CN106434663A - CRISPR/Cas9靶向敲除人ezrin基因增强子关键区的方法及其特异性gRNA - Google Patents
CRISPR/Cas9靶向敲除人ezrin基因增强子关键区的方法及其特异性gRNA Download PDFInfo
- Publication number
- CN106434663A CN106434663A CN201610889009.1A CN201610889009A CN106434663A CN 106434663 A CN106434663 A CN 106434663A CN 201610889009 A CN201610889009 A CN 201610889009A CN 106434663 A CN106434663 A CN 106434663A
- Authority
- CN
- China
- Prior art keywords
- ezrin
- people
- grna
- sequence
- key area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明属于分子生物学领域,具体涉及CRISPR/Cas9靶向敲除人ezrin基因增强子关键区的方法及其特异性gRNA,本发明根据CRISPR/Cas9的设计原则,在人ezrin基因增强子关键区的上下游设计两个靶位点,合成相应的寡核苷酸序列,并连接至载体pX459上构建重组质粒,将其转染人食管癌细胞株,能够特异性敲除人ezrin基因增强子关键区。本发明对研究以人ezrin基因增强子为靶点的肿瘤临床治疗具有重要意义。
Description
技术领域
本发明属于分子生物学领域,具体涉及的是CRISPR/Cas9靶向敲除人食管癌细胞ezrin基因增强子关键区的方法以及用于靶向的人ezrin基因增强子关键区的gRNA。
背景技术
CRISPR/Cas(clustered regularly interspaced short palindromic repeats-associated)是很多细菌和大部分古生菌的天然免疫系统,通过对入侵的病毒和核酸进行特异性的识别,利用Cas蛋白进行切割,从而达到对自身的免疫。CRISPR/Cas9系统借鉴细菌的防御策略,由gRNA(guide RNA)寻找特定的DNA序列,然后利用Cas9核酸内切酶对靶DNA进行切割,造成双链断裂,在没有模板的情况下,发生非同源末端连接,造成DNA缺失突变(Shalem O,Sanjana NE,Hartenian E,et al.Genome-scale CRISPR-Cas9 knockoutscreening in human cells.Science,2014,343(6166):84-87.)。
肿瘤相关基因ezrin在食管癌、鼻咽癌、肺癌、胰腺癌等多种肿瘤中存在异常表达现象,其表达上调与肿瘤细胞的移动侵袭相关,抑制ezrin基因的过表达可有效阻止食管癌等肿瘤细胞的侵袭移动(Yang L,Guo T,Jiang S,et al.Expression of ezrin,HGF andc-met and its clinicopathological significance in the benign and malignantlesions of the gallbladder.Hepatogastroenterology,2012,59(118):1769-1775.)。我们既往采用双荧光素酶报告基因检测系统研究发现,在人ezrin基因编码区的上游存在启动子和增强子区(Gao SY,Li EM,Cui L,et al.Sp1 and AP-1 regulate expression ofthe human gene VIL2 in esophageal carcinoma cells.J Biol Chem,2009,284(12):7995-8004.),增强子关键区(如图1)很可能是决定ezrin基因在食管癌等肿瘤细胞中过高表达的关键因素,有望成为控制ezrin基因表达的有效靶点(张青峰,卫金岐,张芳婷,等.几种肿瘤细胞中ezrin基因增强子区转录调控特性的研究.中国细胞生物学学报,2014,36(5):610-616.)。人ezrin基因增强子关键区为非转录区域,不能用传统的RNA干扰的方法进行研究。而采用CRISPR/Cas9系统,在人ezrin基因增强子关键区的上游和下游分别设计筛选1个特异性gRNA靶位点,对2个靶位点同时进行双链断裂,有望实现人ezrin增强子关键区的靶向敲除。靶向敲除人ezrin基因增强子关键区,对于研究人ezrin基因增强子在Ezrin蛋白过表达中的调控作用,以及研究人ezrin基因增强子与肿瘤细胞生物学行为之间的关系具有重要意义。
发明内容
本发明的目的在于通过设计、构建和检测,提供靶向人ezrin基因增强子关键区的gRNA及其靶位点序列,并用其实现ezrin基因增强子关键区的靶向敲除。
为实现上述目的,本发明以CRISPR/Cas9系统原理和gRNA设计原则为基础,利用软件设计2个gRNA,分别靶向人ezrin基因增强子关键区的上游和下游,合成gRNA相对应的正向和反向互补寡核苷酸链,退火后形成双链,连接至载体pX459构建重组质粒;将重组质粒转染食管癌EC109细胞中进行靶位点敲除验证。本发明提供的gRNA能够实现人ezrin基因增强子关键区的特异性敲除,对于研究人ezrin基因增强子在Ezrin蛋白过表达中的调控作用,以及研究人ezrin基因增强子与肿瘤细胞生物学行为之间的关系具有重要意义。
本发明申请的技术方案如下:
1、靶向人ezrin基因增强子关键区的gRNA设计,gRNA对应的寡核苷酸链的合成,携带gRNA寡核苷酸链的CRISPR/Cas9重组质粒构建。
2、在肿瘤细胞模型中分析鉴定本发明gRNA指导的CRISPR/Cas9系统对于靶向敲除人ezrin基因增强子关键区的特异性。
一种CRISPR/Cas9靶向敲除人ezrin基因增强子关键区中用于特异性靶向人ezrin基因增强子关键区的gRNA:
1)、所述gRNA在人ezrin基因的靶序列符合5′-N(20)-NGG-3′或者5′-CCN-N(20)-3′序列的排列规则;
2)、所述gRNA在人ezrin基因的靶序列是唯一的;
3)、所述gRNA在人ezrin基因的靶序列位于人ezrin基因增强子区。
上述CRISPR/Cas9靶向敲除人ezrin基因增强子关键区中用于特异性靶向人ezrin基因增强子关键区的gRNA,其对应的DNA序列如序列表SEQ ID NO.1-2任意一条序列所示。
一种CRISPR/Cas9靶向敲除人ezrin基因增强子关键区的方法,该方法用于非诊断或治疗目的,步骤如下:
1)、如上述CRISPR/Cas9靶向敲除人ezrin基因增强子关键区中用于特异性靶向人ezrin基因增强子关键区的gRNA,在gRNA序列SEQ ID NO.1的互补链的5′端加上CACCG,合成得到正向寡核苷酸,在所述的SEQ ID NO.1序列的5′端加上AAAC,3′端加上C,合成得到反向寡核苷酸链。在gRNA序列SEQ ID NO.2的5′端加上CACC,合成得到正向寡核苷酸,在所述的SEQ ID NO.2所述序列的互补链的5′端加上AAAC,合成得到反向寡核苷酸链。将合成的一对互补正、反寡核苷酸链退火,形成双链gRNA寡核苷酸链;
2)、将载体pX459经酶BbsⅠ切反应线性化,与上述双链gRNA寡核苷酸链连接,连接产物转化大肠杆菌DH5α感受态细胞,在氨苄青霉素抗性平板上筛选阳性克隆,提取质粒进行测序鉴定,构建重组质粒pX459-sgRNA1和pX459-sgRNA2;
3)、采用LipofectamineTM 2000转染试剂将质粒pX459-sgRNA1和pX459-sgRNA2共转染至人食管癌EC109细胞,提取细胞基因组DNA进行PCR扩增,扩增产物连接至载体pMD18-T,测序鉴定所构建的重组质粒分别在预定位点对基因组DNA进行的切割,实现人ezrin基因增强子关键区的靶向敲除。
本发明根据CRISPR/Cas9的设计原则,在人ezrin基因增强子关键区的上下游设计两个靶位点,合成相应的寡核苷酸序列,并连接至载体pX459上构建重组质粒,将其转染人食管癌细胞株,能够特异性敲除人ezrin基因增强子关键区。本发明对研究以人ezrin基因增强子为靶点的肿瘤临床治疗具有重要意义。
附图说明
图1为人ezrin基因增强子关键区结构示意图;
图2为重组质粒测序鉴定图;
图3为转染细胞基因突变的PCR鉴定图;
图4为亚克隆测序的CLUSTAL序列比对分析图;
图5为亚克隆测序图。
具体实施方式
下面结合具体实施例和附图进一步阐述本发明。
实施例1 靶向人ezrin基因增强子关键区的gRNA设计以及载体构建
1、靶向人ezrin基因增强子关键区的gRNA设计及寡核苷酸链的合成
从Genebank中查找人ezrin基因序列(http://www.ncbi.nlm.nih.gov/gene/ 7430),利用在线软件http://www.e-crisp.org/E-CRISP/设计gRNA靶位点,分别位于人ezrin基因增强子关键区(–1297/–1186)的上游和下游。在本发明中将gRNA对应的DNA序列又称为gRNA序列,是gRNA在目标基因上的靶位点。gRNA对应的寡核苷酸链(Oligo DNA)按照5′-G(N)20NGG-3′的PAM结构(protospacer adjacent motif)为设计原则,选择分值较高的序列,如果序列的正向寡核苷酸链(Forward oligo)5′端第一个碱基不是G,则在5′端添加一个G,相应地在反向寡核苷酸链(Reverse oligo)的3′端添加一个C。同时在每对互补序列的正向寡核苷酸链的5′端添加CACC,反向寡核苷酸链的5′端添加AAAC,使其退火后形成的末端与pSpCas9(BB)-2A-Puro质粒(Addgene plasmid ID:48139,以下简称pX459)经BbsⅠ酶切后形成的黏性末端互补。本发明设计筛选的gRNA1靶向人ezrin基因增强子关键区的上游(–1319/–1300),gRNA2靶向人ezrin基因增强子关键区的下游(–1192/–1173)。在gRNA1序列SEQ ID NO.1的互补链的5′端加上CACCG,合成得到正向寡核苷酸SEQ ID NO.3,在SEQ IDNO.1序列的5′端加上AAAC,3′端加上C,合成得到反向寡核苷酸链SEQ ID NO.4。在gRNA2对应的DNA序列SEQ ID NO.2的5′端加上CACC,合成得到正向寡核苷酸SEQ ID NO.5,在SEQ IDNO.2所述序列的互补链的5′端加上AAAC,合成得到反向寡核苷酸链SEQ ID NO.6。
2、靶向人ezrin基因增强子关键区的CRISPR/Cas9重组质粒构建
将上述寡核苷酸链稀释至终浓度为100μM,进行退火反应。反应体系如下:两条互补Oligo DNA各0.5μl,2μl Annealing Buffer(10×),17μl ddH2O。将以上体系瞬时离心后,置于65℃水浴中孵育10min,随后取出,室温下缓慢冷却1~2h。退火后形成的双链如下:
gRNA1 Forward oligo:5′-CACCGCTCCCCTCGCAGATGCAAGT-3′
Reverse oligo:3′-CGAGGGGAGCGTCTACGTTCACAAA-5′
gRNA2 Forward oligo:5′-CACCGGTCCCGGGACCCGCCCCGC-3′
Reverse oligo:3′-CCAGGGCCCTGGGCGGGGCGCAAA-5′
将载体pX459进行Bbs I(NEB,Code No.R0539S)酶切反应,纯化回收目的片段,与上述gRNA1和gRNA2杂交双链DNA分别连接,构建重组质粒pX459-sgRNA1和pX459-sgRNA2。连接反应体系如下:2μl杂交双链DNA,2μl pX459酶切片段,1μl T4 DNA ligation buffer,1μl T4 DNA Ligase(TAKARA,Code No.2011B),4μl ddH2O。将以上体系瞬时离心后,置于16℃水浴中孵育2h。连接产物转化大肠杆菌DH5α感受态细胞,在氨苄青霉素抗性平板上筛选阳性克隆,提取质粒进行测序鉴定。测序鉴定引物序列见SEQ ID NO.7。
测序结果如图2所示,图中A:重组质粒pX459-sgRNA1,实线框为gRNA1序列;B:重组质粒pX459-sgRNA2,虚线框为gRNA2序列。测序结果表明,分别位于人ezrin基因增强子关键区上游和下游的gRNA1和gRNA2序列在载体pX459上的连接位置和方向完全正确,重组质粒pX459-sgRNA1和pX459-sgRNA2构建成功。
实施例2 细胞培养及CRISPR/Cas9重组质粒转染
人食管癌EC109细胞在含10%灭活胎牛血清的DMEM培养基中贴壁生长,用含0.25%胰蛋白酶和0.02%EDTA的消化液消化细胞,进行传代培养。将细胞接种于96孔细胞培养板,每孔100μl。24h后细胞汇合率达50%~60%时即可用于转染。采用脂质体法共转染质粒pX459-sgRNA1和pX459-sgRNA2,转染步骤参照LipofectamineTM 2000转染试剂说明进行。
实施例3 人食管癌细胞ezrin增强子关键区靶向敲除检测
重组质粒pX459-sgRNA1和pX459-sgRNA2共转染食管癌EC109细胞48h后,不经抗性筛选直接收取细胞。以细胞基因组DNA为模板,PCR扩增ezrin基因增强子DNA序列。PCR引物位于拟敲除序列的上、下游,引物序列见SEQ ID NO.8和SEQ ID NO.9。
gRNA1和gRNA2序列分别位于ezrin增强子关键区的两侧,预计非突变基因组DNA扩增片段长766bp(ezrin基因-1543/-778序列);突变基因组DNA删除147bp(ezrin基因-1319/-1173序列),扩增片段长约619bp。PCR产物琼脂糖凝胶电泳检测结果见附图3,图中,M:DL 1 000 DNA marker;1:对照EC109细胞;2:共转染质粒pX459-sgRNA1和pX459-sgRNA2的EC109细胞。由于质粒转染细胞后未经药物抗性筛选,存在ezrin基因增强子关键区未被敲除的细胞,因此在对照组和转染组均能检测到与预计766bp相符的目的条带,为ezrin基因增强子关键区非缺失突变片段大小。而转染组还检测到小于700bp的微弱条带,有可能是CRISPR/Cas9系统在EC109细胞基因组上导致了定点突变。
将共转染重组质粒的EC109细胞基因组PCR产物与pMD18-T(TAKARA,CodeNo.6011)连接,转化大肠杆菌DH5α感受态细胞,在氨苄青霉素抗性平板上筛选阳性克隆。随机取20个克隆进行测序鉴定。测序引物序列SEQ ID NO.10。
在测序的20个克隆中,有2个克隆(编号为CL-3和CL-20)在人ezrin增强子关键区发生了碱基的缺失,20个克隆的测序比对分析结果见图4。克隆CL-3、CL-10、CL-19和CL-20测序结果见图5,图中,A:克隆CL-10;B:克隆CL-3;C:克隆CL-19;D:克隆CL-20。深色区域为人ezrin基因增强子关键区gRNA靶位点两侧序列,实线框为gRNA1靶位点,虚线框为gRNA2靶位点,结果显示,CRISPR/Cas9重组质粒pX459-sgRNA1和pX459-sgRNA2分别在预定位点对基因组DNA进行的切割,实现人ezrin基因增强子关键区的靶向敲除。
SEQUENCE LISTING
<110> 遵义医学院
<120> CRISPR/Cas9靶向敲除人ezrin基因增强子关键区的方法及其特异性gRNA
<130> 2016
<160> 10
<170> PatentIn version 3.3
<210> 1
<211> 20
<212> DNA
<213> 人工序列
<400> 1
acttgcatct gcgaggggag 20
<210> 2
<211> 20
<212> DNA
<213> 人工序列
<400> 2
ggtcccggga cccgccccgc 20
<210> 3
<211> 25
<212> DNA
<213> 人工序列
<400> 3
caccgctccc ctcgcagatg caagt 25
<210> 4
<211> 25
<212> DNA
<213> 人工序列
<400> 4
aaacacttgc atctgcgagg ggagc 25
<210> 5
<211> 24
<212> DNA
<213> 人工序列
<400> 5
caccggtccc gggacccgcc ccgc 24
<210> 6
<211> 24
<212> DNA
<213> 人工序列
<400> 6
aaacgcgggg cgggtcccgg gacc 24
<210> 7
<211> 22
<212> DNA
<213> 人工序列
<400> 7
ccaagtagga aagtcccata ag 22
<210> 8
<211> 21
<212> DNA
<213> 人工序列
<400> 8
cacaaacgtg ccacttaacc a 21
<210> 9
<211> 21
<212> DNA
<213> 人工序列
<400> 9
aaccgtcaag cctttgagaa a 21
<210> 10
<211> 24
<212> DNA
<213> 人工序列
<400> 10
cgccagggtt ttcccagtca cgac 24
Claims (3)
1.一种CRISPR/Cas9靶向敲除人ezrin基因增强子关键区中用于特异性靶向人ezrin基因增强子关键区的gRNA,其特征为:
1)、所述gRNA在人ezrin基因的靶序列符合5′-N(20)-NGG-3′或者5′-CCN-N(20)-3′序列的排列规则;
2)、所述gRNA在人ezrin基因的靶序列是唯一的;
3)、所述gRNA在人ezrin基因的靶序列位于人ezrin基因增强子区。
2.如权利要求1所述的CRISPR/Cas9靶向敲除人ezrin基因增强子关键区中用于特异性靶向人ezrin基因增强子关键区的gRNA,其特征为:其对应的DNA序列如序列表SEQ IDNO.1-2任意一条序列所示。
3.一种CRISPR/Cas9靶向敲除人ezrin基因增强子关键区的方法,该方法用于非诊断或治疗目的,其特征为如下步骤:
1)、如权利要求1-2任意一项所述的gRNA,在gRNA序列SEQ ID NO.1的互补链的5′端加上CACCG,合成得到正向寡核苷酸,在所述的SEQ ID NO.1序列的5′端加上AAAC,3′端加上C,合成得到反向寡核苷酸链。在gRNA序列SEQ ID NO.2的5′端加上CACC,合成得到正向寡核苷酸,在所述的SEQ ID NO.2所述序列的互补链的5′端加上AAAC,合成得到反向寡核苷酸链。将合成的一对互补正、反寡核苷酸链退火,形成双链gRNA寡核苷酸链;
2)、将载体pX459经酶BbsⅠ切反应线性化,与上述双链gRNA寡核苷酸链连接,连接产物转化大肠杆菌DH5α感受态细胞,在氨苄青霉素抗性平板上筛选阳性克隆,提取质粒进行测序鉴定,构建重组质粒pX459-sgRNA1和pX459-sgRNA2;
3)、采用LipofectamineTM2000转染试剂将质粒pX459-sgRNA1和pX459-sgRNA2共转染至人食管癌EC109细胞,提取细胞基因组DNA进行PCR扩增,扩增产物连接至载体pMD18-T,测序鉴定所构建的重组质粒分别在预定位点对基因组DNA进行的切割,实现人ezrin基因增强子关键区的靶向敲除。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610889009.1A CN106434663A (zh) | 2016-10-12 | 2016-10-12 | CRISPR/Cas9靶向敲除人ezrin基因增强子关键区的方法及其特异性gRNA |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610889009.1A CN106434663A (zh) | 2016-10-12 | 2016-10-12 | CRISPR/Cas9靶向敲除人ezrin基因增强子关键区的方法及其特异性gRNA |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106434663A true CN106434663A (zh) | 2017-02-22 |
Family
ID=58174227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610889009.1A Pending CN106434663A (zh) | 2016-10-12 | 2016-10-12 | CRISPR/Cas9靶向敲除人ezrin基因增强子关键区的方法及其特异性gRNA |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106434663A (zh) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
WO2019237392A1 (zh) * | 2018-06-16 | 2019-12-19 | 深圳市博奥康生物科技有限公司 | CRISPR/Cas9靶向敲除人SLEB2基因及其特异性gRNA |
WO2019237394A1 (zh) * | 2018-06-16 | 2019-12-19 | 深圳市博奥康生物科技有限公司 | 一种应用CRISPR/Cas9系统靶向敲除人ALPS5基因的方法 |
WO2019237391A1 (zh) * | 2018-06-16 | 2019-12-19 | 深圳市博奥康生物科技有限公司 | CRISPR/Cas9 靶向敲除人 TXGP1 基因及其特异性 gRNA |
WO2020000458A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | 一种特异靶向人NGL基因的gRNA导向序列及其应用 |
WO2020000457A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | 一种特异靶向人KAT13D基因的gRNA导向序列及其应用 |
WO2020000464A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | 一种制备gl-r基因敲除小鼠的方法 |
WO2020000436A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | 一种特异靶向人INDO基因的gRNA导向序列及其应用 |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
CN111518805A (zh) * | 2020-04-30 | 2020-08-11 | 北京航空航天大学 | 一种可用于抑制肿瘤增殖的非编码基因及其应用 |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
CN113278619A (zh) * | 2021-07-19 | 2021-08-20 | 广东省农业科学院动物科学研究所 | 双sgRNA、基因敲除载体、基因敲除STING基因的猪成纤维细胞系及其构建方法 |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1908169A (zh) * | 2006-08-09 | 2007-02-07 | 汕头大学医学院 | 人食管癌细胞ezrin基因启动子 |
CN1966685A (zh) * | 2006-11-21 | 2007-05-23 | 汕头大学医学院 | 人食管癌细胞ezrin基因上游转录调控元件 |
CN105518135A (zh) * | 2015-05-22 | 2016-04-20 | 深圳市第二人民医院 | CRISPR-Cas9特异性敲除猪CMAH基因的方法及用于特异性靶向CMAH基因的sgRNA |
-
2016
- 2016-10-12 CN CN201610889009.1A patent/CN106434663A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1908169A (zh) * | 2006-08-09 | 2007-02-07 | 汕头大学医学院 | 人食管癌细胞ezrin基因启动子 |
CN1966685A (zh) * | 2006-11-21 | 2007-05-23 | 汕头大学医学院 | 人食管癌细胞ezrin基因上游转录调控元件 |
CN105518135A (zh) * | 2015-05-22 | 2016-04-20 | 深圳市第二人民医院 | CRISPR-Cas9特异性敲除猪CMAH基因的方法及用于特异性靶向CMAH基因的sgRNA |
Non-Patent Citations (2)
Title |
---|
GAO SY ET AL.: "Sp1 and AP-1 regulate expression of the human gene VIL2 in esophageal carcinoma cells", 《J BIOL CHEM》 * |
张青峰 等: "几种肿瘤细胞中ezrin基因增强子区转录调控特性的研究", 《中国细胞生物学学报》 * |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
WO2019237392A1 (zh) * | 2018-06-16 | 2019-12-19 | 深圳市博奥康生物科技有限公司 | CRISPR/Cas9靶向敲除人SLEB2基因及其特异性gRNA |
WO2019237394A1 (zh) * | 2018-06-16 | 2019-12-19 | 深圳市博奥康生物科技有限公司 | 一种应用CRISPR/Cas9系统靶向敲除人ALPS5基因的方法 |
WO2019237391A1 (zh) * | 2018-06-16 | 2019-12-19 | 深圳市博奥康生物科技有限公司 | CRISPR/Cas9 靶向敲除人 TXGP1 基因及其特异性 gRNA |
WO2020000458A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | 一种特异靶向人NGL基因的gRNA导向序列及其应用 |
WO2020000464A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | 一种制备gl-r基因敲除小鼠的方法 |
WO2020000457A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | 一种特异靶向人KAT13D基因的gRNA导向序列及其应用 |
WO2020000436A1 (zh) * | 2018-06-29 | 2020-01-02 | 深圳市博奥康生物科技有限公司 | 一种特异靶向人INDO基因的gRNA导向序列及其应用 |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
CN111518805A (zh) * | 2020-04-30 | 2020-08-11 | 北京航空航天大学 | 一种可用于抑制肿瘤增殖的非编码基因及其应用 |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
CN113278619B (zh) * | 2021-07-19 | 2021-10-15 | 广东省农业科学院动物科学研究所 | 双sgRNA、基因敲除载体、基因敲除STING基因的猪成纤维细胞系及其构建方法 |
CN113278619A (zh) * | 2021-07-19 | 2021-08-20 | 广东省农业科学院动物科学研究所 | 双sgRNA、基因敲除载体、基因敲除STING基因的猪成纤维细胞系及其构建方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106434663A (zh) | CRISPR/Cas9靶向敲除人ezrin基因增强子关键区的方法及其特异性gRNA | |
CN107523567A (zh) | 一种敲除人ezrin基因增强子的食管癌细胞株的构建方法 | |
CN103224947B (zh) | 一种基因打靶系统 | |
Heinzen et al. | Use of pulsed field gel electrophoresis to differentiate Coxiella burnetii strains. | |
CN106906242A (zh) | 一种提高CRIPSR/Cas9靶向敲除基因产生非同源性末端接合效率的方法 | |
Lee et al. | Sequence analysis of two cryptic plasmids from Bifidobacterium longum DJO10A and construction of a shuttle cloning vector | |
CN106399377A (zh) | 一种基于CRISPR/Cas9高通量技术筛选药物靶点基因的方法 | |
CN104109687A (zh) | 运动发酵单胞菌CRISPR-Cas9系统的构建与应用 | |
CN105567689A (zh) | CRISPR/Cas9靶向敲除人TCAB1基因及其特异性gRNA | |
CN104212836A (zh) | 一种在哺乳动物细胞系中敲除mir-505的方法 | |
CN110551761B (zh) | CRISPR/Sa-SepCas9基因编辑系统及其应用 | |
CN110577971B (zh) | CRISPR/Sa-SauriCas9基因编辑系统及其应用 | |
CN111778289A (zh) | 一种利用CRISPR-Cas9靶向敲除鸡Bmp4基因的方法 | |
CN105567718A (zh) | 一种同时表达多个sgRNA的载体的构建方法 | |
Duarte et al. | Development of a simple and rapid Agrobacterium tumefaciens‐mediated transformation system for the entomopathogenic fungus Metarhizium anisopliae var. acridum | |
CN103820486B (zh) | 一种谷氨酸棒杆菌启动子探针载体及其构建方法和应用 | |
CN109837301B (zh) | 人源化幽门螺旋杆菌cagA真核表达载体构建方法 | |
CN105483034B (zh) | 一种转换酵母交配型的方法 | |
CN116676291A (zh) | 核酸内切酶Genie scissor及其介导的基因编辑系统 | |
CN112029699B (zh) | 一种基于内源CRISPR-Cas系统的丁酸梭菌基因编辑系统及其应用 | |
CN106995821A (zh) | Jurkat-KI-R5细胞系及其构建方法和应用 | |
CN104388456A (zh) | 一种同时表达两条sgRNA的载体的构建方法 | |
CN110004145B (zh) | 一种sgRNA、敲除载体、KLF4基因的敲除方法及其应用 | |
CN110499335B (zh) | CRISPR/SauriCas9基因编辑系统及其应用 | |
CN109777798A (zh) | 一种基于CRISPR技术治疗KRAS突变恶性肿瘤的sgRNA及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170222 |