CN106404748B - A kind of multiline combination laser induced breakdown spectroscopy cereal crops Production area recognition method - Google Patents
A kind of multiline combination laser induced breakdown spectroscopy cereal crops Production area recognition method Download PDFInfo
- Publication number
- CN106404748B CN106404748B CN201610802039.4A CN201610802039A CN106404748B CN 106404748 B CN106404748 B CN 106404748B CN 201610802039 A CN201610802039 A CN 201610802039A CN 106404748 B CN106404748 B CN 106404748B
- Authority
- CN
- China
- Prior art keywords
- spectral
- rice
- sample
- identification
- induced breakdown
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 238000002536 laser-induced breakdown spectroscopy Methods 0.000 title claims abstract description 41
- 235000013339 cereals Nutrition 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 33
- 230000003595 spectral effect Effects 0.000 claims abstract description 123
- 235000007164 Oryza sativa Nutrition 0.000 claims abstract description 112
- 235000009566 rice Nutrition 0.000 claims abstract description 112
- 238000004458 analytical method Methods 0.000 claims abstract description 18
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 15
- 238000012706 support-vector machine Methods 0.000 claims abstract description 9
- 238000001228 spectrum Methods 0.000 claims description 37
- 238000012549 training Methods 0.000 claims description 20
- 238000013145 classification model Methods 0.000 claims description 17
- 238000013507 mapping Methods 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 11
- 238000010606 normalization Methods 0.000 claims description 9
- 238000002360 preparation method Methods 0.000 claims description 7
- 238000012360 testing method Methods 0.000 claims description 7
- 238000012272 crop production Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 4
- 238000013480 data collection Methods 0.000 claims description 2
- 238000011156 evaluation Methods 0.000 claims description 2
- 238000005457 optimization Methods 0.000 claims description 2
- 240000007594 Oryza sativa Species 0.000 claims 1
- 241000209094 Oryza Species 0.000 abstract description 111
- 241000894007 species Species 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 32
- 238000001514 detection method Methods 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 210000002381 plasma Anatomy 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 235000013305 food Nutrition 0.000 description 6
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000000513 principal component analysis Methods 0.000 description 4
- 241001481833 Coryphaena hippurus Species 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 240000002853 Nelumbo nucifera Species 0.000 description 3
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 3
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- 244000144730 Amygdalus persica Species 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 241000574138 Ozothamnus diosmifolius Species 0.000 description 2
- 235000006040 Prunus persica var persica Nutrition 0.000 description 2
- 235000021329 brown rice Nutrition 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101000694017 Homo sapiens Sodium channel protein type 5 subunit alpha Proteins 0.000 description 1
- 235000010254 Jasminum officinale Nutrition 0.000 description 1
- 240000005385 Jasminum sambac Species 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007705 chemical test Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002366 mineral element Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000010239 partial least squares discriminant analysis Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000002470 solid-phase micro-extraction Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 238000000209 wet digestion Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
- G01N21/718—Laser microanalysis, i.e. with formation of sample plasma
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/286—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
- G01N33/10—Starch-containing substances, e.g. dough
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610802039.4A CN106404748B (en) | 2016-09-05 | 2016-09-05 | A kind of multiline combination laser induced breakdown spectroscopy cereal crops Production area recognition method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610802039.4A CN106404748B (en) | 2016-09-05 | 2016-09-05 | A kind of multiline combination laser induced breakdown spectroscopy cereal crops Production area recognition method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106404748A CN106404748A (en) | 2017-02-15 |
CN106404748B true CN106404748B (en) | 2019-03-05 |
Family
ID=57998336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610802039.4A Active CN106404748B (en) | 2016-09-05 | 2016-09-05 | A kind of multiline combination laser induced breakdown spectroscopy cereal crops Production area recognition method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106404748B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10984334B2 (en) * | 2017-05-04 | 2021-04-20 | Viavi Solutions Inc. | Endpoint detection in manufacturing process by near infrared spectroscopy and machine learning techniques |
CN107525797A (en) * | 2017-07-27 | 2017-12-29 | 上海交通大学 | A kind of LIBS analysis methods of micron dimension powdered rubber trace element |
CN107677647B (en) * | 2017-09-25 | 2021-05-25 | 重庆邮电大学 | Method for identifying origin of traditional Chinese medicinal materials based on principal component analysis and BP neural network |
JP7465807B2 (en) * | 2017-12-28 | 2024-04-11 | スリープ ナンバー コーポレイション | Bed with presence sensing features |
WO2019178850A1 (en) * | 2018-03-23 | 2019-09-26 | Oppo广东移动通信有限公司 | Wireless communication method, user equipment and network device |
WO2019222964A1 (en) * | 2018-05-24 | 2019-11-28 | 深圳达闼科技控股有限公司 | Method for determining detection equipment, detection device and readable storage medium |
CN109142251B (en) * | 2018-09-17 | 2020-11-03 | 平顶山学院 | LIBS quantitative analysis method of random forest auxiliary artificial neural network |
CN109916991A (en) * | 2019-04-09 | 2019-06-21 | 新疆大学 | A method of based on metallic element combination PLS-DA Model checking hop varieties and the place of production |
CN111401444B (en) * | 2020-03-16 | 2023-11-03 | 深圳海关食品检验检疫技术中心 | Method and device for predicting red wine origin, computer equipment and storage medium |
CN112051256B (en) * | 2020-07-22 | 2023-01-24 | 中国地质大学(武汉) | CNN model-based LIBS (laser induced breakdown spectroscopy) measurement method and system for content of element to be measured |
CN111965167A (en) * | 2020-08-20 | 2020-11-20 | 天津大学 | Method and device for predicting element composition and calorific value of solid waste |
CN112782151B (en) * | 2021-02-22 | 2023-01-13 | 湖北工程学院 | Data processing method for improving classification accuracy of laser-induced breakdown spectroscopy |
CN114579635B (en) * | 2022-03-04 | 2022-11-04 | 北京三月雨文化传播有限责任公司 | Big data information analysis processing system based on cloud computing |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103488874A (en) * | 2013-09-01 | 2014-01-01 | 西北大学 | Improved support vector machine-LIBS (laser-induced breakdown spectroscopy) combined sorting method for steel materials |
CN104697965A (en) * | 2015-03-10 | 2015-06-10 | 西北大学 | Method for recognizing slag variety by combining with laser-induced breakdown spectroscopy based on least squares support vector machine |
CN104730041A (en) * | 2013-12-20 | 2015-06-24 | 武汉新瑞达激光工程有限责任公司 | Method and apparatus for improving plastic identification precision of laser probe |
CN104964950A (en) * | 2015-06-10 | 2015-10-07 | 长江大学 | Multi-element wave peak-based laser-induced breakdown spectroscopy rock fragment type identification method |
CN105181678A (en) * | 2015-09-07 | 2015-12-23 | 长江大学 | Identification method of rice varieties based on laser-induced breakdown spectroscopy (LIBS) |
CN105806827A (en) * | 2016-03-11 | 2016-07-27 | 华中科技大学 | Method for identifying plastics by virtue of laser probe based on non-metallic element |
-
2016
- 2016-09-05 CN CN201610802039.4A patent/CN106404748B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103488874A (en) * | 2013-09-01 | 2014-01-01 | 西北大学 | Improved support vector machine-LIBS (laser-induced breakdown spectroscopy) combined sorting method for steel materials |
CN104730041A (en) * | 2013-12-20 | 2015-06-24 | 武汉新瑞达激光工程有限责任公司 | Method and apparatus for improving plastic identification precision of laser probe |
CN104697965A (en) * | 2015-03-10 | 2015-06-10 | 西北大学 | Method for recognizing slag variety by combining with laser-induced breakdown spectroscopy based on least squares support vector machine |
CN104964950A (en) * | 2015-06-10 | 2015-10-07 | 长江大学 | Multi-element wave peak-based laser-induced breakdown spectroscopy rock fragment type identification method |
CN105181678A (en) * | 2015-09-07 | 2015-12-23 | 长江大学 | Identification method of rice varieties based on laser-induced breakdown spectroscopy (LIBS) |
CN105806827A (en) * | 2016-03-11 | 2016-07-27 | 华中科技大学 | Method for identifying plastics by virtue of laser probe based on non-metallic element |
Non-Patent Citations (8)
Title |
---|
Classification of steel materials by laser-induced breakdown spectroscopy coupled with support vector machines;Long Liang et al.;《Applied Optics》;20140201;第53卷(第4期);第544-552页 |
Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm;Zongyu Hou et al.;《Journal of Analytical Atomic Spectrometry》;20130630;第29卷(第1期);第107-113页 |
Incorporation of Support Vector Machines in the LIBS Toolbox for Sensitive and Robust Classification Amidst Unexpected Sample and System Variability;Narahara Chari Dingari et al.;《Analytical Chemistry》;20120320;第84卷(第6期);第2686-2694页 |
Tianlong Zhang et al..Quantitative and classi fication analysis of slag samples by laser induced breakdown spectroscopy (LIBS) coupled with support vector machine (SVM) and partial least square (PLS) methods.《Journal of Analytical Atomic Spectrometry》.2015,第30卷(第2期),第368-374页. |
农产品产地溯源技术研究进展;张晓焱 等;《食品科学》;20101231;第31卷(第3期);第271-278页 |
双谱线内标对激光诱导击穿光谱稳定性的改善;刘莉;《激光技术》;20150131;第39卷(第1期);第90-95页 |
基于近红外光谱和模式识别技术鉴别大米产地的研究;夏立娅 等;《光谱学与光谱分析》;20130131;第33卷(第1期);第102-105页 |
支持向量机算法在激光诱导击穿光谱技术塑料识别中的应用研究;于洋 等;《物理学报》;20131231;第62卷(第21期);第215201-1-215201-7页 |
Also Published As
Publication number | Publication date |
---|---|
CN106404748A (en) | 2017-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106404748B (en) | A kind of multiline combination laser induced breakdown spectroscopy cereal crops Production area recognition method | |
CN106770194B (en) | Cereal crops place of production discrimination method based on wavelet transformation laser induced breakdown spectroscopy | |
Weng et al. | Hyperspectral imaging for accurate determination of rice variety using a deep learning network with multi-feature fusion | |
CN101881726B (en) | Nondestructive detection method for comprehensive character living bodies of plant seedlings | |
Feng et al. | Preliminary study on classification of rice and detection of paraffin in the adulterated samples by Raman spectroscopy combined with multivariate analysis | |
CN103411906B (en) | The near infrared spectrum qualitative identification method of pearl powder and oyster shell whiting | |
CN107515203A (en) | The research of near infrared technology quantitative analysis rice single grain amylose content | |
CN104142311B (en) | A kind of method of near-infrared spectrum technique prediction torch pine pine resin yield | |
CN105067531A (en) | Mango quality nondestructive detection method and mango quality nondestructive detection apparatus | |
Cui et al. | Identification of maize seed varieties based on near infrared reflectance spectroscopy and chemometrics | |
CN104155264A (en) | Method for predicting content of turpentine in loblolly pine gum by using near infrared spectroscopy | |
CN104020128A (en) | Method for rapidly identifying propolis source | |
CN106383088A (en) | A seed purity rapid nondestructive testing method based on a multispectral imaging technique | |
CN109520965A (en) | A method of lysine content is detected based near infrared spectrum characteristic extractive technique | |
CN106940292A (en) | Bar denier wood raw material quick nondestructive discrimination method of damaging by worms based on multi-optical spectrum imaging technology | |
CN114112983B (en) | Tibetan medicine all-edge leaf green chorine artemisia origin discrimination method based on Python data fusion | |
Aredo et al. | Predicting of the quality attributes of orange fruit using hyperspectral images | |
Guifang et al. | Identification of varieties of natural textile fiber based on Vis/NIR spectroscopy technology | |
CN115905881B (en) | Yellow pearl classification method and device, electronic equipment and storage medium | |
CN117949429A (en) | Almond origin identification method based on Raman spectrum and multi-mode mixed model | |
Yang et al. | Collaborative estimation of heavy metal stress in wheat seedlings based on LIBS-Raman spectroscopy coupled with machine learning | |
Zhou et al. | Germination prediction of sugar beet seeds based on HSI and SVM-RBF | |
Hashim et al. | Classification of rubber tree leaf disease using spectrometer | |
CN114878549A (en) | Corn aflatoxin detection method based on Raman spectrum | |
CN109406421B (en) | Method for predicting ferulic acid content in wolfberry fruit based on hyperspectral imaging technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Xiangyou Inventor after: Yang Ping Inventor after: Guo Lianbo Inventor after: Zhu Yining Inventor after: Zeng Xiaoyan Inventor after: Li Jiaming Inventor after: Yang Xinyan Inventor after: Tang Yun Inventor before: Li Xiangyou Inventor before: Yang Ping Inventor before: Guo Lianbo Inventor before: Zhu Yining Inventor before: Zeng Xiaoyan Inventor before: Lu Yongfeng Inventor before: Li Jiaming Inventor before: Yang Xinyan Inventor before: Tang Yun |
|
CB03 | Change of inventor or designer information |