CN106298273A - A kind of high-octane aquo-lithium ion type fluid capacitor anode and cathode slurry formula - Google Patents
A kind of high-octane aquo-lithium ion type fluid capacitor anode and cathode slurry formula Download PDFInfo
- Publication number
- CN106298273A CN106298273A CN201610971715.0A CN201610971715A CN106298273A CN 106298273 A CN106298273 A CN 106298273A CN 201610971715 A CN201610971715 A CN 201610971715A CN 106298273 A CN106298273 A CN 106298273A
- Authority
- CN
- China
- Prior art keywords
- lithium
- slurry
- lithium ion
- fluid capacitor
- negative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 64
- 239000003990 capacitor Substances 0.000 title claims abstract description 60
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 44
- 239000006256 anode slurry Substances 0.000 title abstract 2
- 239000006257 cathode slurry Substances 0.000 title abstract 2
- 239000011267 electrode slurry Substances 0.000 claims abstract description 74
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000000463 material Substances 0.000 claims abstract description 41
- 239000002002 slurry Substances 0.000 claims abstract description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000006258 conductive agent Substances 0.000 claims abstract description 15
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 14
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 14
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 38
- 239000000203 mixture Substances 0.000 claims description 25
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 15
- 229910052744 lithium Inorganic materials 0.000 claims description 15
- -1 nickel-cobalt-aluminum Chemical compound 0.000 claims description 15
- 239000002041 carbon nanotube Substances 0.000 claims description 11
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 11
- 239000003273 ketjen black Substances 0.000 claims description 11
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 claims description 11
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 claims description 11
- 239000012266 salt solution Substances 0.000 claims description 9
- 238000009472 formulation Methods 0.000 claims description 8
- 229910021389 graphene Inorganic materials 0.000 claims description 6
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 6
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 5
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000006230 acetylene black Substances 0.000 claims description 3
- 239000006229 carbon black Substances 0.000 claims description 3
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims description 3
- 229910002102 lithium manganese oxide Inorganic materials 0.000 claims description 3
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 229910052596 spinel Inorganic materials 0.000 claims description 3
- 239000011029 spinel Substances 0.000 claims description 3
- 239000002994 raw material Substances 0.000 abstract description 8
- 239000003795 chemical substances by application Substances 0.000 abstract 2
- 238000004513 sizing Methods 0.000 abstract 2
- 238000003860 storage Methods 0.000 description 40
- 239000000243 solution Substances 0.000 description 20
- 238000000034 method Methods 0.000 description 18
- 239000000843 powder Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000004743 Polypropylene Substances 0.000 description 8
- 230000010355 oscillation Effects 0.000 description 8
- 229920001155 polypropylene Polymers 0.000 description 8
- 239000011530 conductive current collector Substances 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 238000004146 energy storage Methods 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000012982 microporous membrane Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000002572 peristaltic effect Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- CJYZTOPVWURGAI-UHFFFAOYSA-N lithium;manganese;manganese(3+);oxygen(2-) Chemical compound [Li+].[O-2].[O-2].[O-2].[O-2].[Mn].[Mn+3] CJYZTOPVWURGAI-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/50—Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
技术领域technical field
本发明涉及电化学电池技术领域,尤其是涉及一种水系锂离子型的流体电容器及其高能量的水系锂离子型流体电容器正负极浆料配方。The invention relates to the technical field of electrochemical batteries, in particular to a water-based lithium-ion fluid capacitor and a high-energy water-based lithium-ion fluid capacitor positive and negative slurry formulation.
背景技术Background technique
近年来,随着太阳能、风能等清洁能源的装机容量的迅速增长,适用于大规模储能的技术和器件的研发变得日益重要。电化学电池因其较高的能量密度且对地理条件没有特殊要求而受到广泛关注。其中,液流电池是该类电池的重要代表。在世界范围内,已经有多个国家建成储能达几兆瓦到几十兆瓦的液流电池储电站,并逐步步入商业化(Soloveichik2015)。In recent years, with the rapid growth of installed capacity of clean energy such as solar energy and wind energy, the research and development of technologies and devices suitable for large-scale energy storage has become increasingly important. Electrochemical batteries have attracted extensive attention due to their high energy density and no special requirements for geographical conditions. Among them, the liquid flow battery is an important representative of this type of battery. Worldwide, flow battery storage power stations with energy storage capacity of several megawatts to tens of megawatts have been built in many countries, and are gradually entering into commercialization (Soloveichik2015).
如图1所示,传统的液流电池采用具有氧化/还原能力的液体(例如全矾电解液)作为储能物质,这些液体分别贮存于外置的大型储存罐中。在电池运行中,阳极和阴极储存罐中液体分别被泵入到工作室进行氧化或还原的反应,实现电池的充或放电过程,从而达到储能的目的。液流电池结构十分简单。As shown in Figure 1, traditional flow batteries use liquids with oxidation/reduction capabilities (such as all-alumina electrolytes) as energy storage materials, and these liquids are stored in external large storage tanks. During the operation of the battery, the liquid in the anode and cathode storage tanks are pumped into the working chamber for oxidation or reduction reaction to realize the charging or discharging process of the battery, so as to achieve the purpose of energy storage. The structure of the flow battery is very simple.
更重要的是,该种电池的总容量取决于外置储存罐体积的大小,而功率则取决于工作室内工作电极的面积大小以及电解液活性物质的特性。由于其储能室和工作室是分离的,就使得液流电池的总容量和功率可以独立调节,在应用中具有极大的灵活性和适应性。More importantly, the total capacity of this type of battery depends on the volume of the external storage tank, while the power depends on the area of the working electrode in the working chamber and the characteristics of the active material in the electrolyte. Since the energy storage chamber and the working chamber are separated, the total capacity and power of the flow battery can be adjusted independently, which has great flexibility and adaptability in applications.
但是,传统液流电池的充电较为缓慢(数小时)且使用寿命有限(通常小于20,000循环)限制了它在电网调峰等需要快速响应的场合的应用(Presser,Dennison etal.2012)。However, the slow charging (several hours) and limited service life (typically less than 20,000 cycles) of traditional flow batteries limit its application in occasions that require fast response, such as grid peak shaving (Presser, Dennison et al. 2012).
另一方面,超级电容器具有极其快速的充放电能力和超长寿命,特别适用于需要快速充放电的场合。因此,有研究者提出将超级电容器与传统液流电池结合起来,即将超级电容器的如活性炭等材料和电解液混合制做成可流动的浆料,并结合液流电池的简单构型得到新型半固态流体电容器(Hatzell,Boota et al.2015)。第一代流体电容器采用介孔碳球和安全、低成本的水系电解液制作浆料,以此得到的流体电容器显示出很高的功率密度,但能量密度却受限于介孔碳球的较低的比电容(~90F/g)以及水系电解液较低的工作电压(~0.6V)(Presser,Dennison et al.2012)。On the other hand, supercapacitors have extremely fast charging and discharging capabilities and long life, and are especially suitable for occasions that require fast charging and discharging. Therefore, some researchers have proposed to combine supercapacitors with traditional flow batteries, that is, to mix supercapacitor materials such as activated carbon and electrolytes into a flowable slurry, and combine the simple configuration of flow batteries to obtain a new type of semi-conductor. Solid fluid capacitors (Hatzell, Boota et al. 2015). The first-generation fluid capacitors used mesoporous carbon spheres and a safe, low-cost aqueous electrolyte to make the slurry, and the resulting fluid capacitors showed high power density, but the energy density was limited by the relatively low density of mesoporous carbon spheres. Low specific capacitance (~90F/g) and low working voltage (~0.6V) of aqueous electrolyte (Presser, Dennison et al. 2012).
此后,研究者们不断尝试使用新的方法来增加水系流体电容器能量密度。例如,在水系电解液中添加可溶性的氧化/还原物质(如可溶性的有机分子)(Boota,Hatzell etal.2015)来增加电容量或者采用非对称电极来提升水系电解液的工作电压(Huang,Zhanget al.2014)。通过这些方法,流体电容器的能量密度提升了约1.5-3倍。例如,在功率密度为~50-100W/kg条件下,能量密度可达11-14Wh/kg,但该能量密度仍然不能很好满足应用的需要。因此,如何设计并制备出具有更高能量密度的流体电容器就成为一个重要问题,而其能量密度主要取决于正负极浆料的所用材料的特性。Since then, researchers have been trying to use new methods to increase the energy density of aqueous fluid capacitors. For example, adding soluble oxidation/reduction substances (such as soluble organic molecules) to aqueous electrolytes (Boota, Hatzell et al. 2015) to increase capacitance or using asymmetric electrodes to increase the working voltage of aqueous electrolytes (Huang, Zhanget al. 2014). Through these methods, the energy density of fluid capacitors is increased by about 1.5-3 times. For example, when the power density is ~50-100W/kg, the energy density can reach 11-14Wh/kg, but the energy density still cannot meet the needs of the application. Therefore, how to design and prepare a fluid capacitor with higher energy density becomes an important issue, and its energy density mainly depends on the characteristics of the materials used in the positive and negative slurry.
发明内容Contents of the invention
本发明的目的在于提供一种流体电容器及其高能量的水系锂离子型流体电容器正负极浆料配方,以解决现有技术中存在的流体电容器能量密度低的技术问题。与已有水系流体电容器比较,本发明的流体电容器浆料具有更高的能量密度,同时保持了较高的功率密度和循环寿命。The purpose of the present invention is to provide a fluid capacitor and its high-energy aqueous lithium-ion type fluid capacitor positive and negative slurry formulations to solve the technical problem of low energy density of fluid capacitors in the prior art. Compared with the existing water-based fluid capacitors, the fluid capacitor slurry of the present invention has higher energy density while maintaining higher power density and cycle life.
为解决上述技术问题,本发明提供的一种高能量的水系锂离子型流体电容器正负极浆料配方,其包括正极浆料和负极浆料;In order to solve the above-mentioned technical problems, the present invention provides a high-energy water-based lithium ion fluid capacitor positive and negative slurry formulation, which includes a positive electrode slurry and a negative electrode slurry;
所述正极浆料由锂离子电池材料、导电剂和锂盐水溶液配制而成;The positive electrode slurry is prepared from lithium ion battery material, conductive agent and lithium salt solution;
所述负极浆料由多孔碳材料、导电剂和锂盐水溶液配制而成。The negative electrode slurry is prepared from porous carbon material, conductive agent and lithium salt solution.
本发明通过采用了锂离子电池材料作为浆料的原料,使得流体电容器的比容量得到显著提升;尤为重要的是,本发明通过采用非对称的流体电极构型,即不同的正、负极浆料,使器件的工作电压可达1.8V,使得该水系流体电容器比能量大大高于现有的水系流体电容器。In the present invention, the specific capacity of the fluid capacitor is significantly improved by using the lithium-ion battery material as the raw material of the slurry; more importantly, the present invention adopts an asymmetric fluid electrode configuration, that is, different positive and negative electrode slurries , so that the operating voltage of the device can reach 1.8V, so that the specific energy of the water system fluid capacitor is much higher than that of the existing water system fluid capacitor.
进一步地,所述锂离子电池材料为尖晶石锰酸锂、钴酸锂、磷酸铁锂和三元锂电材料中的一种或者几种的混合。Further, the lithium ion battery material is one or a mixture of spinel lithium manganese oxide, lithium cobalt oxide, lithium iron phosphate and ternary lithium battery materials.
进一步地,所述三元锂电材料包括镍钴锰三元锂电材料或者镍钴铝三元锂电材料。Further, the ternary lithium battery material includes a nickel-cobalt-manganese ternary lithium battery material or a nickel-cobalt-aluminum ternary lithium battery material.
进一步地,所述导电剂为科琴黑、乙炔黑、炭黑、碳纳米管、石墨烯和还原氧化石墨烯中的一种或几种的混合。Further, the conductive agent is one or a mixture of Ketjen black, acetylene black, carbon black, carbon nanotubes, graphene and reduced graphene oxide.
进一步地,所述锂盐为硫酸锂、硝酸锂、氯化锂中的一种或几种的组合物。Further, the lithium salt is one or a combination of lithium sulfate, lithium nitrate and lithium chloride.
进一步地,所述多孔碳材料为活性炭、介孔碳球或颗粒中的一种或几种的混合材料。Further, the porous carbon material is one or a mixture of activated carbon, mesoporous carbon spheres or particles.
进一步地,所述锂离子电池材料在所述正极浆料中所占质量百分数为1~80%。Further, the lithium-ion battery material accounts for 1-80% by mass in the positive electrode slurry.
进一步地,所述多孔碳材料在所述负极浆料中所占质量百分数为1~80%。Further, the mass percentage of the porous carbon material in the negative electrode slurry is 1-80%.
进一步地,所述导电剂在正极浆料或者负极浆料中所占质量百分数为0.1~30%。Further, the mass percentage of the conductive agent in the positive electrode slurry or the negative electrode slurry is 0.1-30%.
进一步地,所述锂盐水溶液浓度为0.2-3mol/L。Further, the concentration of the lithium salt solution is 0.2-3 mol/L.
本发明还公开了采用上述正负极浆料的流体电容器。The invention also discloses a fluid capacitor using the positive and negative electrode slurry.
一种流体电容器,其包括未放电正极储存罐、放电后正极储存罐、反应室、未放电负极储存罐、放电后负极储存罐以及浆料输送装置,A fluid capacitor comprising an undischarged positive storage tank, a discharged positive storage tank, a reaction chamber, an undischarged negative storage tank, a discharged negative storage tank, and a slurry conveying device,
反应室包括正极室和负极室;The reaction chamber includes a positive electrode chamber and a negative electrode chamber;
所述未放电正极储存罐经过管路及所述正极室与所述放电后正极储存罐连通;The undischarged positive electrode storage tank communicates with the discharged positive electrode storage tank through pipelines and the positive electrode chamber;
所述未放电负极储存罐经过管路及所述负极室与所述放电后负极储存罐连通;The undischarged negative electrode storage tank communicates with the discharged negative electrode storage tank through the pipeline and the negative electrode chamber;
所述未放电正极储存罐和放电后正极储存罐内存储有正极浆料;The positive electrode slurry is stored in the undischarged positive electrode storage tank and the discharged positive electrode storage tank;
所述未放电负极储存罐和放电后负极储存罐内存储有负极浆料;Negative electrode slurry is stored in the undischarged negative electrode storage tank and the discharged negative electrode storage tank;
浆料输送装置包括正极浆料输送装置和负极浆料输送装置,The slurry delivery device includes a positive electrode slurry delivery device and a negative electrode slurry delivery device,
所述正极浆料输送装置用于未放电正极储存罐与放电后正极储存罐之间的正极浆料的输送;The positive electrode slurry conveying device is used to transport the positive electrode slurry between the undischarged positive electrode storage tank and the discharged positive electrode storage tank;
所述负极浆料输送装置用于未放电负极储存罐与放电后负极储存罐之间的负极浆料的输送;The negative electrode slurry conveying device is used for conveying the negative electrode slurry between the undischarged negative electrode storage tank and the discharged negative electrode storage tank;
输送过程中,正极浆料和负极浆料同步分别通过正极室和负极室;During the conveying process, the positive electrode slurry and the negative electrode slurry pass through the positive electrode chamber and the negative electrode chamber respectively;
所述负极浆料和正极浆料由不同原料制成。The negative electrode slurry and the positive electrode slurry are made of different raw materials.
进一步地,所述正极室和负极室左右对称设置,两者之间设置有隔膜。Further, the positive electrode chamber and the negative electrode chamber are symmetrically arranged left and right, and a diaphragm is arranged between them.
进一步地,所述正极室包括从左至右依次设置的外层保护板、导电集流体和带凹槽绝缘片;Further, the positive electrode chamber includes an outer protective plate, a conductive current collector, and a grooved insulating sheet arranged in sequence from left to right;
所述负极室包括从左至右依次设置的带凹槽绝缘片、导电集流体和外层保护板。The negative electrode chamber includes an insulating sheet with grooves, a conductive current collector and an outer protective plate arranged in sequence from left to right.
进一步地,所述隔膜为聚丙烯隔膜、纤维素隔膜或陶瓷隔膜。Further, the diaphragm is a polypropylene diaphragm, a cellulose diaphragm or a ceramic diaphragm.
更为优选地,所述隔膜为聚丙烯celgard 3500隔膜。More preferably, the membrane is polypropylene celgard 3500 membrane.
进一步地,所述导电集流体由不锈钢等金属板、石墨板、碳纳米管纸等碳基材料制成。Further, the conductive current collector is made of carbon-based materials such as metal plates such as stainless steel, graphite plates, and carbon nanotube paper.
进一步地,所述带凹槽绝缘薄片为聚四氟乙烯、聚乙烯或橡胶薄片。Further, the grooved insulating sheet is polytetrafluoroethylene, polyethylene or rubber sheet.
进一步地,所述带凹槽绝缘薄片的厚度为0.2-10mm。Further, the thickness of the grooved insulating sheet is 0.2-10mm.
进一步地,所述浆料输送装置为推进器或蠕动泵。Further, the slurry conveying device is a propeller or a peristaltic pump.
采用上述技术方案,本发明具有如下有益效果:Adopt above-mentioned technical scheme, the present invention has following beneficial effect:
1、采用了锂离子电池材料作为浆料的原料,使得正极浆料的比容量得到显著提升;1. The lithium-ion battery material is used as the raw material of the slurry, which significantly improves the specific capacity of the positive electrode slurry;
2、采用了非对称的流体电极构型,使器件的工作电压可达1.8V;2. The asymmetric fluid electrode configuration is adopted, so that the working voltage of the device can reach 1.8V;
3、采用该种正、负极浆料的锂离子型流体电容器的能量密度远高于现有的水系流体电容器。例如,在功率密度约为50W/kg条件下,能量密度达到23.4Wh/kg,约是已报道的水系流体电容器最高能量密度的两倍。3. The energy density of the lithium ion fluid capacitor using the positive and negative electrode slurry is much higher than that of the existing water system fluid capacitor. For example, when the power density is about 50W/kg, the energy density reaches 23.4Wh/kg, which is about twice the highest energy density of the reported aqueous fluid capacitor.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings that need to be used in the description of the specific embodiments or the prior art will be briefly introduced below. Obviously, the accompanying drawings in the following description These are some implementations of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without creative work.
图1为现有技术中的液流电池的结构示意图;FIG. 1 is a schematic structural diagram of a flow battery in the prior art;
图2为本发明实施例2提供的流体电容器的结构示意图;FIG. 2 is a schematic structural diagram of a fluid capacitor provided in Embodiment 2 of the present invention;
图3为本发明实施例2提供的流体电容器中反应室的结构示意图;3 is a schematic structural view of the reaction chamber in the fluid capacitor provided by Embodiment 2 of the present invention;
图4为本发明实施例2提供的流体电容器中反应室分解示意图;Fig. 4 is an exploded schematic view of the reaction chamber in the fluid capacitor provided by Embodiment 2 of the present invention;
图5为本发明实施例3中L10K4正极浆料的扫描电镜图片;5 is a scanning electron microscope picture of L10K4 positive electrode slurry in Example 3 of the present invention;
图6为本发明实施例3中A20K2负极浆料的扫描电镜图片;6 is a scanning electron microscope picture of A20K2 negative electrode slurry in Example 3 of the present invention;
图7为本发明实施例3中L10K4/A20K2锂离子型流体电容器在不同电流密度条件下的充放电曲线图;7 is a charge-discharge curve diagram of L10K4/A20K2 lithium-ion fluid capacitors under different current density conditions in Example 3 of the present invention;
图8为本发明实施例3中L10K4/A20K2锂离子型流体电容器的比电容及比能量图;Fig. 8 is the specific capacitance and specific energy figure of L10K4/A20K2 lithium-ion type fluid capacitor in the embodiment 3 of the present invention;
图9为本发明实施例4中L10K2.5/A20K2锂离子型流体电容器在不同电流密度条件下的比电容及比能量图。Fig. 9 is a diagram of the specific capacitance and specific energy of the L10K2.5/A20K2 lithium-ion fluid capacitor under different current densities in Example 4 of the present invention.
附图标记:Reference signs:
10-未放电正极储存罐; 20-放电后正极储存罐;10-undischarged positive electrode storage tank; 20-discharged positive electrode storage tank;
30-未放电负极储存罐; 40-放电后负极储存罐;30-undischarged negative electrode storage tank; 40-discharged negative electrode storage tank;
50-正极浆料输送装置; 60-负极浆料输送装置;50-positive electrode slurry delivery device; 60-negative electrode slurry delivery device;
70-反应室; 70a-正极室;70-reaction chamber; 70a-positive electrode chamber;
70b-负极室; 71-隔膜;70b-negative electrode chamber; 71-diaphragm;
72-外层保护板; 73-导电集流体;72-outer protective plate; 73-conductive current collector;
74-带凹槽绝缘片。74 - grooved insulating sheet.
具体实施方式detailed description
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the accompanying drawings. Apparently, the described embodiments are some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。In the description of the present invention, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer" etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, or in a specific orientation. construction and operation, therefore, should not be construed as limiting the invention. In addition, the terms "first", "second", and "third" are used for descriptive purposes only, and should not be construed as indicating or implying relative importance.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that unless otherwise specified and limited, the terms "installation", "connection" and "connection" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
下面结合具体的实施方式对本发明做进一步的解释说明。The present invention will be further explained below in combination with specific embodiments.
实施例1Example 1
本实施例提供的一种高能量的水系锂离子型流体电容器正负极浆料配方,其包括正极浆料和负极浆料;A high-energy water-based lithium ion fluid capacitor positive and negative slurry formulation provided in this embodiment, which includes a positive electrode slurry and a negative electrode slurry;
正极浆料由锂离子电池材料、导电剂和锂盐水溶液配制而成;The positive electrode slurry is prepared from lithium ion battery materials, conductive agent and lithium salt solution;
负极浆料由多孔碳材料、导电剂和锂盐水溶液配制而成。The negative electrode slurry is prepared from porous carbon material, conductive agent and lithium salt solution.
本发明通过采用了锂离子电池材料作为浆料的原料,使得流体电容器的比容量得到显著提升;尤为重要的是,本发明通过采用非对称的流体电极构型,即不同的正、负极浆料,使器件的工作电压可达1.8V。In the present invention, the specific capacity of the fluid capacitor is significantly improved by using the lithium-ion battery material as the raw material of the slurry; more importantly, the present invention adopts an asymmetric fluid electrode configuration, that is, different positive and negative electrode slurries , so that the operating voltage of the device can reach 1.8V.
锂离子电池材料为尖晶石锰酸锂、钴酸锂、磷酸铁锂和三元锂电材料中的一种或者几种的混合。The lithium-ion battery material is one or a mixture of spinel lithium manganese oxide, lithium cobalt oxide, lithium iron phosphate and ternary lithium battery materials.
三元锂电材料包括镍钴锰三元锂电材料或者镍钴铝三元锂电材料。Ternary lithium battery materials include nickel-cobalt-manganese ternary lithium battery materials or nickel-cobalt-aluminum ternary lithium battery materials.
导电剂为科琴黑、乙炔黑、炭黑、碳纳米管、石墨烯和还原氧化石墨烯中的一种或几种的混合。The conductive agent is one or a mixture of Ketjen black, acetylene black, carbon black, carbon nanotubes, graphene and reduced graphene oxide.
锂盐为硫酸锂、硝酸锂、氯化锂中的一种或几种的组合物。The lithium salt is one or a combination of lithium sulfate, lithium nitrate and lithium chloride.
多孔碳材料为活性炭、介孔碳球或颗粒中的一种或几种的混合材料。The porous carbon material is one or a mixture of activated carbon, mesoporous carbon spheres or particles.
锂离子电池材料在正极浆料中所占质量百分数为1~80%。The mass percentage of the lithium ion battery material in the positive electrode slurry is 1-80%.
多孔碳材料在负极浆料中所占质量百分数为1~80%。The mass percentage of the porous carbon material in the negative electrode slurry is 1-80%.
导电剂在正极浆料或者负极浆料中所占质量百分数为0.1~30%。The mass percentage of the conductive agent in the positive electrode slurry or the negative electrode slurry is 0.1-30%.
锂盐水溶液浓度为0.2-3mol/L。The concentration of lithium salt solution is 0.2-3mol/L.
本发明采用了锂离子电池材料作为浆料的原料,使得流体电容器的比容量得到显著提升;另外,通过采用了非对称的流体电极构型,使器件的工作电压可达1.8V,有利于比能量的提升。The present invention adopts lithium-ion battery material as the raw material of the slurry, so that the specific capacity of the fluid capacitor is significantly improved; in addition, by adopting an asymmetric fluid electrode configuration, the working voltage of the device can reach 1.8V, which is beneficial to the ratio energy boost.
实施例2Example 2
如图2-4所示,本发明还公开了一种流体电容器,其包括未放电正极储存罐10、放电后正极储存罐20、反应室70、未放电负极储存罐30、放电后负极储存罐40以及浆料输送装置,As shown in Figures 2-4, the present invention also discloses a fluid capacitor, which includes an undischarged positive storage tank 10, a discharged positive storage tank 20, a reaction chamber 70, an undischarged negative storage tank 30, and a discharged negative storage tank 40 and slurry conveying device,
反应室70包括正极室70a和负极室70b;The reaction chamber 70 includes a positive electrode chamber 70a and a negative electrode chamber 70b;
未放电正极储存罐10经过管路及正极室70a与放电后正极储存罐20连通;The undischarged positive electrode storage tank 10 communicates with the discharged positive electrode storage tank 20 through the pipeline and the positive electrode chamber 70a;
未放电负极储存罐30经过管路及负极室70b与放电后负极储存罐40连通;The undischarged negative electrode storage tank 30 communicates with the discharged negative electrode storage tank 40 through the pipeline and the negative electrode chamber 70b;
未放电正极储存罐10和放电后正极储存罐20内存储有正极浆料;The positive electrode slurry is stored in the undischarged positive electrode storage tank 10 and the discharged positive electrode storage tank 20;
未放电负极储存罐30和放电后负极储存罐40内存储有负极浆料;Negative electrode slurry is stored in the undischarged negative electrode storage tank 30 and the discharged negative electrode storage tank 40;
浆料输送装置包括正极浆料输送装置50和负极浆料输送装置60,浆料输送装置优选地为推进器或蠕动泵。The slurry delivery device includes a positive electrode slurry delivery device 50 and a negative electrode slurry delivery device 60, and the slurry delivery device is preferably a propeller or a peristaltic pump.
正极浆料输送装置50用于未放电正极储存罐10与放电后正极储存罐20之间的正极浆料的输送;The positive electrode slurry delivery device 50 is used to transport the positive electrode slurry between the undischarged positive electrode storage tank 10 and the discharged positive electrode storage tank 20;
负极浆料输送装置60用于未放电负极储存罐30与放电后负极储存罐40之间的负极浆料的输送;The negative electrode slurry conveying device 60 is used for conveying the negative electrode slurry between the undischarged negative electrode storage tank 30 and the discharged negative electrode storage tank 40;
输送过程中,正极浆料和负极浆料同步分别通过正极室70a和负极室70b;During the conveying process, the positive electrode slurry and the negative electrode slurry pass through the positive electrode chamber 70a and the negative electrode chamber 70b respectively synchronously;
负极浆料和正极浆料由不同原料制成。The negative electrode slurry and the positive electrode slurry are made of different raw materials.
正极室70a和负极室70b左右对称设置,两者之间设置有隔膜71。The positive electrode chamber 70a and the negative electrode chamber 70b are symmetrically arranged left and right, and a diaphragm 71 is arranged between them.
正极室70a包括从左至右依次设置的外层保护板72、导电集流体73和带凹槽绝缘片74;The positive electrode chamber 70a includes an outer protective plate 72, a conductive current collector 73, and a grooved insulating sheet 74 arranged in sequence from left to right;
负极室70b包括从左至右依次设置的带凹槽绝缘片74、导电集流体73和外层保护板72。The negative electrode chamber 70b includes a grooved insulating sheet 74 , a conductive current collector 73 and an outer protective plate 72 arranged in sequence from left to right.
隔膜71为聚丙烯隔膜、纤维素隔膜或陶瓷隔膜。更为优选地,隔膜为聚丙烯celgard 3500隔膜。The diaphragm 71 is a polypropylene diaphragm, a cellulose diaphragm or a ceramic diaphragm. More preferably, the membrane is a polypropylene celgard 3500 membrane.
导电集流体73由不锈钢等金属板、石墨板、碳纳米管纸等碳基材料制成。The conductive current collector 73 is made of carbon-based materials such as metal plates such as stainless steel, graphite plates, and carbon nanotube paper.
带凹槽绝缘薄片74为聚四氟乙烯、聚乙烯或橡胶薄片。The grooved insulating sheet 74 is polytetrafluoroethylene, polyethylene or rubber sheet.
带凹槽绝缘薄片74的厚度为0.2-10mm。The thickness of the grooved insulating sheet 74 is 0.2-10mm.
本实施例中的锂离子型流体电容器的能量密度远高于现有的水系流体电容器。例如,在功率密度约为50W/kg条件下,能量密度达到23.4Wh/kg,约是已报道的水系流体电容器最高能量密度的两倍。The energy density of the lithium ion fluid capacitor in this embodiment is much higher than that of the existing water system fluid capacitor. For example, when the power density is about 50W/kg, the energy density reaches 23.4Wh/kg, which is about twice the highest energy density of the reported aqueous fluid capacitor.
实施例3Example 3
本实施例与实施例1基本相同,不同之处在于:This embodiment is basically the same as Embodiment 1, the difference is:
正极浆料制作中,分别称量1.23g商用锰酸锂(LiMn2O4)粉末和0.49g科琴黑粉末,研磨均匀后加入10ml的浓度为1mol/L的硫酸锂水溶液。将上述混合物先用磁力搅拌器搅拌1小时,再放入超声波仪器(功率800W)超声振荡30分钟。上述混合过程重复两次,最终使各材料以及溶液均匀混合、分散。上述方法制备的浆料中,LiMn2O4占10wt%,科琴黑占4wt%。该浆料标记为L10K4。In the preparation of positive electrode slurry, weigh 1.23g of commercial lithium manganese oxide (LiMn 2 O 4 ) powder and 0.49g of Ketjen black powder, grind them evenly and add 10ml of lithium sulfate aqueous solution with a concentration of 1mol/L. The above mixture was first stirred with a magnetic stirrer for 1 hour, and then put into an ultrasonic instrument (power 800W) for ultrasonic oscillation for 30 minutes. The above mixing process is repeated twice, and finally the materials and solutions are uniformly mixed and dispersed. In the slurry prepared by the above method, LiMn 2 O 4 accounts for 10 wt%, and Ketjen Black accounts for 4 wt%. This slurry was labeled L10K4.
其中,图5是该浆料的扫描电镜图片。Wherein, Fig. 5 is a scanning electron microscope picture of the slurry.
负极浆料制作中,分别称量2.72g活性炭粉末和0.22g科琴黑粉末,研磨均匀后加入10ml的浓度为1mol/L的硫酸锂水溶液。将上述混合物先用磁力搅拌器搅拌1小时,再放入超声波仪器(功率800W)超声振荡30分钟。上述混合过程重复两次,最终使各材料以及溶液均匀混合、分散。上述方法制备的浆料中,活性炭占20wt%,科琴黑占2wt%。该浆料标记为A10K2。图6是该浆料的扫描电镜图片。In the preparation of the negative electrode slurry, weigh 2.72g of activated carbon powder and 0.22g of Ketjen black powder, grind them evenly, and add 10ml of lithium sulfate aqueous solution with a concentration of 1mol/L. The above mixture was first stirred with a magnetic stirrer for 1 hour, and then put into an ultrasonic instrument (power 800W) for ultrasonic oscillation for 30 minutes. The above mixing process is repeated twice, and finally the materials and solutions are uniformly mixed and dispersed. In the slurry prepared by the above method, activated carbon accounts for 20 wt%, and Ketjen black accounts for 2 wt%. The paste was labeled A10K2. Figure 6 is a scanning electron microscope picture of the slurry.
将上述正极、负极浆料同时注入反应室的两个相对分离的正极室和负极室(正、负极室尺寸:长4cm,宽0.5cm,高0.09cm,隔膜为聚丙烯微孔膜celgrad 3500)内,组成非对称型锂离子流体电容器,即L10K4/A20K2锂离子流体电容器。Inject the above-mentioned positive electrode and negative electrode slurry into two relatively separated positive electrode chambers and negative electrode chambers of the reaction chamber at the same time (the size of the positive and negative electrode chambers: length 4cm, width 0.5cm, height 0.09cm, diaphragm is polypropylene microporous membrane celgrad 3500) Inside, an asymmetric lithium-ion fluid capacitor is formed, namely the L10K4/A20K2 lithium-ion fluid capacitor.
图7为该流体电容器在在0-1.8V电压范围内,不同电流密度条件下的充放电电压曲线;图8为其对应的比电容及能量密度。在充放电电流密度为2.5mA/cm2(对应功率密度为50Wh/kg)条件下,该锂离子型流体电容器的比电容为52F/g,能量密度为23.4Wh/kg(以正、负极浆料中活性物质质量计算);当电流密度增加到15mA/cm2(功率密度490.9W/kg)时,该器件仍保持较高的能量密度,达到9.6Wh/kg。Fig. 7 is the charging and discharging voltage curve of the fluid capacitor under different current density conditions in the voltage range of 0-1.8V; Fig. 8 is its corresponding specific capacitance and energy density. Under the condition of charge and discharge current density of 2.5mA/cm 2 (corresponding to power density of 50Wh/kg), the specific capacitance of the lithium-ion fluid capacitor is 52F/g, and the energy density is 23.4Wh/kg (using positive and negative electrode slurry The mass of active material in the material is calculated); when the current density increases to 15mA/cm 2 (power density 490.9W/kg), the device still maintains a high energy density, reaching 9.6Wh/kg.
由此试验得到本发明与现有技术相比具有突出的积极的技术效果。Obtained from the test that the present invention has outstanding positive technical effects compared with the prior art.
实施例4Example 4
本实施例与实施例1基本相同,不同之处在于:This embodiment is basically the same as Embodiment 1, the difference is:
正极浆料制作中,分别称量1.21g商用LiMn2O4粉末和0.30g科琴黑粉末,研磨均匀后加入10ml的浓度为1mol/L的硫酸锂溶液。将上述混合物先用磁力搅拌器搅拌1小时,再放入超声波仪器(功率800W)超声振荡30分钟。上述混合过程重复两次,最终使各材料以及溶液均匀混合、分散。上述方法制备的浆料中,LiMn2O4占10wt%,科琴黑占2.5wt%。该浆料标记为L10K2.5。In the preparation of positive electrode slurry, weigh 1.21g of commercial LiMn 2 O 4 powder and 0.30g of Ketjen Black powder, grind them evenly, and add 10ml of lithium sulfate solution with a concentration of 1mol/L. The above mixture was first stirred with a magnetic stirrer for 1 hour, and then put into an ultrasonic instrument (power 800W) for ultrasonic oscillation for 30 minutes. The above mixing process is repeated twice, and finally the materials and solutions are uniformly mixed and dispersed. In the slurry prepared by the above method, LiMn 2 O 4 accounts for 10 wt%, and Ketjen black accounts for 2.5 wt%. This slurry is labeled L10K2.5.
在负极浆料制作中,分别称量2.72g活性炭粉末和0.22g科琴黑粉末,研磨均匀后加入10ml的浓度为1mol/L的硫酸锂溶液。将上述混合物先用磁力搅拌器搅拌1小时,再放入超声波仪器(功率800W)超声振荡30分钟。上述混合过程重复两次,最终使各材料以及溶液均匀混合、分散。上述方法制备的浆料中,活性炭占20wt%,科琴黑占2wt%。该浆料标记为A10K2。In the preparation of the negative electrode slurry, weigh 2.72g of activated carbon powder and 0.22g of Ketjen black powder, grind them evenly, and add 10ml of lithium sulfate solution with a concentration of 1mol/L. The above mixture was first stirred with a magnetic stirrer for 1 hour, and then put into an ultrasonic instrument (power 800W) for ultrasonic oscillation for 30 minutes. The above mixing process is repeated twice, and finally the materials and solutions are uniformly mixed and dispersed. In the slurry prepared by the above method, activated carbon accounts for 20 wt%, and Ketjen black accounts for 2 wt%. The paste was labeled A10K2.
为了进一步表明采用此种浆料的有益效果,将正极、负极浆料同时注入反应室的两个相对分离的正、负极室(腔道尺寸:长4cm,宽0.5cm,高0.09cm,隔膜为聚丙烯微孔膜celgrad 3500)内,组成非对称型L10K2.5/A10K2锂离子流体电容器。In order to further demonstrate the beneficial effect of adopting this kind of slurry, the positive electrode and the negative electrode slurry are simultaneously injected into two relatively separated positive and negative electrode chambers of the reaction chamber (cavity size: length 4cm, width 0.5cm, height 0.09cm, diaphragm: The asymmetric L10K2.5/A10K2 lithium ion fluid capacitor is formed in the polypropylene microporous membrane celgrad 3500).
图9为本实施例的比电容及对应的能量密度。在充放电电流密度为2.5mA/cm2(对应功率密度为47Wh/kg)条件下,该锂离子型流体电容器的比电容为49.6F/g,能量密度为21.9Wh/kg。FIG. 9 shows the specific capacitance and corresponding energy density of this embodiment. Under the condition of charge and discharge current density of 2.5mA/cm 2 (corresponding power density of 47Wh/kg), the specific capacitance of the lithium ion fluid capacitor is 49.6F/g, and the energy density is 21.9Wh/kg.
本实施例同样证明本发明与现有技术相比具有突出的积极的技术效果。This embodiment also proves that the present invention has outstanding positive technical effects compared with the prior art.
实施例5Example 5
本实施例与实施例1基本相同,不同之处在于采用碳纳米管作为导电剂,具体为:This embodiment is basically the same as Embodiment 1, except that carbon nanotubes are used as the conductive agent, specifically:
正极浆料制作:分别称量1.21g商用LiMn2O4粉末和0.30g碳纳米管粉末,研磨均匀后加入10ml的浓度为1mol/L的硫酸锂溶液。将上述混合物先用磁力搅拌器搅拌1小时,再放入超声波仪器(功率800W)超声振荡30分钟。上述混合过程重复两次,最终使各材料以及溶液均匀混合、分散得到正极浆料。Preparation of positive electrode slurry: Weigh 1.21g of commercial LiMn 2 O 4 powder and 0.30g of carbon nanotube powder respectively, grind them evenly and add 10ml of lithium sulfate solution with a concentration of 1mol/L. The above mixture was first stirred with a magnetic stirrer for 1 hour, and then put into an ultrasonic instrument (power 800W) for ultrasonic oscillation for 30 minutes. The above mixing process was repeated twice, and finally the materials and solutions were uniformly mixed and dispersed to obtain the positive electrode slurry.
负极浆料制作:分别称量2.72g活性炭粉末和0.22g碳纳米管粉末,研磨均匀后加入10ml的浓度为1mol/L的硫酸锂溶液。将上述混合物先用磁力搅拌器搅拌1小时,再放入超声波仪器(功率800W)超声振荡30分钟。上述混合过程重复两次,最终使各材料以及溶液均匀混合、分散得到负极浆料。Preparation of negative electrode slurry: Weigh 2.72g of activated carbon powder and 0.22g of carbon nanotube powder respectively, grind them evenly and add 10ml of lithium sulfate solution with a concentration of 1mol/L. The above mixture was first stirred with a magnetic stirrer for 1 hour, and then put into an ultrasonic instrument (power 800W) for ultrasonic oscillation for 30 minutes. The above mixing process is repeated twice, and finally the materials and solutions are uniformly mixed and dispersed to obtain negative electrode slurry.
将上述正极、负极浆料同时注入反应室的两个分离的腔道内(腔道尺寸:长4cm,宽0.5cm,高0.09cm,隔膜为聚丙烯微孔膜celgrad 3500)组成非对称型锂离子流体电容器。借助碳纳米管的优良导电能力,该流体电容器的功率密度得到提高,并保持了较高的能量密度。Inject the above-mentioned positive and negative electrode slurries into two separate chambers of the reaction chamber at the same time (cavity size: length 4cm, width 0.5cm, height 0.09cm, diaphragm is polypropylene microporous membrane celgrad 3500) to form an asymmetric lithium ion fluid capacitor. With the help of the excellent electrical conductivity of carbon nanotubes, the power density of the fluid capacitor is improved and a high energy density is maintained.
实施例6Example 6
本实施例与实施例1基本相同,不同之处主要在于采用钴酸锂作为正极浆料的原料,具体为:This example is basically the same as Example 1, except that lithium cobaltate is used as the raw material of the positive electrode slurry, specifically:
正极浆料制作:分别称量1.21g商用钴酸锂(LiCoO2)粉末和0.30g碳纳米管粉末,研磨均匀后加入10ml的浓度为1mol/L的硫酸锂溶液。将上述混合物先用磁力搅拌器搅拌1小时,再放入超声波仪器(功率800W)超声振荡30分钟。上述混合过程重复两次,最终使各材料以及溶液均匀混合、分散得到正极浆料。Positive electrode slurry production: Weigh 1.21g of commercial lithium cobaltate (LiCoO 2 ) powder and 0.30g of carbon nanotube powder respectively, grind them evenly and add 10ml of lithium sulfate solution with a concentration of 1mol/L. The above mixture was first stirred with a magnetic stirrer for 1 hour, and then put into an ultrasonic instrument (power 800W) for ultrasonic oscillation for 30 minutes. The above mixing process was repeated twice, and finally the materials and solutions were uniformly mixed and dispersed to obtain the positive electrode slurry.
负极浆料制作:分别称量2.72g活性炭粉末和0.22g碳纳米管粉末,研磨均匀后加入10ml的浓度为1mol/L的硫酸锂溶液。将上述混合物先用磁力搅拌器搅拌1小时,再放入超声波仪器(功率800W)超声振荡30分钟。上述混合过程重复两次,最终使各材料以及溶液均匀混合、分散得到负极浆料。Preparation of negative electrode slurry: Weigh 2.72g of activated carbon powder and 0.22g of carbon nanotube powder respectively, grind them evenly and add 10ml of lithium sulfate solution with a concentration of 1mol/L. The above mixture was first stirred with a magnetic stirrer for 1 hour, and then put into an ultrasonic instrument (power 800W) for ultrasonic oscillation for 30 minutes. The above mixing process is repeated twice, and finally the materials and solutions are uniformly mixed and dispersed to obtain the negative electrode slurry.
将上述正极、负极浆料同时注入反应室的两个分离的腔道内(腔道尺寸:长4cm,宽0.5cm,高0.09cm,隔膜为聚丙烯微孔膜celgrad 3500)组成非对称型锂离子流体电容器。该水系流体电容器由于使用了层状的LiCoO2材料,在保持高功率密度的同时也具有较高的能量密度。Inject the above-mentioned positive and negative electrode slurries into two separate chambers of the reaction chamber at the same time (cavity size: length 4cm, width 0.5cm, height 0.09cm, diaphragm is polypropylene microporous membrane celgrad 3500) to form an asymmetric lithium ion fluid capacitor. The aqueous fluidic capacitor has high energy density while maintaining high power density due to the use of layered LiCoO2 material.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610971715.0A CN106298273A (en) | 2016-10-28 | 2016-10-28 | A kind of high-octane aquo-lithium ion type fluid capacitor anode and cathode slurry formula |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610971715.0A CN106298273A (en) | 2016-10-28 | 2016-10-28 | A kind of high-octane aquo-lithium ion type fluid capacitor anode and cathode slurry formula |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106298273A true CN106298273A (en) | 2017-01-04 |
Family
ID=57720650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610971715.0A Pending CN106298273A (en) | 2016-10-28 | 2016-10-28 | A kind of high-octane aquo-lithium ion type fluid capacitor anode and cathode slurry formula |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106298273A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112563465A (en) * | 2019-09-26 | 2021-03-26 | 广州汽车集团股份有限公司 | Negative electrode slurry, negative electrode sheet, lithium ion soft-package battery cell, lithium ion battery pack and application thereof |
CN112563464A (en) * | 2019-09-26 | 2021-03-26 | 广州汽车集团股份有限公司 | Lithium ion hard-package battery cell, lithium ion battery package and application thereof |
CN115083795A (en) * | 2021-03-12 | 2022-09-20 | 中国地质大学(北京) | High-performance spinel type lithium manganate-based semi-solid fluid electrode and preparation method thereof |
-
2016
- 2016-10-28 CN CN201610971715.0A patent/CN106298273A/en active Pending
Non-Patent Citations (1)
Title |
---|
HAO LIU等: "High Energy Density Aqueous Li-Ion Flow Capacitor", 《ADV. ENERGY MATER.》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112563465A (en) * | 2019-09-26 | 2021-03-26 | 广州汽车集团股份有限公司 | Negative electrode slurry, negative electrode sheet, lithium ion soft-package battery cell, lithium ion battery pack and application thereof |
CN112563464A (en) * | 2019-09-26 | 2021-03-26 | 广州汽车集团股份有限公司 | Lithium ion hard-package battery cell, lithium ion battery package and application thereof |
CN115083795A (en) * | 2021-03-12 | 2022-09-20 | 中国地质大学(北京) | High-performance spinel type lithium manganate-based semi-solid fluid electrode and preparation method thereof |
CN115083795B (en) * | 2021-03-12 | 2023-12-12 | 中国地质大学(北京) | High-performance spinel type lithium manganate-based semi-solid fluid electrode and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105047932B (en) | A kind of aquo-lithium ion battery quinones negative material and aquo-lithium ion battery | |
CN101241803B (en) | A poly-bile mixed super capacitor and its making method | |
CN104538207B (en) | TiNb2O7The preparation method of/carbon nano tube compound material and using the material as the lithium-ion capacitor of negative pole | |
CN105870449B (en) | A kind of all solid state lithium-air battery composite positive pole and all solid state lithium-air battery | |
WO2017121080A1 (en) | Aqueous electrolyte super capacitance battery | |
CN106252663B (en) | Metal-organic framework materials CuBDC nanometer sheet and its preparation method and application | |
CN103618094B (en) | The preparation method of a kind of high-capacity lithium sulfur flow battery and electrode thereof | |
CN102315454A (en) | A kind of preparation of composite collector and the application in the lithium ion flow battery thereof | |
CN108767263A (en) | A kind of preparation method and application of modified metal cathode of lithium copper foil current collector | |
CN101262056A (en) | An aqueous solution rechargeable lithium-ion battery | |
CN106450234A (en) | Spherical titania/graphene flexible composite material preparation method | |
CN105514344A (en) | Method for realizing surface modification of negative electrode of lithium ion battery through electrophoretic deposition of graphene | |
CN106298273A (en) | A kind of high-octane aquo-lithium ion type fluid capacitor anode and cathode slurry formula | |
CN1887950A (en) | Process of preparing graphite-base current collector | |
CN106384674A (en) | Aqueous rechargeable sodium-ion capacitor battery based on titanium phosphorus oxide cathode material | |
CN106229501B (en) | A kind of preparation method of nano strip magnesium Mn oxide and water system Magnesium ion battery electrode | |
CN103474257A (en) | Preparation method for graphene oxide load cupric oxide lithium ion capacitor electrode materials | |
CN102683727A (en) | Manganese oxide-graphene nano composite activator for lithium air battery and preparation method thereof | |
CN102891290B (en) | Silicon carbon composite material, lithium ion battery and negative pole piece thereof | |
CN206236549U (en) | A kind of aquo-lithium ion type fluid capacitor structure of high-energy | |
CN101276692A (en) | A nickel hydroxide hybrid supercapacitor and its manufacturing method | |
CN103700512A (en) | ZnMn2O4 electrode material and its preparation method | |
CN103646788A (en) | Nickel oxalate based asymmetrical supercapacitor and preparation method thereof | |
CN104201004B (en) | Preparation method of flexible hybrid super-capacitor electrode | |
CN106252098B (en) | A kind of high-voltage water-based supercapacitor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170104 |
|
RJ01 | Rejection of invention patent application after publication |