谷穗、穗轴、外壳、柄、根、根尖、花粉囊等。谷粒是指由种植户处于生长或繁殖物种以外的目的产生的成熟种子。再生植物的后代、变体和突变体也包括在本发明的范围内,只要这些部分包含导入的多核苷酸。
本发明的增强子或顺式调节元件可用于增强任意感兴趣基因的表达。在一个实施方式中,元件可与启动子或启动子元件联用以调节感兴趣植物中的表达。真核启动子是复杂的并且由包含相对于定义为+1的转录起始位点或帽位点5'上约35个碱基对处的TATA盒共有序列的组件。TATA基序是TATA-结合蛋白(TBP)作为几个多肽复合物(TFIID复合物)的部分结合并与结合启动子的其他序列元件的因子有效相互作用(直接或间接)的位点。这种TFIID复合物进而招募RNA聚合酶II复合物以位于TATA元件下游一般25-30个碱基对的转录起点并且促进延长由此产生RNA分子。一些polI基因的转录起点周围的序列(命名为INR)似乎提供因子的替代结合位点,其也招募TFIID复合物成员并因此“激活”转录。这些INR序列在缺少提供最终转录的核心启动子结合元件的功能性TATA元件的启动子中是特别相关的。已经提出含有功能性TATA和INR基序的启动子的转录活性最高效。(Zenzie-Gregory等,(1992)J.Biol.Chem.267:2823-2830)。参见例如,美国专利号6,072,050,在此通过引用纳入本文。“核心启动子”或“核心启动子元件”是指合适地启动转录所需的调节多核苷酸的最小区域。核心启动子一般含有转录起始位点(TSS)、RNA聚合酶的结合位点、和一般转录因子结合位点。核心启动子可包括通过已知核心启动子的操作产生人工、嵌合、或杂交启动子的启动子,并且可与其他调节元件联用,如顺式元件、增强子、或内含子,例如,通过向具有其自身的部分或完整调节元件的活性核心启动子添加异源调节元件。
本发明包括分离的或基本纯化的转录因子或增强子多核苷酸或氨基酸组合物。“分离的”或“纯化的”多核苷酸或蛋白或其生物活性部分基本或本质上不含其天然产生环境中通常伴随多核苷酸或蛋白或与之相互作用的组分。因此,通过重组技术产生时,分离或纯化的多核苷酸或蛋白基本不含其它细胞物质或培养基,或者通过化学方法合成时基本不含化学物质前体或其他化学物质。任选地,“分离的”多核苷酸不含该多核苷酸源自的生物体基因组DNA中天然侧接所述多核苷酸(即位于多核苷酸5'和3'末端处的序列)的序列(任选蛋白编码序列)。
本发明也包括本文公开的多核苷酸和由其编码的氨基酸序列的片段和变体。“片段”是指多核苷酸的部分或氨基酸序列的部分。“变体”是指基本相似的序列。对于多核苷酸,变体包括具有以下的多核苷酸:在5'和/或3'端处的删除(即,截短);在天然多核苷酸中一个或多个内部位点处的删除和/或添加;和/或在天然多核苷酸中一个或多个位点处一个或多个核苷酸的取代。本文所用的“天然”多核苷酸或多肽分别包含天然产生的核苷酸序列或氨基酸序列。一般而言,本发明的特定多核苷酸的变体将与由本文他处所述的序列比对程序和参数确定的特定核苷酸有至少约75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的序列相同性。生物活性的启动子多核苷酸可与天然启动子序列有至少约75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的序列相同性并且保留启动转录的能力(即,启动子活性)。
“变体”氨基酸或蛋白是指通过在天然蛋白质的N-末端和/或C-末端处删除(也称为截短)一个或多个氨基酸;在天然蛋白质的一个或多个内部位点处删除和/或添加一个或多个氨基酸;或在天然蛋白质的一个或多个位点处取代一个或多个氨基酸衍生的氨基酸或蛋白质。本发明包括的变体蛋白质有生物活性,即它们继续具有天然TF或增强子的所需生物活性。本发明的天然TF或增强子序列的生物活性变体将与由本文所述的序列比对程序和参数确定的天然蛋白质的氨基酸序列有至少约80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的序列相同性。本发明的蛋白质的生物活性变体与该蛋白质可相差少至1-15个氨基酸残基,少至1-10个,如6-10个,少至4、3、2或甚至1个氨基酸残基。
如图所示,本发明的TF可在感兴趣的植物中上调或下调。可能需要上调至少一种TF,同时下调至少一种不同的TF。增加表达或上调TF的方法是本领域已知的并且可用于本发明的方法中。在一个实施方式中,可通过用包含可操作地连接至至少一个本发明的TF的表达盒转化植物来实现上调。许多用于上调表达的技术是本领域技术人员所熟知的,包括但不限于,含有与锌指核酸酶融合的转录活化结构域的设计转录因子(Li等,(2013)PlantBiotechnol J 11:671-680);dCas9-基转录因子(Piatek等,(2015)Plant Biotechnol J13:578-589);含有一个或多个与DNA-结合蛋白融合的转录活化结构域的设计转录因子(Petolino和Davies(2013)Plant Sci 201-202:128-136);向植物递送病毒衍生的载体(Gleba等,(2014)Curr Top Microbiol Immunol 375:155-192);其各自通过引用纳入本文;并且其他方法或上述方法的组合为本领域技术人员所知。
本发明的方法也包括TF的下调或活性降低(也称为基因沉默或基因抑制)。许多基因沉默的技术是本领域技术人员所知的,包括但不限于,反义技术(参见,例如,Sheehy等,(1988)Proc.Natl.Acad.Sci.USA85:8805-8809;和美国专利号5,107,065;5,453,566;和5,759,829);共抑制(例如,Taylor(1997)Plant Cell 9:1245;Jorgensen(1990)TrendsBiotech.8(12):340-344;Flavell(1994)Proc.Natl.Acad.Sci.USA 91:3490-3496;Finnegan等,(1994)Bio/Technology 12:883-888;和Neuhuber等,(1994)Mol.Gen.Genet.244:230-241);RNA干扰(Napoli等,(1990)Plant Cell 2:279-289;美国专利号5,034,323;Sharp(1999)Genes Dev.13:139-141;Zamore等,(2000)Cell 101:25-33;和Montgomery等,(1998)Proc.Natl.Acad.Sci.USA95:15502-15507),病毒诱导的基因沉默(Burton等,(2000)Plant Cell12:691-705;和Baulcombe(1999)Curr.Op.Plant Bio.2:109-113);靶-RNA-特异性核酶(Haseloff等,(1988)Nature 334:585-591);发夹结构(Smith等,(2000)Nature 407:319-320;WO 99/53050;WO 02/00904;WO 98/53083;Chuang和Meyerowitz(2000)Proc.Natl.Acad.Sci.USA 97:4985-4990;Stoutjesdijk等,(2002)Plant Physiol.129:1723-1731;Waterhouse和Helliwell(2003)Nat.Rev.Genet.4:29-38;Pandolfini等,BMC Biotechnology 3:7,美国专利公开号20030175965;Panstruga等,(2003)Mol.Biol.Rep.30:135-140;Wesley等,(2001)Plant J.27:581-590;Wang和Waterhouse(2001)Curr.Opin.Plant Biol.5:146-150;美国专利公开号20030180945;和WO02/00904,其全部通过引用纳入本文);核酶(Steinecke等,(1992)EMBO J.11:1525;和Perriman等,(1993)Antisense Res.Dev.3:253);寡核苷酸-介导的靶向修饰(例如,WO 03/076574和WO 99/25853);Zn-指靶向的分子(例如,WO 01/52620;WO 03/048345;和WO 00/42219);转座子标签(Maes等,(1999)Trends Plant Sci.4:90-96;Dharmapuri和Sonti(1999)FEMS Microbiol.Lett.179:53-59;Meissner等,(2000)Plant J.22:265-274;Phogat等,(2000)J.Biosci.25:57-63;Walbot(2000)Curr.Opin.Plant Biol.2:103-107;Gai等,(2000)Nucleic Acids Res.28:94-96;Fitzmaurice等,(1999)Genetics153:1919-1928;Bensen等,(1995)Plant Cell 7:75-84;Mena等,(1996)Science274:1537-1540;和美国专利号5,962,764);dCas9-基转录因子(Piatek等,(2015)Plant Biotechnol J 13:578-589);其各自通过引用纳入本文;和本领域技术人员已知的其他方法或上述方法的组合。
认识到使用本发明的多核苷酸,可构建与TF序列的信使RNA(mRNA)的至少一部分互补的反义构建体。构建反义核苷酸以与相应mRNA杂交。可进行反义序列的修饰,至少该序列杂交并干扰相应mRNA的表达。在这种方式中,可使用与待沉默的相应序列有70%,较佳80%,更佳85%或更大的序列相同性的反义构建体。此外,可使用反义核苷酸的部分来破坏编码TF的靶基因的表达。
也可以正义取向使用本发明的多核苷酸以抑制植物中内源性基因的表达。方法一般包括用包含启动子的DNA构建体转化植物,所述启动子驱动植物中可操作连接至对应于内源性基因的转录本的多核苷酸的至少一部分的表达。一般而言,这种核苷酸序列与内源性基因的转录本有明显序列相同性,较佳超过约65%序列相同性,更佳超过约85%序列相同性,最佳超过约95%序列相同性。参见美国专利号5,283,184和5,034,323,其通过引用纳入本文。可使用这类方法来降低至少一种TF的表达。
可使用本发明的多核苷酸来从其他植物中分离相应序列。在这种方式中,PCR、杂交和其他类似方法可用于根据此类序列与本文所示序列的序列同源性来鉴定该序列。根据该序列与本文所示完整序列或其变体和片段的序列相同性而分离的序列涵盖在本发明中。此类序列包括公开序列的直向同源物序列。“直向同源物”是指源自共同祖先基因且由于物种形成而在不同物种中发现的基因。在不同物种中发现的基因当它们的核苷酸序列和/或它们的编码蛋白质序列具有至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的序列相同性时被认为是直向同源物。直向同源物的功能通常在物种之间高度保守。因此,本发明包括转录活化或增强子激活并在严格条件下与本文公开的序列或其变体或片段杂交的分离的多核苷酸。
可通过PCR以及杂交来分离变体序列。设计PCR引物和PCR克隆的方法是本领域熟知的并且公开于Sambrook等,(1989)《分子克隆:实验室手册》(Molecular Cloning:ALaboratory Manual)(第2版,纽约州普莱恩维尤的冷泉港出版社)。还参见Innis等编,(1990)《PCR方案:方法和应用指南》(PCR Protocols:A Guide to Methods andApplications)(纽约学术出版社);Innis和Gelfand编,(1995)《PCR策略》(PCRStrategies)(纽约学术出版社);以及Innis和Gelfand编,(1999)《PCR方法手册》(PCRMethods Manual)(纽约学术出版社)。
在杂交技术中,已知多核苷酸的全部或部分用作选择性与来自选择的生物体的克隆基因组DNA片段群中存在的其他相应多核苷酸杂交的探针。杂交方法以及杂交条件是本领域熟知的并且公开于Sambrook等,(1989)《分子克隆:实验室手册》(第2版,纽约州普莱恩维尤的冷泉港出版社)。
也可通过分析测序的基因组的现有数据库来鉴定变体序列。在这种方式中,可鉴定相应TF或启动子序列并用于本发明的方法中。
比对序列的比较方法是本领域熟知的。因此,可采用数学算法确定两个序列的序列相同性百分数。该数学算法的非限制性示例是Myers和Miller(1988)CABIOS 4:11-17的算法;Smith等.(1981)Adv.Appl.Math.2:482的局部比对算法;Needleman和Wunsch(1970)J.Mol.Biol.48:443-453的全局比对算法;Pearson和Lipman(1988)Proc.Natl.Acad.Sci.85:2444-2448的搜索局部比对方法;Karlin和Altschul(1990)Proc.Natl.Acad.Sci.USA872264的算法,由Karlin和Altschul(1993)Proc.Natl.Acad.Sci.USA90:5873-5877改良。
这些数学算法的计算机实施可用于比较序列来确定序列相同性。这类实施包括但不限于:PC/Gene程序中的CLUSTAL(购自美国加利福尼亚州芒廷维尤的智慧遗传公司(Intelligenetics,Mountain View,California);ALIGN程序(2.0版)和GCG Wisconsin遗传软件包中的GAP,BESTFIT、BLAST、FASTA和TFASTA,10版(购自阿克赛勒里公司(AccelrysInc.),美国加利福尼亚州圣地亚哥Scranton路9685号)。可用默认参数来进行使用这些程序的比对。CLUSTAL程序由以下详细描述:Higgins等,(1988)Gene 73:237-244(1988);Higgins等,(1989)CABIOS 5:151-153;Corpet等,(1988)Nucleic Acids Res.16:10881-90;Huang等,(1992)CABIOS 8:155-65;和Pearson等,(1994)Meth.Mol.Biol.24:307-331。ALIGN程序基于Myers和Miller(1988)同上的算法。比较氨基酸序列时,PAM120权重残基表、缺口长度罚分12、和缺口罚分4可与ALIGN程序联用。Altschul等,(1990)J.Mol.Biol.215:403的BLAST程序基于Karlin和Altschul(1990)同上的算法。可利用BLASTN程序进行BLAST核苷酸搜索(评分=100,字长=12),以获得与编码本发明蛋白质的核苷酸序列同源的核苷酸序列。可利用BLASTX程序进行BLAST蛋白质搜索(评分=50,字长=3),以获得与本发明蛋白质或多肽同源的氨基酸序列。为了获得缺口比对(出于比较目的),可如Altschul等,(1997)Nucleic Acids Res.,25:33893402所述利用缺口BLAST(在BLAST 2.0中)。或者,可利用PSI-BLAST(在BLAST 2.0中)进行迭代搜索,其用来检测分子之间的远近关系。参见Altschul等,(1997)同上。利用BLAST、缺口BLAST和PSI-BLAST程序时,可使用各程序(例如针对蛋白质的BLASTX,针对核苷酸的BLASTN)的默认参数。参见万维网ncbi.nlm.nih.gov。也可通过检查来人工进行比对。
可在表达盒中提供本发明的多核苷酸用于在感兴趣的植物中表达。该盒将包括与可操作连接至本发明的TF多核苷酸的5'和3'调节序列。“可操作连接”是指2个或更多个元件之间的功能性连接。盒还可含有至少一种待共转化到生物体中的额外基因。或者,可在多个表达盒上提供额外基因。这种表达盒可提供多个限制位点和/或重组位点用于在调节区的转录条件下插入TF多核苷酸。表达盒还可含有选择性标记基因。
表达盒将包括5'-3'方向的转录,转录和翻译起始区(即,启动子),本发明的TF多核苷酸,和在植物中有功能的转录和翻译终止区(即,终止区)。
本发明的实践中可使用多种启动子。组成型启动子包括CaMV 35S启动子(Odell等,(1985)Nature 313:810-812);水稻肌动蛋白(McElroy等,(1990)Plant Cell 2:163-171);泛素(Christensen等,(1989)Plant Mol.Biol.12:619-632和Christensen等,(1992)Plant Mol.Biol.18:675-689);pEMU(Last等,(1991)Theor.Appl.Genet.81:581-588);MAS(Velten等,(1984)EMBO J.3:2723-2730);ALS启动子(美国专利号5,659,026)等,其全部通过引用纳入本文。
组织优选的启动子包括Yamamoto等,(1997)Plant J.12(2):255-265;Kawamata等,(1997)Plant Cell Physiol.38(7):792-803;Hansen等,(1997)Mol.Gen Genet.254(3):337-343;Russell等,(1997)Transgenic Res.6(2):157-168;Rinehart等,(1996)Plant Physiol.112(3):1331-1341;Van Camp等,(1996)Plant Physiol.112(2):525-535;Canevascini等,(1996)Plant Physiol.112(2):513-524;Yamamoto等,(1994)Plant CellPhysiol.35(5):773-778;Lam(1994)Results Probl.Cell Differ.20:181-196;Orozco等,(1993)Plant Mol Biol.23(6):1129-1138;Matsuoka等,(1993)ProcNatl.Acad.Sci.USA90(20):9586-9590;和Guevara-Garcia等,(1993)Plant J.4(3):495-505。叶优选启动子也是本领域已知的。参见,例如,Yamamoto等,(1997)Plant J.12(2):255-265;Kwon等,(1994)Plant Physiol.105:357-67;Yamamoto等,(1994)Plant CellPhysiol.35(5):773-778;Gotor等,(1993)Plant J.3:509-18;Orozco等,(1993)PlantMol.Biol.23(6):1129-1138;和Matsuoka等,(1993)Proc.Natl.Acad.Sci.USA 90(20):9586-9590。
认识到特异性非组成型表达概况可相对于一种或多种感兴趣基因的组成型表达提供改善的植物表型。例如,通过光条件、施加特定应力、昼夜循环、或植物发育阶段来调节许多植物基因。这些表达概况对于植物中基因或基因产物的功能而言是非常重要的。可用于提供所需的表达概况的一个策略是使用含有在植物中所需的时间和位置处驱动所需的表达水平的顺式调节元件的合成启动子。多名研究人员已经鉴定了可用于改变植物中基因表达的顺式调节元件(Vandepoele等,(2009)Plant Physiol 150:535-546;Rushton等,(2002)Plant Cell 14:749-762)。已经对使用顺式调节元件来改变启动子表达概况进行了综述(Venter(2007)Trends Plant Sci.12:118-124)。转录组研究的新技术和分析这类数据库的新方法的快速开发使得能够发现新的顺式调节元件。已知之前使用的微阵列数据库没有与使用RNA-Seq生成的转录组数据相同的分辨率。使用这些更新的技术来生成转录组数据和开发用于分析转录组数据的新软件算法使得能够发现包括本文所述的那些的新顺式调节元件。
本领域已知植物终止子并且包括来自根癌土壤杆菌(A.tumefaciens)的Ti-质粒的那些,如真蛸碱合酶和胆脂碱合酶终止区。还参见Guerineau等,(1991)Mol.Gen.Genet.262:141-144;Proudfoot(1991)Cell 64:671-674;Sanfacon et al.(1991)Genes Dev.5:141-149;Mogen等,(1990)Plant Cell2:1261-1272;Munroe等,(1990)Gene 91:151-158;Ballas等,(1989)Nucleic Acids Res.17:7891-7903;和Joshi等,(1987)Nucleic Acids Res.15:9627-9639。
如上所述,TF可用于表达盒来转化感兴趣的植物。转化方案以及向植物中导入多肽或多核苷酸序列的方案可根据转化靶向的植物或植物细胞的类型变化,即,单子叶或双子叶。向植物细胞中导入多肽和多核苷酸的合适方法包括微注射(Crossway等,(1986)Biotechniques 4:320-334)、电穿孔(Riggs等,(1986)Proc.Natl.Acad.Sci.USA 83:56025606),农杆菌-介导的转化(美国专利号5,563,055和美国专利号5,981,840),直接基因转化(Paszkowski等,(1984)EMBO J.3:2717-2722),和弹道颗粒加速(参见例如,美国专利号4,945,050;美国专利号5,879,918;美国专利号5,886,244;和5,932,782;Tomes等,(1995)《植物细胞、组织和器官培养中的基础方法》(Plant Cell,Tissue,and Organ Culture:Fundamental Methods),Gamborg和Phillips编(Springer-Verlag,Berlin);McCabe等,(1988)Biotechnology 6:923-926);和Lec1转化(WO 00/28058)。还参见Weissinger等,(1988)Ann.Rev.Genet.22:421-477;Sanford等,(1987)Particulate Science andTechnology 5:27-37(洋葱);Christou等,(1988)Plant Physiol.87:671-674(大豆);McCabe等,(1988)Bio/Technology 6:923-926(大豆);Finer和McMullen(1991)In VitroCell Dev.Biol.27P:175-182(大豆);Singh等,(1998)Theor.Appl.Genet.96:319-324(大豆);Datta等,(1990)Biotechnology 8:736 740(水稻);Klein等,(1988)Proc.Natl.Acad.Sci.USA 85:4305-4309(玉米);Klein等,(1988)Biotechnology 6:559-563(玉米);美国专利号5,240,855;5,322,783;和5,324,646;Klein等,(1988)PlantPhysiol.91:440-444(玉米);Fromm等,(1990)Biotechnology 8:833-839(玉米);Hooykaas-Van Slogteren等,(1984)Nature(伦敦)311:763-764;美国专利号5,736,369(谷类);Bytebier等,(1987)Proc.Natl.Acad.Sci.USA84:5345-5349(百合);De Wet等,(1985)《胚珠组织实验操作》(The Experimental Manipulation of Ovule Tissues),Chapman等编,(纽约朗文出版社(Longman,New York),第197-209页(花粉);Kaeppler等,(1990)PlantCell Reports 9:415-418和Kaeppler等,(1992)Theor.Appl.Genet.84:560-566(须-介导的转化);D'Halluin等,(1992)Plant Cell 4:1495-1505(电穿孔);Li等,(1993)PlantCell Reports 12:250-255以及Christou和Ford(1995)Annals of Botany 75:407-413(水稻);Osjoda等,(1996)Nature Biotechnology 14:745-750(玉米,通过根癌农杆菌);其全部通过引用纳入本文。“稳定转化”或“稳定插入”是指导入植物的核苷酸构建体整合到植物的基因组中并且能够被其后代遗传。
按照常规方式,已经转化的细胞可长成植物。参见,例如,McCormick等,(1986)Plant Cell Reports 5:81-84。在这种方式中,本发明提供了具有稳定整合到其基因组中的本发明的多核苷酸,例如,本发明的表达盒的转化的种子(也称为“转基因种子”)。
本发明可用于任何植物物种的转化,包括但不限于单子叶和双子叶。感兴趣的植物物种的示例包括但不限于,玉米(Zea mays),油菜种(例如,甘蓝型油菜(B.napus)、白菜型油菜(B.rapa)、芥菜型油菜(B.juncea)),尤其是用作菜籽油来源的那些油菜物种,苜蓿(Medicago sativa),水稻(Oryza sativa),黑麦(Secale cereale),高粱(Sorghumbicolor,Sorghum vulgare),粟(例如,珍珠粟(Pennisetum glaucum),黍(Panicummiliaceum),小米(Setaria italica),穇子(Eleusine coracana)),向日葵(Helianthusannuus),红花(Carthamus tinctorius),小麦(Triticum aestivum),大豆(Glycine max),烟草(Nicotiana tabacum),马铃薯(Solanum tuberosum),花生(Arachis hypogaea),棉花(Gossypium barbadense,Gossypium hirsutum),甘薯(Ipomoea batatas),木薯(Manihotesculenta),咖啡(Coffea spp.),椰子(Cocos nucifera),菠萝(Ananas comosus),柠檬树(Citrus spp.),可可(Theobroma cacao),茶(Camellia sinensis),香蕉(Musa spp.),鳄梨(Persea americana),无花果(Ficus casica),番石榴(Psidium guajava),芒果(Mangifera indica),橄榄(Olea europaea),番木瓜(Carica papaya),腰果(Anacardiumoccidentale),澳洲坚果(Macadamia integrifolia),杏(Prunus amygdalus)、甜菜(Betavulgaris)、甘蔗(Saccharum spp.)、燕麦、大麦、蔬菜、观赏植物和针叶树。
通过说明的方式,而非限制性方式提供以下实施例。本说明书中涉及的所有专利申请和出版物指示本发明涉及领域技术人员的水平。所有发表物和专利申请通过引用纳入本文,就好像将各篇单独的发表物或专利申请具体和单独地通过引用纳入本文那样。
虽然出于方便理解的目的,通过阐述和举例的方式详细描述了上述发明,但可明显看出,某些改变和修改应属于所附权利要求书的范围。
实验部分
实施例1-提出的调节C4光合作用的118种转录因子的发现
水稻和玉米叶沿着发育梯度分区,并且从各叶区段提取RNA。使用RNA-Seq来对这种RNA进行测序以衍生发育叶梯度产生转录组数据。这种转录组数据根据各基因的表达概况组织成30种不同的聚类。然后分析在Grassius数据库(万维网www.grassius.org)中标注的2517种玉米转录因子的表达概况。
应用以下标准来发现可能参与调节C4光合作用的转录因子。
1.TF在叶中在背景噪音以上表达
2.在水稻中有一对一的相应直向同源基因(基于同线性和序列相似性)
3.在来自两个独立细胞类型的特异性数据组的维管束鞘对比叶肉细胞中存在持续的差异基因表达概况(Li等,(2010)Nat Genet 42:1060-1069;Chang等,(2012)PlantPhysiol 160:165-177)
4.玉米TF及其水稻直向同源物映射到不同基因聚类
通过将这四个标准应用到发育转录组数据库,获得了表1中包含的118种转录因子的列表。不受理论限制,水稻和玉米中这些转录因子的不同表达概况可能表示这些转录因子可能在玉米中调节C4光合作用的方面。在本文提交的序列表中包括表1的序列。
表1:提出的调节C4光合作用方面的转录因子
实施例2-过滤118种转录因子以决定测试优先顺序
为了决定实施例1中所述的TF的优先顺序用于进一步测试,进行额外过滤。表1中的各玉米TF和相应水稻TF的表达水平在统一发育模型(UDM)中在15个梯度上各自比较。计算各梯度下各TF对的玉米表达与水稻表达水平的比率。计算各TF对的最大和最小比率。然后选择具有最大玉米:水稻表达比率的表1的118种TF中的10种TF,并且也选择具有最小玉米:水稻表达比率的表1的118种TF中的10种TF。
本文所述的过滤过程导致选择20种在水稻和玉米之间显示出广泛分歧的表达概况的玉米TF及其相应水稻直向同源物。这些TF列于表2。不受理论显示,预期这些分歧的表达概况可能反映了这些TF的体内功能变化。从表1的118个TF对中决定20个TF对优先用于进一步测试和表征。
表2-优先用于其他测试和表征的转录因子对
将编码表2中列出的TF的基因克隆到二元载体中,其任选连接在植物细胞中有功能的启动子和终止子序列。将二元载体转化到根癌农杆菌细胞中,并且含有所述二元载体的根癌农杆菌细胞与适于转化和再生的植物组织接触。在与根癌农杆菌细胞接触之后,将植物细胞置于合适的组织培养基中用于植物再生。培养这些植物并且测试感兴趣TF的表达水平,并且测试所述植物的生长特性以确定所述植物中的TF表达效果。
实施例3-顺式调节元件的衍生可能以细胞特异性的方式驱动表达
C4光合作用的关键特征是在2个相邻细胞类型之间光合作用活性的分配,并且在玉米中,这主要通过转录控制来发生。在双子叶体系中,已经显示来自C4植物的顺式元件可被识别并且赋予在C3植物中相同的细胞特异性表达模式。因此,差异基因表达的一个机制似乎是探索在C3和C4物种之间保守的现有顺式元件。为了鉴定在C4光合作用分化中驱动细胞类型特异性基因表达的新顺式作用元件,比较了玉米和水稻之间来自光合作用聚类的启动子序列,其包括大多数的C4碳穿梭基因。检验了这些聚类中所有玉米和水稻基因的启动密码子上游3kb内的序列,然后检索来自相同聚类的所有玉米基因的ELEMENT-限定的基序的出现。然后测试在BS和ME细胞之间高度差异表达的基因富集的出现(计数)。
发现推定顺式元件(RGCGR;R=A/G)在聚类3中的ME-富集基因中过度表示。可在几个ME-特异性碳穿梭基因,包括丙酮酸邻磷酸二激酶(PPDK)、PPDK-调节蛋白(PPDK-RP)、磷酸烯醇丙酮酸羧化酶(PEPC)和碳酸酐酶(CA)中的编码区的上游检测到其存在。为了进一步检验这种推定元件,我们使用CoGe(Lyons和Freeling 2008Plant J 53:661-673)来提取玉米、高粱、小米和水稻CA基因的启动子区域中的基于同线性的保守序列。仅在C4草类(玉米、高粱和小米)的启动子中发现候选顺式元件,但在水稻中没有发现。有趣的是,基序在C4草类的光合作用基因的启动子区中存在多次,这是一种被认为增加顺式元件的效率的特征(Mehrotra等,(2005)J Genet 84:183-187)。
保守基序“WAAAG”(W=T/A)在BS-特异性基因中富集并且似乎是Dof转录因子的核心组件(Yanagisawa和Schmidt(1999)Plant J 17:209-214)。玉米PEPCK基因属于聚类1并且可能在C4碳穿梭中起作用(Wingler等,(1999)Plant Physiol 120:539-546)。我们使用含有在序列内以反向互补串联重复存在的“WAAAG”基序的CoGe来鉴定PEPCK的上游高度保守的非编码区,并且在C4和C3草类中都是保守的。有趣的是,天然水稻PEPCK基因也以细胞类型特异性方式表达(仅在BS、维管和表皮细胞中;Nomura等,(2005)Curr Opin PlantBiol 8:361-368)。因此,与“RGCGR”基序不同,可能从祖先C3物种中招募“WAAAG”基序来驱动细胞特异性基因表达。不受理论显示,我们推测“WAAAG”元件与C4PEPCK基因中的其他基序组合发挥功能以驱动高水平的BS-细胞特异性基因表达。总之,我们已经开发了新的ELEMENT算法来确定同时驱动BS-和M-细胞特异性基因表达的顺式调节元件。其他候选顺式调节元件示于表3。
表3-可驱动感兴趣基因的细胞特异性表达的候选顺式调节元件
实施例4-使用顺式调节元件来构建可用于驱动感兴趣基因的合成启动子
上述的RGCGR元件可用于构建新的合成启动子。该启动子用于驱动感兴趣基因的表达,导致编码的mRNA和蛋白质的显著积累。发现在玉米CA1基因(在万维网genomevolution.org/r/7hwg上)上游大约120bp处的大约60bp区在高粱(Sorghumbicolor)、玉米(Zea mays)、小米(Setaria italica)、和水稻(Oryza sativa)中保守。使用来自高粱的RGCGR序列元件构建的新启动子。这一序列元件重复四次并且与来自高粱碳酸酐酶基因的最小启动子元件组合(高粱染色体3:57333341-57333511)。新启动子序列(SEQID NO:1)被称为4xRGCGR启动子。
使用4xRGCGR启动子来驱动密码子优化版本的玉米SBP酶基因(SEQ ID NO:2)在二穗短柄草(Brachypodium distachyon)和水稻(Oryza sativa)中表达。使用标准分子生物学方案来构建二元载体质粒,其中4xRGCGR启动子位于SBP酶开放阅读框的上游(SEQ IDNO:2)。这种质粒也含有植物转化的选择性标记基因以允许选择转化的植物细胞。该质粒被转化到根癌农杆菌细胞中,其进而用于转化二穗短柄草和水稻。使用植物组织培养技术来再生转化的植物细胞。从再生的植物中提取DNA并且通过PCR测试来确保包括4xRGCGR启动子、SBP酶开放阅读框、和其他必需的遗传元件的全SBP酶表达盒的存在以确保转基因的适当转录和翻译。
在证明SBP酶转基因盒存在之后,收集叶样品用于提取蛋白质。总叶蛋白质在含吐温-20的标准Tris-缓冲盐水(TBST缓冲液)中提取并且通过ELISA测试SBP酶蛋白的存在。在兔中生成抗重组SBP酶蛋白的一抗,并且是Paul Hwang(华盛顿州立大学)的礼物。二抗是山羊抗兔抗体(赛默飞世尔科学公司(Thermo-Fisher Scientific))。ELISA试验清楚地显示在用4xRGCGR-SBP酶盒转化的转基因二穗短柄草中统计学上显著增加的SBP酶含量。
7个测试的野生型二穗短柄草的平均SBP酶含量是0.88±0.27%TSP,而7个用4xRGCGR-SBP酶构建体转化的二穗短柄草的平均SBP酶含量为6.78±1.54%TSP(斯氏t检验p=0.0001,成对,双尾分布)。
也基本如上述二穗短柄草那样从转基因水稻叶中提取蛋白质,并且使用上述方案通过ELISA测试所得的蛋白质提取物。为了测试水稻蛋白质提取物,水稻顶叶从基部到尖部分成10个相等的部分,区段1在基部并且区段10在叶尖部。分别测试了来自各叶部分的蛋白质提取物。结果清楚地显示来自用4xRGCGR-SBP酶构建体转化的植物的水稻叶明显比野生型水稻植物的叶含有更多的SBP酶蛋白。
在这些转基因水稻植物中进行转录分析。收集各植物的顶叶并且分成5个相等的区段。使用Trizol(生命技术公司)方法来提取总RNA。使用锚定的寡d(T)引物和M-MuLV逆转录酶(新英格兰实验室公司(New England BioLabs))来进行cDNA合成。用针对转基因SBP酶(SEQ ID NO:537合538)、天然水稻SBP酶(SEQ ID NO:539和540)、和水稻对照基因(UBQ5)(SEQ ID NO:541和542)特异性的引物来进行使用SYBR绿(伯乐实验室公司(BioRadLaboratories))的qRT-PCR。这些qRT-PCR实验清楚显示转基因植物积累了大量的从4xRGCGR启动子驱动的SBP酶转录本。
这些结果清楚地证明4xRGCGR启动子可在二穗短柄草和水稻中有效发挥作用以驱动增加的SBP酶基因表达和编码的SBP酶蛋白的积累。应理解4xRGCGR启动子并不限于SBP酶基因的过表达,但可用于驱动已经克隆到用于植物转化的二元载体中的任何感兴趣基因的表达。
使用RGCGR元件通过将这种顺式调节元件与从高粱碳酸酐酶基因衍生的核心启动子元件结合来成功驱动感兴趣基因表达。本领域技术人员应理解可从来自多种植物物种的多种植物启动子使用其他核心启动子元件。这类核心启动子已经在科学论文中描述(Kumari和Ware 2013PLoS One 8:e79011)。如上所述,RGCGR顺式元件来自对水稻和玉米转录组数据的生物信息学分析。类似的分析发现了表3中所列的顺式调节元件。本领域技术人员应理解表3中所列的顺式调节元件可与核心启动子元件结合以生成可用于驱动感兴趣的基因在植物细胞中表达的新和成启动子。
实施例5-使用顺式调节元件来改变天然植物基因的表达
使用表3中所列的顺式调节元件通过使用基因组编辑技术来改变感兴趣的天然植物基因的表达。对于这项工作,将表3中所列的一种或多种顺式调节元件的至少一个拷贝在预定位点处通过使用位点特异性巨核酶或其他位点特异性插入方法插入植物基因组中。确定插入位点,使得顺式调节元件正好插入天然植物启动子的核心启动子元件的上游。该策略已知并且已经在之前证明在预定位置处将转基因插入棉花基因组(D’Halluin等,(2013)Plant Biotechnol J 11:933-941)。其他技术可用于实现在预定基因组基因座处插入遗传元件的类似结果对本领域技术人员而言是显而易见的(例如,CRISPR-Cas9,TALEN,和其他用于基因组精确编辑的技术;Feng等,(2013)Cell Res 23:1229-1232,Podevin等,(2013)Trends Biotechnol 31:375-383,Wei等,(2013)J Genet Genomics 40:281-289,Zhang等,(2013)Plant Physiol DOI:10.1104/pp.112.205179)。使用基因组编辑技术来插入表3中所列的一种或多种顺式调节元件的一个或多个拷贝使本领域技术人员能够操控下游的感兴趣天然植物基因的表达。所得的表达概况可能显示比天然植物基因更高或更低的表达。通过使用合适的顺式调节元件,可得到细胞特异性表达概况、发育调节的表达概况、昼夜循环了解的概况、组织特异性表达概况、可诱导表达概况、或其他非组织型表达概况。
实施例6-改变转录因子在植物中的表达
表1中所列的转录因子可来自对水稻和玉米发育转录组的生物信息学分析。提出这些TF调解光合作用的方面,其进而连接到植物生长和作物产量(Long等,(2006)PlantCell Environ 29:315-330)。通过改变表1中一种或多种TF的表达水平和/或表达概况,将改善植物生长速率和/或作物产量。
可通过将编码感兴趣的一种或多种TF的开放阅读框克隆到在植物细胞中有功能的启动子的下游来在感兴趣的作物植物中过表达一种或多种表1所列的TF。可使用包括农杆菌介导的转化或基因枪转化的多种方法来将TF表达盒转化到感兴趣的植物物种中。本领域技术人员会理解将DNA插入植物基因组中的其他技术也可用于实现一种或多种TF的过表达目标。
或者,可使用RNAi、amiRNA或其他熟知的技术下调表1中所列的一种或多种TF来下调感兴趣基因的表达。对于这些实验,针对一种或多种表1中所列的TF的编码区设计的RNAi或amiRNA经设计并置于在植物细胞中有功能的启动子下游。所得的RNAi或amiRNA盒被克隆到适于植物细胞转化的载体中并用于转化感兴趣的植物物种。通过使用多种方法,包括农杆菌介导的转化或基因枪转化来实现所述的转化。本领域技术人员将理解可使用将DNA插入植物基因组的其他技术来实现下调植物中一种或多种TF的目标。
可通过使用精确的基因组编辑技术来改变表1中所列的一种或多种TF的表达。通过使用针对感兴趣的植物基因组序列设计的巨核酶将核酸序列插入编码感兴趣的TF的天然植物序列附近。该策略已知并且已经在之前证明在预定位置处将转基因插入棉花基因组(D’Halluin等,(2013)Plant Biotechnol J 11:933-941)。其他技术可用于实现在预定基因组基因座处插入遗传元件的类似结果对本领域技术人员而言是显而易见的(例如,CRISPR-Cas9,TALEN,和其他用于基因组精确编辑的技术;Feng等,(2013)Cell Res 23:1229-1232,Podevin等,(2013)Trends Biotechnol 31:375-383,Wei等,(2013)J GenetGenomics 40:281-289,Zhang等,(2013)Plant Physiol DOI:10.1104/pp.112.205179)。使用所述核酸序列的插入来实现表1中所列的一种或多种TF的过表达的所需结果。或者,通过使用合适的核酸序列,可下调表1中所列的一种或多种TF。
也可通过使用衍生自植物病毒的自复制DNA序列而不是通过将一种或多种感兴趣的基因稳定插入植物核基因组来改变表1中所列的一种或多种TF的表达。已经成功使用衍生自植物病毒如双粒病毒的序列来实现在植物中表达多种感兴趣基因(Mozes-Koch等,(2012)Plant Physiol 158:1883-1892)。通过将编码一种或多种表1中所列的TF的一种或多种基因插入衍生自植物病毒的自复制构建体,可通过将病毒衍生的构建体转化到植物细胞中并选择转化的细胞来实现所述TF在感兴趣的植物物种中的上调。或者,可通过将针对表1中所列的一种或多种TF设计的amiRNA或RNAi构建体插入衍生自植物病毒的植物转化构建体来实现选自表1所列的TF组的一种或多种感兴趣TF的下调。所得的构建体可转化到感兴趣的植物物种的植物细胞中。选择转化的细胞和含有自复制构建体的植物的再生将导致一种或多种TF的表达水平和/或表达概况的所需改变。
表1中所列的TF来自水稻(Oryza sativa)和来自玉米(Zea mays)。使用一种或多种本文所述的技术科导致改变一种或多种表1所列的TF的表达概况。不受理论限制,预期具有一种或多种这些TF的表达概况改变的植物品系将显示出改善的植物生长和/或改善的作物产量。本领域技术人员将理解表1中所列的TF的紧密相关的同源物或直向同源物可用于该实施例中所述的改变的表达策略来实现TF表达概况改变的基本相同的结果,从而导致改善的植物生长和/或改善的作物产量。用于鉴定直向同源基因的方法已经描述于科学文献中并且可用于鉴定对于表1中所列的TF而言直向同源的TF(Li等,(2003)Genome Res 13:2178-2189;Fulton等,(2002)Plant Cell14:1457-1467)。这种直向同源基因可用于包括本文所述的策略中以实现在感兴趣的植物物种中所需的上调或下调一种或多种感兴趣的TF。
实施例7-确定TF结合位点
可通过酵母单杂交试验方法来确定感兴趣TF的结合序列。在该方法中,表1中所列的TF被克隆到适于在微生物系统中产生蛋白质的载体(例如,pET-系列载体;生命技术公司)。TF在含有蛋白质产生质粒的合适微生物中产生并纯化。纯化的TF针对酵母单杂交试验中的合成启动子文库进行筛选。这种启动子文库在至少2种不同情况中含有全部8聚体DNA序列。这些酵母单杂交试验的结果是测试TF的结合位点。已经在科学文献中描述了类似的策略用于基于酵母单杂交试验筛选来确定TF结合位点(Pruneda-Paz等,(2009)Science323:1481-1485)。
一旦已经确定了感兴趣TF的结合序列,可使用这种序列来查询感兴趣植物物种的基因组。在含有针对感兴趣TF的结合序列的植物基因组内的位置将可能与植物中的TF相互作用。因此,在感兴趣的植物中改变感兴趣TF表达的策略将可能改变靠近这些结合位点的基因的表达。通过将最接近的开放阅读框定位在植物基因组内TF结合位点的任意方向上,本领域技术人员可合理预期这些开放阅读框的表达恩深可能受到改变感兴趣TF的表达的影响。一旦已经鉴定了这些开放阅读框,将在植物中直接改变这些基因的表达。将通过用含有开放阅读框的载体转化感兴趣的植物并然后再生转化的植物来实现这些基因的上调,该开放阅读框可操作连接至在植物细胞中可操作的启动子。将通过qRT-PCT、Northern印迹、或其他合适的试验来确定过表达的一种或多种基因的转录本水平。或者,将通过用含有针对这些基因设计的amiRNA序列的植物转化载体转化感兴趣的植物物种来实现这些基因的下调,其表达可能受到感兴趣TF的调节。在转化之后,植物将再生,并且所得将通过qRT-PCR、Northern印迹或任何其他合适试验来筛选,以确定过表达的一种或多种基因的转录本水平。通过测量植物来监测其中这些基因的表达已经改变的转化植物(即,其表达受到表1中所列的TF调节的基因)的生长。在植物成熟之后,植物的总生物质将被称重并且与未转化的野生型植物的总生物质比较。类似的,转化的植物的种子将被收集和称重并与未转化的野生型植物的总种子重量比较。不受理论限制,预期对基因表达的直接操纵将产生植物中改善的生长和/或改善的作物产量,这些基因的表达部分受到表1中所列的TF的调节。
实施例8-通过对玉米和水稻叶转录组的统一比较分析来探索C4光合作用差异的机制
在该研究中,我们探索了玉米(C4)和水稻(C3)的叶转录组来鉴定光合作用所需的新结构和调节组件。通过分析代谢概况和相关的直向同源基因表达,我们已经开发了一种数学模型来直接比较两种相似的发育梯度并且进行聚类分析来确定玉米和水稻基因表达的模式。与顺式调节开采工具耦合的功能富集测试鉴定了可能已经在C4光合作用的进化中招募的候选基序。使用这些高度解析的转录概况,我们提出了木栓质生物合成模型-结构特征与NADP-ME亚型C4草类相关,并且限定了该通路的可能转录调控子。我们也开发了多种交流工具,包括表达阅读器以能够广泛接触这些数据库并提供理解和最终将C4性状工程改造成C3草类的基础。
结果-沿着玉米和水稻叶发育梯度的代谢概况
草叶萌发并且沿着与双子叶植物不同向基轴发育。这种特征促进了不同草类之间的发育比较并且使得能够在一个固定的时间点上对分离的发育阶段进行取样。以前,我们分析了四个发育阶段上的玉米叶的转录组,并且研究了这些区段中基因表达的动态变化(Li,P.等,(2010)Nat Genet 42:1060-7)。在该研究中,我们进行了整合转录组和代谢组数据库的水稻和玉米种光合作用差异的相互特异性比较分析。
用于研究中的植物在受控的光、温度和湿度下生长,如前所述(Li,P.等,(2010)Nat Genet 42:1060-7)。使用之前的详细方法(Li,P.等,(2010)Nat Genet 42:1060-7)在两种物种中使用14C标记来限定来源和汇聚边界并且对应于大致叶3的第二叶舌的位置;然后以有限增加从这一“锚点”收集叶区段(方法)。为了校准叶梯度,从15个玉米的1cm区段和11个水稻的2cm区段测量原生和此生代谢物。Calvin Benson循环酶(例如,Rubisco,NADP-GAPDH)的活性在叶发育期间上升超过10倍,增加主要发生在区段2-8之间。这与C4酶(PEPC,NADP-苹果酸脱氢酶;Rubisco和PEPC之间的R2=0.98)的增加紧密平行。参与细胞间代谢物穿梭的代谢物的水平也在区段2-8之间上升(PEPC与DHAP、3PGA和丙酮酸之间相关性的R2分别=0.98、0.96和0.90)。如前所述,苹果酸意料之外地在中间区段达到最大值并且在叶尖处降低。如C3物种所预期的那样,成熟水稻叶有较高的光呼吸率,其从测量叶的光合作用活性区域中的光呼吸中间物如甘氨酸、谷氨酰胺和丝氨酸来显示。这与玉米中甘氨酸、谷氨酰胺和丝氨酸在其中光合作用机制还未完全发育的不成熟部分中最高相反。在两个物种中,大部分其他氨基酸的概况也显示出相反的趋势。水稻中的结果支持了在C3植物中有氮(N)代谢与光合作用有强相关性的观点。C3光合作用不可避免地伴随着光呼吸,其涉及将甘氨酸转化成丝氨酸并且快速释放氨,其与硝酸盐和氨的从头同化平行再固定(Nunes-Nesi,A.等,(2010)Mol Plant 3:973-96;Xu,G.等,(2012)Annu Rev Plant Biol 63:153-82)。玉米中氨基酸的完全不同的分布表明在C4植物中N代谢并不紧密耦合光合作用,并且指出了在基部的非光合叶部分在N同化中起到主要作用。
玉米和水稻叶的比较转录组的统一发育模型
使用生成代谢概况的相同组织样品,我们使用高通量文库构建方案来进行RNA-seq(Wang,L.等,(2011)PloS one 6:e26426)(方法)。针对玉米叶区段获得了平均1380万个32bp读数/区段和2.07亿总读数,并且针对水稻获得了平均2210万个32bp读数/区段和2.43亿总读数。生成了30,530个玉米-水稻直向同源基因的列表并用于调查水稻和玉米种的基因表达相关性。显示斯皮尔曼秩相关的热图概况揭示了玉米和水稻之间相似且连续的转录组梯度,但是不同数量的区段和从代谢概况中鉴定到的差异阻碍了单个水稻和玉米叶区段之间的直接比较。
迄今为止,RNA-seq数据组的种内分析已局限于加工后比较。即,已经在物种内进行网络分析、功能富集和转录调节组件,然后再物种之间比较数据组。在此,我们探索了2种高度相似的发育和实验草叶系统的统一性来进行整体比较转录组研究。为了解决不同数量的沿着叶取样的区段和在发育过程中的变化,我们构建了统一发育模型(UDM)使两个物种之间的发育阶段等同。使用代表具有相似基因表达概况并且可能在水稻和玉米种保留相似功能的高保真直向同源基因对的3559个锚定基因的核心组(详细内容参见方法),我们建立了共同的发育轴,来自玉米和水稻的区段都可在其上映射。这种方法保留了沿着叶的区段顺序并且不使区段沿共同轴等距离分布。考虑到所有叶区段的映射位置,我们拟合了沿着共同轴表达的各玉米和水稻基因的表达概况。尽管有用于表征基因表达的发育变异和不同区段数,使用拟合的概况使物种之间的表达比较变得可行。为了证实RNA-seq结果和UDM,我们选择了48种玉米和水稻基因,其表达概况跨越4个数量级并且使用qRT-PCR调查表达。模型拟合前后的RPKM值明显与qPCR结果一致,低水平表达的基因比高水平表达的那些显示出更多的变异。因此,UDM能够对玉米和水稻基因表达数据进行整体分析,尽管存在4100万年的进化趋异(在万维网www.timetree.org上)。此外,当已经生成了充分校准的发育和实验数据组时,将UDM应用于其他植物和动物体系将是可能的。
聚类分析和发现候选光合作用顺式调节元件
为了测试UDM的功效,我们使用改良K-means聚类方法(方法)来检验光合作用差异所需的基因表达。我们生成了捕获沿梯度的主要趋势的30个聚类。TopGO包(Alexa,A.等,(2006)Bioinformatics 22:1600-7)(方法)鉴定聚类1、3、4和6含有明显过度代表光合作用相关GO附注的基因。聚类1、3和4有相同的基因表达概况;表达值在叶基部低并在接近或位于叶尖部达到最大。在聚类6中,最大表达出现更早,接近叶的中点,表示源-汇聚边界。聚类6中的基因包括用于四吡咯代谢、叶绿体靶向和此生细胞壁生物合成的那些。(Li,P.等,(2010)Nat Genet 42:1060-7;Prioul,J.L.等,(1980)Plant Physiology 66:770-4;Miranda,V.等,(1981)New Phytologist 88:595-605)。聚类1、3和4中的基因包括编码Calvin循环、光合系统I和II以及电子转运的组分的那些。因此,质体生物发生所需的基因表达在实施光合作用所需的基因表达之前发生。UDM表明光合发育在水稻中比在玉米种更早发生。这也从对玉米和水稻代谢物的测量中显示,由于淀粉降解中间物麦芽糖(Smith,A.M.等,(2005)Annu Rev Plant Biol 56:73-98)和Calvin-Benson循环中间物3-PGA的玉米概况似乎对应于沿着叶梯度的水稻概况的基部分。这些观察与水稻基因在聚类1和玉米基因在聚类3中的轻微富集一致,因为仅玉米和水稻叶中的相关区域用于聚类。
随着由UDM生成聚类,我们能够利用玉米和水稻之间的进化距离作为系统发生过滤器来鉴定与编码光合作用组件的基因相关的保守顺式元件。开发改良的ELEMENT算法(Mockler,T.C.等,(2007)Cold Spring Harb Symp Quant Biol 72:353-63)来包含多物种分析的背景校正(在万维网element.mocklerlab.org/上)。然后我们检索了拟南芥顺式元件数据库AtCOECIS(Piganeau,G.等,(2009)J Mol Evol 69:249-59)中与光合作用相关的基序,因为一些在玉米和水稻中富集的候选物也在拟南芥中保守。例如,从聚类6中,我们鉴定了序列“ACGTAC”作为在于光合作用相关的基因上游发现的基序(在万维网bioinformatics.psb.ugent.be/cgi-apps/ATCOECIS/show_motif.htpl?value=GCCACGTN上)。在聚类3中观察到相似结果,其中候选顺式元件如“ACGTGTC”(在万维网bioinformatics.psb.ugent.be/cgi-apps/ATCOECIS/show_motif.htpl?value=CACGTGTC上)和“CACGTA”在玉米、水稻和拟南芥之间保守。总之,聚类分析显示调节光合作用基因表达的推定反式作用因子在被子植物之间的保守性。然而,在草类和拟南芥之间不保守的其他基序可能已经驱动了单子叶和双子叶品系之间的光合作用发育多样化。
方法
植物生长和RNA-测序实验
玉米和水稻生长条件如之前所述(Li,P.等,(2010)Nat Genet 42:1060-7;Wang,L.等,(2011)PloS one 6:e26426)。9天龄的玉米的第三叶被切成15个1cm区段;从每个生物重复平均7个植物中收集样品,并且在不同日期收集总共6个生物重复。14天龄的水稻的第三叶被切成11个2cm区段;从每个生物重复平均15个植物中收集样品,并且收集总共4个生物重复。按照生产商的说明用(加利福尼亚州英杰公司(Invitrogen,CA))来提取总RNA。后续的RNAseq文库构建过程在补充文件1中详细显示。索引/汇总总共90个玉米和44个水稻叶文库并在Illumina HiSeq机器上进行测序,使用生产商的默认管线和参数对读数进行测序、去卷积和过滤。读数使用Tophat(Trapnell,C.等,(2009)Bioinformatics 25:1105-11)比对到玉米参照基因组B73AGPv2。之前描述了对RPKM的读数计数和计算(Wang,L.等,(2011)PloS one 6:e26426)并且之后用Cuffdiff进行验证(Trapnell,C.等,(2013)Nat Biotechnol 31:46-53)。重复之间的变异小。水稻重复之间的平均泊松相关性为0.95+-0.07。玉米重复之间的平均泊松相关性为0.97+-0.07。之前描述了对RPKM的读数的后处理和计算(Wang,L.等,(2011)PloS one 6:e26426)。从单个生物重复中汇集读数以实现对低水平表达的基因的更深度覆盖(Li,P.等,(2010)Nat Genet 42:1060-7)。原始读数以登录号GSE54274上传到GEO。
玉米和水稻直向同源物的确定
首先通过将来自多种已知方法的结果合并来确定直向同源玉米和水稻基因,包括BBH-LS(Zhang,M.等,(2012)BMC Systems Biology 6)、Ensembl(Hubbard,T.等,(2002)Nucleic Acids Res 30:38-41)、MSOAR2(Shi,G.等,(2010)BMC Bioinformatics 11:10)、INPARANOID(Ostlund,G.等,(2010)Nucleic Acids Res 38:D196-203)和ORTHOMCL(Chen,F.等,(2006)Nucleic Acids Res 34:D363-8)。这些单个实验的结果以多对多的关系被组装成直向同源对的非冗余穷尽列表,其然后经过滤通过基于沿着水稻和玉米叶梯度的非拟合表达数据选择具有最高相关性的对来鉴定一对一直向同源基因对。
构建统一玉米-水稻叶发育模型
为了限定统一玉米-水稻叶发育梯度并且将各叶部分映射到这种假拟的坐标系中,我们开发了以下详述的迭代计算机算法。
假设玉米叶区段i(i=1…I)映射到发育梯度Ui(U1<U2<…<UI),并且水稻叶区段j(j=1…J)映射到发育梯度Vj(V1<V2<…<Vj)。
给出值U=(U1…UI)和V=(V1…Vj),我们对区段i的玉米基因g的预期基因表达(RPKM值)值(Xgi)进行以下建模:
类似地,我们对区段j的水稻基因h进行建模(Yhj):
注意我们使用三阶多项式函数来对RPKM值的对数进行建模。基于我们的经验分析,这种模型是充足的并且足够可行以捕获大部分基因表达模式并且同时避免过度拟合。模型参数分别表示玉米基因g和水稻基因h在Ui=0和Vj=0时的基线基因表达。参数捕获了沿着叶梯度的基因表达模式并且对这些参数具有主要兴趣。通过相关性来评价模型的拟合优度。
给出值U和V,我们可使用上述模型来估计表达概况。给出一组在玉米和水稻之间共有表达概况的基因,然后我们可通过估计U和V来调整梯度。重复这两个步骤产生迭代算法。然而,我们发现一些直向同源基因并不适于限定发育梯度,因为它们在2个物种之间没有相似的表达模式。最终,我们在算法中添加步骤以选择“锚定”基因组,来自2个转录组的直向同源基因的亚组,其有高度相似的表达模式,来统一发育梯度。具体地,我们从20656个玉米直向同源基因和17634个水稻直向同源基因开始,过滤减少到9845个具有最高相关性的一对一对。我们然后使用下文所述的方法将“锚定基因”的数量调整降低到3559。
以下迭代算法同时选择锚定基因,估计基因表达概况,并且估计发育梯度U和V。
算法:
1.初始化。我们设定uk>0和vk>0的对于初始步骤,我们设定每个k的uk=1/I且vk=1/J。
2.估计直向同源对的共有模式。将直向同源基因对的组表示为O。对于任意对(g,h)∈O,我们通过最大化观察和预测的基因表达之间的相关性来估计共有模式参数:
3.获得一对一类似基因对。直向同源物处于多对多关系。我们通过2个步骤选择一对一对。首先,我们选择在与玉米基因g成对时给出的最高值的水稻基因,如步骤2中计算。然后,在第一步骤之后,各玉米基因仅与一个水稻基因成对。接着,在剩余的对中,我们选择对各水稻基因hi给出的最高值的玉米基因。在2个步骤之后,我们获得一对一直向同源基因对的组,并且我们将该组表示为O*。
4.选择锚定基因。如果观察到的两个物种的基因表达与它们在步骤2中估计的共有模式有高于0.8的相关性,则选择一对直向同源基因为锚定基因:
其中是基于从步骤2估计的模型的拟合值。
5.使用锚定基因调整梯度评估使用新定义的锚定基因,其中我们在评估U和V。如步骤1所示,我们使观察到的模式和拟合的模式之间的相关性总和最大化:
其中代表来自之前步骤的ui或vj的值。当与其先前值比较时,我们在一定比率范围(0.9-1.1)内检索ui和vj的调整值以降低计算复杂度。
6.迭代。重复步骤2-5直至U和V的估计值变得稳定。在我们的分析中,5轮迭代就足够。
除了需要更多计算以外,将上述算法应用于三种或更多种物种的整体分析是简单易行的。另外,我们的算法是可行的,并且其可应用于其他表达概况模型和模型拟合标准。
共聚类拟合的玉米和水稻基因表达
在建立统一梯度U和V之后,我们使用玉米的各基因g和水稻的各基因h的基因表达Xg和Yh来分别拟合表达模式
在聚类之前,去除没有明确定义的表达模式的基因,因为这些基因由于低表达和/或其噪音性质而在我们的研究范围中兴趣较低。在聚类分析中保留在观察到的模式和拟合的模式之间相关性大于0.6的基因。
为了获得数据向量以使所有选择的玉米和水稻基因的表达模式聚类,我们在各基因的拟合表达概况上取N=15个点。这些点对应于相同的N个等距离分布的梯度(T1…TN),T1<T2<…<TN,T1=min{U1,V1}且TN=min{UI,VJ}。在此,只有在玉米和水稻观察概况之间共有的区域用于聚类分析。
使用杂交分级聚类算法来进行聚类分析。首先,我们基于K=50的泊松相关性进行了K-means聚类。我们然后基于同一时间上的平均连接将具有最高相关性的2个聚类合并。我们在任意两个不同聚类都没有超过0.9的平均相关性时停止合并。我们最终获得了K=30聚类。
功能性富集分析
基因组标注使用最近公开的玉米(万维网maizesequence.org/index.html上)和水稻(万维网rice.plantbiology.msu.edu/上)数据作为BLAST2GO软件的输入(Gotz,S.等,(2008)Nucleic Acids Res 36:3420-35)来更新。使用独特全长蛋白质序列用于BLAST并且所得的GO标注被转化成与R14的TopGO包相容的格式。然后我们按照在手册上详细说明的标准TopGO过程(Alexa,A.等,(2006)Bioinformatics 22:1600-7)用生成3个表的菲希尔统计学检验;它们含有覆盖三个GO类别的全部30个聚类的功能性富集结果:生物过程、分子功能和细胞组分。
用ELEMENT程序发现候选顺式元件
ELEMENT由几个模块组成,各自负责单个特定任务并且分开援引。第一,“bground”模块用于查询背景统计学,通常在给定物种中的一组所有启动子序列上,并且其负责在各这些参数序列上对各输入的字或基序进行计数或输出。第二,使用计数来查询前景统计学,一般在给定物种或物种组的所有参数的相关亚组上,并且通过“bground”给出计算的背景统计学,负责在各输入前景启动子序列上对各输入基序的统计学进行计数和输出。第三,使用过滤器来将大组结果减少只有显著的那些结果,过滤器检验每个字和通过计数生成的相应统计学数值,使用设为5%的Benjamini-Hochberg FDR,并且然后输出仅发现显著的结果。第四,使用聚类通过组织相似的那些来对发现显著的基序进行聚类。可在万维网element.mocklerlab.org上发现关于ELEMENT的更详细内容。
筛选候选C4-相关的顺式元件
我们使用与ELEMENT和使用双尾Wilcoxon秩-和统计的富集分析的组合方法来测试导致细胞类型特异性的潜在候选顺式元件。首先,我们基于2个之前公开的数据库构建了在玉米叶组织中BS或ME细胞中富集的基因列表(Li,P.等,(2010)Nat Genet 42:1060-7;Chang,Y.M.等,(2012)Plant Physiology)。当在两个实验中确认差异表达时,我们将相应的基因标记成细胞类型特异性。然后我们通过ELEMENT从聚类3对各顺式元件的出现及其从聚类3的所有基因的3kb上游区域中的反向互补序列进行计数。基于BS和ME-富集的基因和所有核苷酸模式计算Wilcoxon秩-和衍生的p-值。通过过滤器的那些然后用WebLogo观察(Crooks,G.E.等,(2004)Genome Res 14:1188-90)。
使用qRT-PCR验证RNA-seq结果和统一模型
使用之前描述的相同条件来使用于验证的植物独立生长(Li,P.等,(2010)NatGenet 42:1060-7;Wang,L.等,(2011)PloS one 6:e26426),用于玉米和水稻的土壤是75%Metro 360和25%Turface MVP的混合物。使用玉米和水稻的三个生物重复。
如前所述提取各区段的RNA样品(Wang,L.等,(2011)PloS one 6:e26426)。在使用第一链cDNA合成试剂盒(加利福尼亚州罗氏公司(Roche,CA))和锚定的寡-dT引物进行cDNA合成之前用DNA酶I(加利福尼亚州罗氏公司)来处理总RNA。各样品进行2次cDNA制备,阴性对照没有逆转录酶。
从通过对表示基因表达水平和聚类尺寸的各种组合的模型构建的30个聚类中的14个中选择一个玉米基因和一个水稻基因。为了精确表示基因中心RNA seq结果,选择的序列代表靶基因的所有转录本同种型。使用Oligo设计引物。
基于来自这些和之前的出版物中的RNA-测序结果选择来自玉米(GRMZM2G157598)和水稻(LOC_Os11g34450)样品的2个稳定参照基因(Li,P.等,(2010)Nat Genet 42:1060-7;Wang,L.等,(2011)PloS one 6:e26426)。对照基因试验给出了所有区段之间的统计学稳定表达,并且通过软件的2个对照基因的表达水平的几何平均来计算标准化因数。使用480SW 1.5软件(加利福尼亚州罗氏公司)中的高级相关定量来计算相对于校准基因的靶基因表达的定量。在各区段中,使用软件计算校准基因与靶基因的表达水平的比率。将比率针对沿着表达区段的表达模式进行作图。在Roche480II实时PCR机器中用480SYBR绿I主混合物(加利福尼亚州罗氏公司)使用以下程序进行反应:95℃持续5分钟,45个循环的95℃下10秒、60℃下10秒、和72℃下10秒,之后是1个循环的95℃下5秒和65℃下1分钟,样品置于95℃下没有冷却。qPCR实验中包括各样品的三个技术重复。
玉米和水稻代谢物的测量
用于代谢物测量的来自玉米和水稻植物的叶样品在与之前所述相同的条件下生长(Li,P.等,(2010)Nat Genet 42:1060-7;Wang,L.等,(2011)PloS one 6:e26426)。针对各玉米样品收集来自20-30个植物的切片,并且针对各水稻样品收集30-40个植物的切片。对玉米制备6个生物样品,并且对水稻制备4个生物样品。在-80℃下冷冻的叶材料使用低温研磨自动模型(英国纽卡斯尔的Labman公司(Labman))研磨成细粉末。使用分析天平由机器或手工对用于不同分析的样品亚等分进行称重,并且在冷冻温度下保持恒定。
如Tohge和Fernie所述,在与Finnigan LTQ-XP系统(美国赛默菲尼根公司(ThermoFinnigan))耦合的HPLC system Surveyor(美国赛默菲尼根公司)上进行通过LC-MS的次级代谢物分析。使用Xcalibur 2.1软件(美国沃特汉姆市的赛默飞世尔公司)处理所有数据。使用内部标准(sinigrin,CAS:3952-98-5)来对所得的峰区域的数据矩阵进行标准化。使用玉米(Elliger,C.A.等,(1980)Phytochemistry 19:293-297;Snook,M.E.等,(1995)Journal of Agricultural and Food Chemistry 43:2740-2745)和单子叶物种(Tohge,T.等,(2011)Plant Physiology 157:1469-1482;Matsuda,F.等,(2012)Plant Journal 70:624-636)的代谢物数据库和文献调查来进行代谢物鉴定和标注。如Tohge等(Tohge,T.等,(2011)Plant Physiology 157:1469-1482)所述进行GC-MS代谢物概况分析和碳饥饿实验。如前所述(Gibon,Y.等,(2004)Plant Cell 16:3304-3325;Sulpice,R.等,(2010)PlantCell 22:2872-2893)使用成熟的半自动96孔微量滴定板平台来进行酶活性测量。
实施例9-植物中转录因子的表达
选择11个转录因子用于在水稻和模式C4草狗尾草(Setaria viridis)中过表达(表4)。这些转录因子克隆到能够在大肠杆菌和根癌农杆菌中维持的二元载体的表达盒中。2个表达盒分别包括2x35S和ZmRbcS启动子。另外,所有 11个转录因子克隆到ZmCA1启动子之下。2个TF(GRMZM2G127537和GRMZM2G124495)克隆到ZmPepC启动子之下。所有二元载体转化到根癌农杆菌菌株LBA4404中。使用含有合适二元载体的根癌农杆菌细胞来转化狗尾草和水稻细胞。在转化植物细胞之后,使用合适的组织培养技术来使可育植物再生。
表4:克隆的二元载体
表5和6显示了分别用于转化狗尾草和水稻的构建体。构建体130790被成功地转化到狗尾草中。使用通过定量PCR的基因拷贝数来筛选单拷贝整合事件。针对之前显示为单拷贝的狗尾草PCK基因设计FAM-ZEN/Iowa Black FQ探针和引物(IDT DNA)(Xu等,(2013)Plant Mol Biol 83:77-87)。使用iQ Supermix主混合物(伯乐实验室公司)来进行定量PCR。10个事件中的6个显示为单拷贝整合。
表5:转化到狗尾草中的构建体
表6:转化到水稻中的构建体

Claims (23)

1.一种改善植物生长的方法,所述方法通过改变至少一种编码转录因子(TF)的核苷酸序列的表达,其中所述核苷酸序列选自与以下所示的序列有至少95%相同性的序列:SEQID NO:3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、93、95、97、99、101、103、105、107、109、111、113、115、117、119、121、123、125、127、129、131、133、135、137、139、141、143、145、147、149、151、153、155、157、159、161、163、165、167、169、171、173、175、177、179、181、183、185、187、189、191、193、195、197、199、201、203、205、207、209、211、213、215、217、219、221、223、225、227、229、231、233、235、237和SEQ ID NO:239、241、243、245、247、249、251、253、255、257、259、261、263、265、267、269、271、273、275、277、279、281、283、285、287、289、291、293、295、297、299、301、303、305、307、309、311、313、315、317、319、321、323、325、327、329、331、333、335、337、339、341、343、345、347、349、351、353、355、357、359、361、363、365、367、369、371、373、375、377、379、381、383、385、387、389、391、393、395、397、399、401、403、405、407、409、411、413、415、417、419、421、423、425、427、429、431、433、435、437、439、441、443、445、447、449、451、453、455、457、459、461、463、465、467、469、471、和473,并且其中所述核苷酸序列保留转录因子活性。
2.如权利要求1所述的方法,其特征在于,所述至少一种转录因子上调,使得TF的表达相对于对照植物细胞增加。
3.如权利要求1所述的方法,其特征在于,所述至少一种转录因子下调,使得TF的表达相对于对照植物细胞减少。
4.如权利要求1所述的方法,其特征在于,所述改变通过稳定插入至少一种表达构建体来实现,所述表达构建体包含在植物中驱动表达的启动子,所述启动子可操作地连接至编码至少一种转录因子的至少一种核苷酸序列。
5.如权利要求4所述的方法,其特征在于,所述启动子是组成型启动子。
6.如权利要求4所述的方法,其特征在于,所述启动子是非组成型启动子。
7.一种在植物细胞中可操作的合成启动子,所述启动子包含可操作连接至在植物细胞中可操作的至少一个核心启动子元件的SEQ ID NO:475-536和543所示的顺式调节元件中的至少一种。
8.如权利要求7所述的合成启动子,其特征在于,所述启动子包含SEQ ID NO:1所示的序列。
9.一种在植物中表达至少一种感兴趣序列的方法,所述方法通过用构建体转化所述植物,所述构建体包含可操作连接至至少一种感兴趣的编码序列的权利要求7所述的合成启动子。
10.如权利要求1所述的方法,其特征在于,所述感兴趣的植物是单子叶植物。
11.如权利要求1所述的方法,其特征在于,所述感兴趣的植物是双子叶植物。
12.一种表达构建体,包含驱动植物中表达并可操作连接至转录因子(TF)的启动子,其中所述核苷酸序列选自与以下所示的序列有至少95%相同性的序列:SEQ ID NO:3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、93、95、97、99、101、103、105、107、109、111、113、115、117、119、121、123、125、127、129、131、133、135、137、139、141、143、145、147、149、151、153、155、157、159、161、163、165、167、169、171、173、175、177、179、181、183、185、187、189、191、193、195、197、199、201、203、205、207、209、211、213、215、217、219、221、223、225、227、229、231、233、235、237和SEQ ID NO:239、241、243、245、247、249、251、253、255、257、259、261、263、265、267、269、271、273、275、277、279、281、283、285、287、289、291、293、295、297、299、301、303、305、307、309、311、313、315、317、319、321、323、325、327、329、331、333、335、337、339、341、343、345、347、349、351、353、355、357、359、361、363、365、367、369、371、373、375、377、379、381、383、385、387、389、391、393、395、397、399、401、403、405、407、409、411、413、415、417、419、421、423、425、427、429、431、433、435、437、439、441、443、445、447、449、451、453、455、457、459、461、463、465、467、469、471、和473,其中所述核苷酸序列保留转录因子活性。
13.一种用权利要求12所述的表达构建体转化的植物。
14.权利要求13所述的植物的转化的种子。
15.如权利要求13所述的植物,其特征在于,所述植物是单子叶植物。
16.如权利要求13所述的植物,其特征在于,所述植物是双子叶植物。
17.如权利要求12所述的表达构建体,还包含至少一种感兴趣的核苷酸序列。
18.一种表达构建体,包含在植物细胞中可操作的合成启动子,所述启动子包含可操作连接至在植物中可操作的至少一个核心启动子元件的SEQ ID NO:475-536和543所示的顺式调节元件中的至少一种,其中所述合成启动子可操作地连接至核苷酸序列。
19.如权利要求18所述的表达构建体,其特征在于,所述核苷酸序列是编码序列。
20.一种用权利要求18所述的表达构建体转化的植物。
21.权利要求20所述的植物的转化的种子。
22.如权利要求20所述的植物,其特征在于,所述植物是单子叶植物。
23.如权利要求20所述的植物,其特征在于,所述植物是双子叶植物。
CN201580025081.3A 2014-05-12 2015-05-11 用于增加植物生长和产量的方法和组合物 Pending CN106459982A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461991949P 2014-05-12 2014-05-12
US61/991,949 2014-05-12
US201462023432P 2014-07-11 2014-07-11
US62/023,432 2014-07-11
PCT/US2015/030146 WO2015175405A1 (en) 2014-05-12 2015-05-11 Compositions and methods for increasing plant growth and yield

Publications (1)

Publication Number Publication Date
CN106459982A true CN106459982A (zh) 2017-02-22

Family

ID=53200325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580025081.3A Pending CN106459982A (zh) 2014-05-12 2015-05-11 用于增加植物生长和产量的方法和组合物

Country Status (5)

Country Link
US (1) US20150322452A1 (zh)
EP (1) EP3143039A1 (zh)
CN (1) CN106459982A (zh)
BR (1) BR112016026136A2 (zh)
WO (1) WO2015175405A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695041A (zh) * 2019-10-22 2021-04-23 华南农业大学 ZmSBP28基因在调控玉米株型中的用途
CN113621036A (zh) * 2020-05-06 2021-11-09 中国科学院遗传与发育生物学研究所 水稻氮代谢调控蛋白are4及其编码基因的应用
CN114456242A (zh) * 2022-01-18 2022-05-10 湖南杂交水稻研究中心 Prp蛋白及其编码基因和应用
CN116590337A (zh) * 2023-04-21 2023-08-15 中国科学院华南植物园 水稻转录因子OsbZIP13及其编码序列的应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180066026A1 (en) * 2014-12-17 2018-03-08 Ei Du Pont De Nemours And Company Modulation of yep6 gene expression to increase yield and other related traits in plants
WO2019090017A1 (en) * 2017-11-02 2019-05-09 Yield10 Bioscience, Inc. Genes and gene combinations for enhanced crops
CN108034654B (zh) * 2018-01-22 2020-06-02 中国农业科学院作物科学研究所 与水稻苗期根长相关的snp分子标记及其应用
WO2020176224A1 (en) * 2019-02-27 2020-09-03 Donald Danforth Plant Science Center Antimicrobial ncr2 peptides
CN110872590B (zh) * 2019-11-14 2022-03-29 南京农业大学 转录因子OsTBP2.1的应用
CN111518810B (zh) * 2020-05-18 2023-06-09 四川农业大学 玉米zma-miR164e及其靶基因在调控籽粒大小中的应用
CN112552383B (zh) * 2020-12-07 2022-03-22 中国科学院遗传与发育生物学研究所 转录因子hinge1在调控植物氮-磷稳态中的应用
CN112812163B (zh) * 2021-03-05 2022-08-30 贵州大学 转录因子在水稻育种中的应用以及水稻育种的方法
CN115820667A (zh) * 2022-10-14 2023-03-21 南通大学 水稻最外层细胞特异性基因6在水稻育种中的作用
CN115700282B (zh) * 2022-12-21 2023-11-03 河南大学三亚研究院 一种玉米抗旱基因Zm00001d030678及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080229439A1 (en) * 1999-05-06 2008-09-18 La Rosa Thomas J Nucleic acid molecules and other molecules associated with transcription in plants and uses thereof for plant improvement
CN101365786A (zh) * 2005-12-01 2009-02-11 克罗普迪塞恩股份有限公司 具有改良的生长特征的植物及其生产方法
CN101415829A (zh) * 2006-03-31 2009-04-22 巴斯福植物科学有限公司 具有增强的产量相关性状的植物和用于产生该植物的方法
US20090144847A1 (en) * 2007-10-31 2009-06-04 Faten Shaikh Genes and uses for plant enhancement
WO2010075143A1 (en) * 2008-12-22 2010-07-01 Monsanto Technology Llc Genes and uses for plant enhancement
CN101802202A (zh) * 2007-05-03 2010-08-11 巴斯夫植物科学有限公司 具有增强的产量相关性状的植物和用于制备该植物的方法
US20110214206A1 (en) * 1999-05-06 2011-09-01 La Rosa Thomas J Nucleic acid molecules and other molecules associated with plants
WO2011109661A1 (en) * 2010-03-04 2011-09-09 Mendel Biotechnology Inc. Transcription regulators for improving plant performance

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858848B2 (en) * 1999-11-17 2010-12-28 Mendel Biotechnology Inc. Transcription factors for increasing yield
US20090087878A9 (en) * 1999-05-06 2009-04-02 La Rosa Thomas J Nucleic acid molecules associated with plants
US7750207B2 (en) * 2004-09-01 2010-07-06 Monsanto Technology Llc Zea mays ribulose bisphosphate carboxylase activase promoter
EP2436771B1 (en) * 2006-03-31 2015-08-19 BASF Plant Science GmbH Plants having enhanced yield-related traits and a method for making the same
AU2012245957A1 (en) * 2011-04-22 2013-10-31 Basf Plant Science Company Gmbh Plants having enhanced yield-related traits and method for making the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080229439A1 (en) * 1999-05-06 2008-09-18 La Rosa Thomas J Nucleic acid molecules and other molecules associated with transcription in plants and uses thereof for plant improvement
US20110214206A1 (en) * 1999-05-06 2011-09-01 La Rosa Thomas J Nucleic acid molecules and other molecules associated with plants
CN101365786A (zh) * 2005-12-01 2009-02-11 克罗普迪塞恩股份有限公司 具有改良的生长特征的植物及其生产方法
CN101415829A (zh) * 2006-03-31 2009-04-22 巴斯福植物科学有限公司 具有增强的产量相关性状的植物和用于产生该植物的方法
CN101802202A (zh) * 2007-05-03 2010-08-11 巴斯夫植物科学有限公司 具有增强的产量相关性状的植物和用于制备该植物的方法
US20090144847A1 (en) * 2007-10-31 2009-06-04 Faten Shaikh Genes and uses for plant enhancement
WO2010075143A1 (en) * 2008-12-22 2010-07-01 Monsanto Technology Llc Genes and uses for plant enhancement
WO2011109661A1 (en) * 2010-03-04 2011-09-09 Mendel Biotechnology Inc. Transcription regulators for improving plant performance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695041A (zh) * 2019-10-22 2021-04-23 华南农业大学 ZmSBP28基因在调控玉米株型中的用途
CN112695041B (zh) * 2019-10-22 2024-03-26 华南农业大学 ZmSBP28基因在调控玉米株型中的用途
CN113621036A (zh) * 2020-05-06 2021-11-09 中国科学院遗传与发育生物学研究所 水稻氮代谢调控蛋白are4及其编码基因的应用
CN113621036B (zh) * 2020-05-06 2023-06-27 中国科学院遗传与发育生物学研究所 水稻氮代谢调控蛋白are4及其编码基因的应用
CN114456242A (zh) * 2022-01-18 2022-05-10 湖南杂交水稻研究中心 Prp蛋白及其编码基因和应用
CN114456242B (zh) * 2022-01-18 2024-04-26 湖南杂交水稻研究中心 Prp蛋白及其编码基因和应用
CN116590337A (zh) * 2023-04-21 2023-08-15 中国科学院华南植物园 水稻转录因子OsbZIP13及其编码序列的应用
CN116590337B (zh) * 2023-04-21 2023-12-05 中国科学院华南植物园 水稻转录因子OsbZIP13及其编码序列的应用

Also Published As

Publication number Publication date
BR112016026136A2 (pt) 2018-02-20
US20150322452A1 (en) 2015-11-12
WO2015175405A1 (en) 2015-11-19
EP3143039A1 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
CN106459982A (zh) 用于增加植物生长和产量的方法和组合物
US10590430B2 (en) Methods for increasing plant growth and yield by using an ictB sequence
CN108064301A (zh) 使用稻启动子增加植物生长和产量的方法和组合物
Wuddineh et al. Identification and molecular characterization of the switchgrass AP2/ERF transcription factor superfamily, and overexpression of PvERF001 for improvement of biomass characteristics for biofuel
CN103911392A (zh) 具有改善生长特征的木本植物以及使用转录因子制备它们的方法
US11572570B2 (en) Expression of dicarboxylate transporter from setaria italica in transgenic plants to increase yield
CN109311953A (zh) 使用苯丙氨酸脱氨酶序列增加植物生长和产量
Yuan et al. Genome-wide analysis of R2R3-MYB transcription factors family in the autopolyploid Saccharum spontaneum: an exploration of dominance expression and stress response
WO2011002945A1 (en) Soybean transcription factors and other genes and methods of their use
Miguel et al. Characterization of the cork oak transcriptome dynamics during acorn development
Zheng et al. Identification of flowering regulatory networks and hub genes expressed in the leaves of Elymus sibiricus L. using comparative transcriptome analysis
CN109563519A (zh) 使用硫氧还蛋白序列增加植物生长和产量
EP3166965B1 (en) Compositions and methods for increasing plant growth and yield
Muthamilarasan et al. Genomic dissection and expression analysis of stress-responsive genes in C4 panicoid models, Setaria italica and Setaria viridis
Dong et al. The sweet potato B-box transcription factor gene IbBBX28 negatively regulates drought tolerance in transgenic Arabidopsis
Zhao et al. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways
CN110114467A (zh) 使用erf转录因子序列增加植物生长和产量
CN109642239A (zh) 使用psan序列增加植物生长和产量
JP6121457B2 (ja) 改善された成長特性を有する植物
Park et al. Time-course transcriptomic analysis of Petunia× hybrida leaves under water deficit stress using RNA sequencing
Gray et al. Methods for increasing plant growth and yield by using an ictB sequence
Muthamilarasan et al. Molecular characterization and differential expression reveal functional divergence of stress-responsive enzymes in C4 panicoid models, Setaria italica and Setaria viridis
Jue et al. Identification of LEAFY gene in longan involved in flower induction
Zolfaghar et al. Comparative Transcriptome Analysis of Hypocotyls During the Developmental Transition of C3 cotyledons to C4 Leaves in Halimocnemis mollissima Bunge
Yao et al. De novo characterization of the Camellia sinensis transcriptome and comprehensive analysis of the diploid and triploid leaf morphological differences

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170222

WD01 Invention patent application deemed withdrawn after publication