[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN106248121B - 环境变温下波动抑制的光纤光栅传感解调装置与解调方法 - Google Patents

环境变温下波动抑制的光纤光栅传感解调装置与解调方法 Download PDF

Info

Publication number
CN106248121B
CN106248121B CN201610668091.5A CN201610668091A CN106248121B CN 106248121 B CN106248121 B CN 106248121B CN 201610668091 A CN201610668091 A CN 201610668091A CN 106248121 B CN106248121 B CN 106248121B
Authority
CN
China
Prior art keywords
msub
mrow
light
peak
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610668091.5A
Other languages
English (en)
Other versions
CN106248121A (zh
Inventor
江俊峰
刘铁根
闫金玲
刘琨
王双
张学智
臧传军
谢仁伟
楚奇梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201610668091.5A priority Critical patent/CN106248121B/zh
Priority to PCT/CN2016/103525 priority patent/WO2018028051A1/zh
Priority to US16/324,275 priority patent/US11181400B2/en
Publication of CN106248121A publication Critical patent/CN106248121A/zh
Application granted granted Critical
Publication of CN106248121B publication Critical patent/CN106248121B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35325Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in reflection, e.g. Mickelson interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35335Aspects of emitters or receivers used by an interferometer in an optical fibre sensor arrangement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

本发明公开了一种环境变温下波动抑制的光纤光栅传感解调装置与解调方法,具有宽带光源(1)、光衰减器(2)、可调谐F‑P滤波器(3)、第一光纤隔离器(41)、掺铒光纤放大器(5)、光纤一级分束器(6)、第一光纤二级分束器(71)、光纤环形器(8)、光纤光栅传感阵列(9)、第一光电探测器阵列(161)、光纤气室(10)、第二光纤二级分束器(72)、光纤F‑P标准具(11)、陷波滤波器(12)、由第二光纤隔离器(42)、光纤耦合器(14)、法拉第旋光镜(15)和第二光电探测器阵列(162)构成的光纤辅助干涉仪(13)、数据采集卡(17)和处理器(18)。本发明在航空航天等环境变温的场合,抑制变温起的可调谐F‑P滤波器(3)波长扫描非线性曲线的大幅度波动,实现高稳定光纤光栅波长解调。

Description

环境变温下波动抑制的光纤光栅传感解调装置与解调方法
技术领域
本发明属于光纤传感技术领域,特别是涉及在变温环境下,一种基于光纤辅助干涉仪的高稳定光纤光栅传感解调装置与解调方法。
背景技术
光纤光栅传感系统是以光为载体,光纤为传输媒介,具有体积小、重量轻、耐腐蚀、抗电磁干扰、波长选择性好、易复用等优点,可感知外界应力应变、振动、温度和压力等物理参量的变化,通过布拉格光波长的漂移反映出来。相比传统电学传感系统,该技术具有测量范围宽、高精度和高分辨率的特点,在强电磁干扰、易燃易爆或热真空等严酷环境下更具优势。
可调谐F-P滤波法是常用的光纤光栅传感解调方法,易实现在宽光谱范围内的高速、高精度解调,但因可调谐F-P滤波器是通过PZT的逆压电效应实现宽范围内的波长扫描,而PZT迟滞、蠕变和非线性等特性使透射波长与驱动电压不能保持很好的线性和重复性,会影响解调精度。F-P标准具可在与光源波段匹配的范围内引入间隔均匀的多个光频率参考点,在稳态环境温度下能较好地标定可调谐滤波器的波长扫描非线性关系曲线,但在不同稳态温度下F-P标准具存在波长漂移。使用温度稳定的气体参考波长对F-P标准具的参考波长作校正,实现了不同稳态或准稳态环境温度下的绝对波长解调。但是,当环境温度较快变化时,PZT还会使滤波器波长扫描非线性曲线的随机波动增大,尤其在中高速扫描的场合,采用F-P标准具和光纤气室也难以避免波长解调结果出现大幅度波动,导致测量精度大幅降低。为克服这一问题,我们提出波长扫描非线性曲线的波动抑制装置和解调方法,通过引入光纤辅助干涉仪,在F-P标准具相邻干涉谱线之间进行光频细分,得到多个局部附加光频率参考,有效抑制可调谐滤波器波长扫描非线性曲线波动增大引起的解调结果波动。
发明内容
为了克服环境变温引起的可调谐F-P滤波器波长扫描非线性曲线波动增大对光纤光栅传感器波长解调稳定性的影响,本发明提供一种波动抑制的高稳定光纤光栅传感解调装置与解调方法,该装置通过辅助干涉仪实现了对F-P标准具光波长间隔的细分,并编制了局部光频细分解调算法,抑制了变温过程中光纤光栅相对波长解调值的大幅波动,提高了波长解调稳定性。
本发明提出了一种环境变温下波动抑制的光纤光栅传感解调方法,包括以下流程:
步骤(1)、宽带光源输入信号经过光衰减、光功率调谐滤波后,输出窄带扫频激光,扫频激光经隔离回光处理后,进行光功率放大处理,再经过光分束处理分成两部分光,其中一部分光到达传感链路和光纤气室,另一部分光到达局部附加光频率参考链路;
步骤(2)、将到达传感链路和光纤气室的光分成N束,其中一束由透射光信号转化为电压模拟信号;其余N-1束中的每束光均被发送至传感器链路,传感器感知外界待测量并将其编码到光纤光栅反射光的中心波长上;将传感链路的反射光信号转化为电压模拟信号;
步骤(3)、将到达局部附加光频率参考链路的光分成两部分光,一部分光形成梳状透射光,对该透射光信号陷掉指定光频率,并对该指定光频率作标记;另一部分光经分束和反射后再次相遇并发生干涉得到辅助干涉信号;将两部分光信号分别转化为电压模拟信号,电压模拟信号再经数据采集卡送至处理单元进行解调;
步骤(4)、对采集到的梳状透射光谱线进行寻峰,以指定的光频率标记为基准向两侧依次将寻得的各峰值点Xi与已知的光频率值Fi一一对应,获得光源谱宽范围内的一级光频率参考点(Xi,Fi),构成一级光频率参考点序列,i=1,2,3…n-1;基于一级光频率参考点序列,将整个宽带的光源谱划分为n个区域(Ei=1,2,3…n-1),每个区域的起点和终点为两个相邻的一级光频率参考点(Xi,Fi)和(Xi+1,Fi+1);
步骤(5)、对采集到的干涉信号谱线去基线,然后截取分区Ei横坐标范围Xi~Xi+1内的辅助干涉信号,通过极值法、质心法或拟合法求取辅助干涉信号的峰值、谷值位置,构成次级光频率参考的采样点(χ1,…χm+1)序列,并通过对峰谷点个数计数得到完整半周期的个数m,靠近分区起点和终点的非完整半周期通过计算其在所处半周期中所占百分比确定,最终得到分区内干涉信号的半周期数:
其中,Δns为分区内第一个峰值或谷值点与分区起点Xi的采样点间距,Ns/2为Xi所处的干涉半周期采样点个数;Δne为分区内最后一个峰值或谷值点与分区终点Xi+1的采样点间距,Ne/2为Xi+1所处的干涉半周期采样点个数。从而得到次级光频率参考点的光频率值fk(k=1,2,3…m+1):
利用一级光频率参考点(Xi,Fi)和次级光频率参考点(χk,fk)共同构成的序列,通过插值建立分区Ei内的采样点-光频率关系曲线;f1、fm+1分别代表k=1和k=m+1时的次级光频率参考点的光频率值;
步骤(6)、通过对传感链路的反射光信号谱线寻峰,将峰值位置定位到相邻透射光信号谱线划分的特定分区内,基于采样点-光频率的关系曲线,通过插值得到光纤光栅传感器透射峰的中心光频率ffbg,通过光频率f和波长λ的关系λ=c/f(c为真空中的光速)得到光纤光栅传感器的峰值中心波长λfbg=c/ffbg
步骤(7)、提取光纤气室透射谱线最强吸收峰,去基线后寻峰得到峰值位置,将峰值定位到由相邻透射谱线划分的特定分区内,基于采样点-光频率关系曲线,通过插值得到最强吸收峰的中心光频率fg,通过光频率和波长的关系得到峰值中心波长λg,λg=c/fg,再根据气室透射谱线最强吸收峰中心波长的标准值进行温漂校正,得到最终波长解调值。
附图说明
图1为环境变温下波动抑制的光纤光栅传感解调装置示意图;
图2为光纤辅助干涉仪在光纤F-P标准具之间引入附加光频率参考并提取光频率的示意图;
图3为光纤辅助干涉仪干涉谱去基线前后的谱线图;
图4为结合附加光频率参考标定可调谐F-P滤波器的局部非线性曲线;
图5为本发明与以往未引入局部附加光频率参考解调方法的波长解调结果对比,装置处于-20℃~20℃的快速变温过程示意图。
附图标记:1、宽带光源,2、光衰减器,3、可调谐F-P滤波器,41、第一光纤隔离器,5、掺铒光纤放大器,6、光纤一级分束器,71、第一光纤二级分束器,72、第二光纤二级分束器、8、光纤环形器,9、光纤光栅传感阵列,10、光纤气室,11、光纤F-P标准具,12、陷波滤波器,13、光纤辅助干涉仪,42、第二光纤隔离器,14、光纤耦合器,15、法拉第旋光镜,16、光电探测器阵列,17、数据采集卡,18、处理器,19、标准具透射峰,20、光纤光栅透射信号。
具体实施方式
以下结合附图说明及实施例,具体描述本发明的技术方案
实施例1:环境变温下波动抑制的光纤光栅传感解调装置。
如图1所示,宽带光源1发出的经光衰减器2满足可调谐F-P滤波器3的入口光功率要求,然后进入由三角波或锯齿波电压驱动的可调谐F-P滤波器3输出扫频激光,扫频激光再经第一光纤隔离器41进入掺铒光纤放大器5进行光功率放大,再经光纤一级分束器6按照20%:80%分成两束光,其中80%的光进入第一光纤二级分束器71被分成8束,其中7束均各自通过每路设置的一个光纤环形器8进入相应的光纤光栅传感器阵列9,外界待测参量的变化被传感器感知,并引起光纤光栅反射光中心波长的漂移,反射光再经光纤环形器8送至光电探测器阵列16;剩余一束进入光纤气室10,透射光由光电探测器阵列16接收;另外20%的光经再经过第二光纤一级分束器72分成两束光,一束进入光纤F-P标准具11形成等光频率间隔的梳状透射光,采用一个陷波滤波器12陷掉指定中心光频率的透射峰,并将该光频率作为标记,由光电探测器阵列16接收;另一束光进入光纤辅助干涉仪13,经第二一光纤隔离器42,两个干涉臂的反射光经法拉第旋光镜15反射,在光纤耦合器14处形成干涉条纹,在光纤F-P标准具11相邻透射峰之间插入多个局部附加光频率参考,用干涉条纹来标定可调谐F-P滤波器3的波长扫描非线性曲线,干涉光由光电探测器阵列16接收,光电探测器阵列16将所有的光信号转变成电信号经数据采集卡17送至处理器18进行解调。
宽带光源1,用于为系统提供宽谱光,包括C波段ASE光源、C+L波段ASE光源和SLD光源,功率在0.1mW~40mW;
光衰减器2,用于调节光源输出光功率,以达到可调谐F-P滤波器对入口光功率的限制要求;
可调谐F-P滤波器3,用于通过控制其驱动电压从宽带光源中滤出波长变化的窄带光谱信号,从而实现波长扫描,可调谐F-P滤波器的谱宽在10pm~400pm,自由光谱范围为90nm~200nm;
第一、第二光纤隔离器41、42,用于隔离回光,保证光的单向传输;
掺铒光纤放大器5,用于对扫描光进行放大,输出光功率范围为10dBm~18dBm;
光纤一级分束器6,用于将输入光按照一定的比例分光,包括平面波导型光纤分束器、熔融拉锥式光纤分束器;
光纤二级分束器7,用于将输出的可调谐激光分成N束光功率和谱型相同的扫描激光,N取值选自2,4,8,16,32,64,128中的一个;
光纤环形器8,用于将光纤二级分束器出来的光发送至传感器链路并收集反射信号光,当光源功率大于1mW时,可采用光纤耦合器替代以降低系统成本;
光纤光栅传感阵列9,用于感知外界待测量物理量变化,使光纤光栅反射谱中波长发生漂移;
光纤气室10,用于提供绝对光频参考标准,包括乙炔气室、甲烷气室、氰化氢气室、二氧化碳气室;
光纤F-P标准具11,用于提供等光频间隔的梳状波长参考;
陷波滤波器12,用于去掉光纤F-P标准具中的一条谱线;
光纤辅助干涉仪13,用于在光纤F-P标准具11相邻透射极大之间提供附加光频参考,对环境变温过程中可调谐F-P滤波器的波长扫描非线性曲线进行标定,结构包括光纤迈克尔逊干涉仪式和光纤马赫泽德干涉仪式;光纤迈克尔逊干涉仪式由光纤耦合器14和光纤法拉第旋光镜15组成,光纤耦合器14将输入光均分两路,得到振动方向相同,频率相同的两束光,分别送至由光纤法拉第旋光镜15,光纤法拉第旋光镜15将干涉两臂的光反射,构成有一定光程差的干涉两臂;光纤马赫泽德干涉仪式则由两个光纤耦合器串接组成;由于扫描光源谱宽造成两臂光程差存在允许极大值,在确定两臂几何长度差时,需综合考虑光程差对干涉条纹个数和条纹可见度的相互制约关系;
光电探测器阵列16,用于将传感通道和参考通道的光信号转化为电压模拟信号;
数据采集卡17,采集由光电探测器阵列得到的电压模拟信号;
处理单元18,采用计算机或嵌入式计算系统,用于对被测传感光纤光栅的波长进行解调。
实施例2:基于光纤辅助干涉仪和光纤F-P标准具的局部附加光频率参考提取和解调算法
第1、宽带光源发出的光经过光衰减器使输出光功率满足调谐F-P滤波器对入口光功率的要求,可调谐F-P滤波器在三角波或锯齿波电压驱动下输出窄带扫频激光,再经光纤隔离器进入掺铒光纤放大器进行光功率放大,再经过光纤一级分束器分成两部分光,其中一部分光到达传感链路和光纤气室,另一部分光到局部附加光频率参考链路;
第2、到达传感链路和光纤气室的光进入光纤二级分束器分成N束,其中一束进入光纤气室,透射光信号送至光电探测器;其余每束光均通过一个光纤环形器将扫频激光送至光纤光栅传感器阵列,传感器感知外界待测量的变化,使光纤光栅反谱的中心波长发生漂移,反射光信号再通过光纤环形器送至光电探测器;
第3、到达局部附加光频率参考链路的光进入光纤二级分束器分成两部分光,一部分光进入光纤F-P标准具形成等光频率间隔的梳状透射光,采用一个陷波滤波器陷掉指定光频率的光信号,并将该光频率作标记;另一部分光进入光纤辅助干涉仪,其两臂反射光在光纤耦合器处形成干涉光;两路波长参考光信号分别送至光电探测器;光电探测器阵列将所有的光信号转变成电信号经数据采集卡送至处理单元进行解调;
第4、光纤F-P标准具提供等光频率间隔的波长参考谱线,对采集到的标准具信号进行寻峰,通过光频率标记与已知光频率值一一对应,获得光源谱宽范围内的一级光频率参考点;基于一级光频率参考点序列,将整个光源谱范围划分为多个区域(Ei=1,2,3…n-1),每个区域的起点和终点分别由光纤F-P标准具透射谱的两个相邻峰值点(Xi,Fi)和(Xi+1,Fi+1)确定;
第5、对采集到的光纤辅助干涉仪信号谱线去基线,然后在由光纤F-P标准具确定的分区Ei内处理辅助干涉信号,使用质心法、三角函数拟合法,和求导法确定其峰谷值位置,作为次级光频率参考的采样点(χ1,…χm+1)序列,并通过对峰谷点个数计数到得完整半周期的个数m,靠近分区起点和终点的非完整半周期通过计算其在所处半周期中所占百分比确定,最终得到分区内干涉信号的半周期数其中Δns为分区内第一个峰(谷)值点与分区起点Xi的采样点间距,Ns/2为Xi所处的干涉半周期采样点个数。Δne为分区内最后一个峰(谷)值点与分区终点Xi+1的采样点间距,Ne/2为Xi+1所处的干涉半周期采样点个数。从而得到次级光频率参考的光频率值fk(k=1,2,3…m+1):
此时由光纤F-P标准具提供的一级光频率参考和由光纤辅助干涉仪提供的次级光频率参考,通过插值建立分区Ei内的采样点-光频率的关系曲线,从而反映出波长扫描行程中可调谐滤波器扫描非线性曲线更为真实的细节,抑制解调结果的波动。当需进一步进行光频率细化的时候,根据辅助干涉仪信号的双光束干涉特征,得到信号每一点之间的相位关系,求得更多次级光频率参考;
第6、通过对光纤光栅传感器反射谱线寻峰,将其峰值位置定位到由光纤F-P标准具相邻透射谱线划分的特定的分区内,在该分区内,基于F-P标准具和辅助干涉仪的采样点-光频率关系曲线插值得到光纤光栅传感器的峰值中心光频率ffbg,通过光频率和波长的关系得到光纤光栅传感器的峰值中心波长λfbg
第7、提取光纤气室透射谱线最强吸收峰,去基线后寻峰得到峰值位置,将峰值定位到由光纤F-P标准具相邻透射谱线划分的特定的分区内,基于F-P标准具和辅助干涉仪的采样点-光频率关系曲线,通过插值得到光纤气室的最强吸收峰的中心光频率fg,通过光频率和波长的关系得到光纤气室的峰值中心波长λg,再根据气室透射谱线最强吸收峰中心波长的标准值进行温漂校正,得到最终波长解调值。
如图2所示,在为光纤辅助干涉仪13在光纤F-P标准具相邻干涉极大之间引入局部附加光频率参考的示意图中,对光纤光栅透射信号20寻峰并定位到特定的标准具透射峰19确定的分区Ei(i=1,2,3…n-1)内,n表示可得到的分区总数,划分时,分区的起点和终点为光纤F-P标准具的两个相邻峰值点(Xi,Fi)、(Xi+1,Fi+1)。
如图3所示,在光纤辅助干涉仪信号去基线前后的谱线图中,对分区内光纤辅助干涉仪信号谱线21(如图2所示),使用质心法确定峰谷值位置,作为次级光频率参考的采样点序列(χ1,…χm+1),同时通过对峰谷点个数计数得到完整半周期的个数,靠近分区起点和终点的非完整半周期通过计算其在所处半周期中所占百分比确定,最终得到分区内干涉信号的半周期数,再根据两端一级光频率参考的光频率值求得各次级光频率参考值。
如图4所示,由光纤F-P标准具提供的一级光频率参考和由光纤辅助干涉仪提供的次级光频率参考通过插值建立分区内采样点-光频率的函数关系,根据此关系求出光纤光栅传感器的峰值中心光频率ffbg,通过光频率和波长的关系得到光纤光栅传感器的峰值中心波长λfbg。同理得到光纤气室的最强吸收峰的峰值中心波长λg,而气室最强吸收峰中心波长的标准值为λr,则进行温漂校正后的光纤光栅中心波长为λFBG=λf-η(λgr),其中m1是与光纤气室最强吸收峰中心波长标准值λr最接近的光纤F-P标准具的透射峰的干涉级次,FSR为光纤F-P标准具的自由光谱范围。
如图5所示,为了验证本发明对波长传感测量稳定性的提高效果,将装置置于-20℃~20℃的变温过程,并使用本发明局部附加光频率参考方法对在恒温槽中保温的光纤光栅传感器进行解调,同时与其他方法作对比。可以看出,在使用其他方法的情况下,波长解调结果波动在±24pm;而利用本发明的局部附加光频率参考方法所得波长解调波动在±3.5pm,波长解调稳定性提高5.9倍。

Claims (1)

1.一种环境变温下波长扫描波动抑制的光纤光栅传感解调方法,其特征在于,该方法包括以下流程:
步骤(1)、宽带光源输入信号经过光衰减、光功率调谐滤波后,输出窄带扫频激光,扫频激光经隔离回光处理后,进行光功率放大处理,再经过光分束处理分成两部分光,其中一部分光到达传感链路和光纤气室,另一部分光到达局部附加光频率参考链路;
步骤(2)、将到达传感链路和光纤气室的光分成N束,其中一束由透射光信号转化为电压模拟信号;其余N-1束中的每束光均被发送至传感器链路,当外界待测参量变化时,光纤光栅反射光的中心波长发生漂移;将传感链路的反射光信号转化为电压模拟信号;
步骤(3)、将到达局部附加光频率参考链路的光分成两部分光,一部分光形成梳状透射光,对该透射光信号陷掉指定光频率,并对该指定光频率作标记;另一部分光经分束和反射后再次相遇并发生干涉得到辅助干涉信号;将两部分光信号分别转化为电压模拟信号,电压模拟信号再经数据采集卡送至处理单元进行解调;
步骤(4)、对采集到的梳状透射光谱线进行寻峰,以指定的光频率标记为基准向两侧依次将寻得的各峰值点Xi,并与已知的光频率值Fi一一对应,获得光源谱宽范围内的一级光频率参考点(Xi,Fi),构成一级光频率参考点序列,i=1,2,3…n-1;基于一级光频率参考点序列,将整个宽带的光源谱划分为n个区域(Ei=1,2,3…n-1),每个区域的起点和终点为两个相邻的一级光频率参考点(Xi,Fi)和(Xi+1,Fi+1);
步骤(5)、对采集到的干涉信号谱线去基线,然后截取分区Ei横坐标范围Xi~Xi+1内的辅助干涉信号,通过极值法、质心法或拟合法求取辅助干涉信号的峰值、谷值位置,构成次级光频率参考的采样点(χ1,…χm+1)序列,并通过对峰谷点个数计数得到完整半周期的个数m,靠近分区起点和终点的非完整半周期通过计算其在所处半周期中所占百分比确定,最终得到分区内干涉信号的半周期数:
<mrow> <msub> <mi>n</mi> <mrow> <mi>T</mi> <mo>/</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;Delta;n</mi> <mi>s</mi> </msub> </mrow> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> <mo>/</mo> <mn>2</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>&amp;Delta;n</mi> <mi>e</mi> </msub> </mrow> <mrow> <msub> <mi>N</mi> <mi>e</mi> </msub> <mo>/</mo> <mn>2</mn> </mrow> </mfrac> <mo>+</mo> <mi>m</mi> </mrow>
其中,Δns为分区内第一个峰值或谷值点与分区起点Xi的采样点间距,Ns/2为Xi所处的干涉半周期采样点个数;Δne为分区内最后一个峰值或谷值点与分区终点Xi+1的采样点间距,Ne/2为Xi+1所处的干涉半周期采样点个数,从而得到次级光频率参考点的光频率值fk(k=1,2,3…m+1):
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>F</mi> <mi>i</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mi>i</mi> </msub> </mrow> <msub> <mi>n</mi> <mrow> <mi>T</mi> <mo>/</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>&amp;Delta;n</mi> <mi>s</mi> </msub> </mrow> <mrow> <msub> <mi>N</mi> <mi>s</mi> </msub> <mo>/</mo> <mn>2</mn> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mi>f</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>f</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mi>i</mi> </msub> </mrow> <msub> <mi>n</mi> <mrow> <mi>T</mi> <mo>/</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>,</mo> <mn>2</mn> <mo>&amp;le;</mo> <mi>k</mi> <mo>&amp;le;</mo> <mi>m</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>f</mi> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mi>i</mi> </msub> </mrow> <msub> <mi>n</mi> <mrow> <mi>T</mi> <mo>/</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>&amp;Delta;n</mi> <mi>e</mi> </msub> </mrow> <mrow> <msub> <mi>N</mi> <mi>e</mi> </msub> <mo>/</mo> <mn>2</mn> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced>
利用一级光频率参考点(Xi,Fi)和次级光频率参考点(χk,fk)共同构成的序列,通过插值建立分区Ei内的采样点-光频率关系曲线;f1、fm+1分别代表k=1和k=m+1时的次级光频率参考点的光频率值;
步骤(6)、通过对传感链路的反射光信号谱线寻峰,将峰值位置定位到相邻透射光信号谱线划分的特定分区内,基于采样点-光频率的关系曲线,通过插值得到光纤光栅传感器透射峰的中心光频率ffbg,通过光频率f和波长λ的关系λ=c/f,c为真空中的光速,得到光纤光栅传感器的峰值中心波长λfbg=c/ffbg
步骤(7)、提取光纤气室透射谱线最强吸收峰,去基线后寻峰得到峰值位置,将峰值定位到由相邻透射谱线划分的特定分区内,基于采样点-光频率关系曲线,通过插值得到最强吸收峰的中心光频率fg,通过光频率和波长的关系得到峰值中心波长λg,λg=c/fg,再根据气室透射谱线最强吸收峰中心波长的标准值进行温漂校正,得到最终波长解调值。
CN201610668091.5A 2016-08-11 2016-08-11 环境变温下波动抑制的光纤光栅传感解调装置与解调方法 Active CN106248121B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610668091.5A CN106248121B (zh) 2016-08-11 2016-08-11 环境变温下波动抑制的光纤光栅传感解调装置与解调方法
PCT/CN2016/103525 WO2018028051A1 (zh) 2016-08-11 2016-10-27 环境变温下波动抑制的光纤光栅传感解调装置与解调方法
US16/324,275 US11181400B2 (en) 2016-08-11 2016-10-27 Fiber Bragg Grating demodulation device capable of supressing fluctuations at variable ambient temperature and demodulation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610668091.5A CN106248121B (zh) 2016-08-11 2016-08-11 环境变温下波动抑制的光纤光栅传感解调装置与解调方法

Publications (2)

Publication Number Publication Date
CN106248121A CN106248121A (zh) 2016-12-21
CN106248121B true CN106248121B (zh) 2018-03-06

Family

ID=57591596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610668091.5A Active CN106248121B (zh) 2016-08-11 2016-08-11 环境变温下波动抑制的光纤光栅传感解调装置与解调方法

Country Status (3)

Country Link
US (1) US11181400B2 (zh)
CN (1) CN106248121B (zh)
WO (1) WO2018028051A1 (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107764434B (zh) * 2017-09-06 2020-02-07 天津大学 基于fp标准具的fbg温度传感器响应测量方法
CN108106645A (zh) * 2017-12-19 2018-06-01 天津大学 基于氰化氢吸收波长参考的光纤光栅传感解调装置与方法
CN108562237B (zh) * 2018-01-04 2020-02-18 大连理工大学 一种采用hcn气室在光频域反射传感系统中进行光谱校准的装置和方法
CN108828618A (zh) * 2018-06-11 2018-11-16 天津大学 基于等光频间隔重采样的远距离高精度测量装置及方法
CN109052181A (zh) * 2018-10-31 2018-12-21 中船第九设计研究院工程有限公司 一种造船门式起重机故障监控诊断系统及方法
CN109630198B (zh) * 2019-01-17 2024-04-19 中铁第四勘察设计院集团有限公司 一种分布式传感光纤串列设置的防护门监测系统及方法
CN109990813B (zh) * 2019-03-19 2021-09-07 北京航天时代光电科技有限公司 一种基于宽带可调谐光源的光纤光栅波长解调装置
CN110412038B (zh) * 2019-07-17 2022-03-22 天津大学 一种基于单光纤光栅和神经网络的结构损伤位置识别系统
CN110686708A (zh) * 2019-09-17 2020-01-14 天津大学 变温环境抑制扫描非线性的光纤光栅传感解调系统及方法
CN110954240A (zh) * 2019-11-07 2020-04-03 江苏卓然智能重工有限公司 一种基于fbg传感器的ocm反应器温度监测系统
CN112904070B (zh) * 2019-11-19 2023-12-29 许继集团有限公司 全光纤电流互感器及其检测模块、光路状态诊断方法
CN110887513A (zh) * 2019-11-19 2020-03-17 天津大学 一种基于bp神经网络的光纤光栅传感系统及其解调方法
CN112082586B (zh) * 2020-06-05 2022-09-16 哈尔滨工业大学 基于分布式反馈激光器阵列的光纤光栅阵列传感方法、装置及系统
CN111537010B (zh) * 2020-06-16 2024-09-10 中国计量大学 基于otdr的f-p干涉型传感头多点测量方法及装置
CN111854814A (zh) * 2020-08-17 2020-10-30 江西飞尚科技有限公司 一种多功能光纤光栅解调仪及其解调方法
CN112179519B (zh) * 2020-08-31 2022-07-01 北京航空航天大学 一种电动汽车电池温度监测报警系统及其使用方法
CN112082650B (zh) * 2020-09-04 2023-05-30 哈尔滨工程大学 一种白光干涉测量中光源纹波引入杂散峰的消除方法
CN112946611B (zh) * 2021-02-04 2022-11-01 哈尔滨工业大学 基于相似三角插值采样的扫频非线性矫正测距方法
CN113465656B (zh) * 2021-04-30 2023-08-15 潍坊嘉腾液压技术有限公司 一种用于检测流体复合参数的测试仪及数据处理方法
CN114826406B (zh) * 2021-05-27 2024-01-09 中航光电科技股份有限公司 一种基于磁悬浮技术的超宽带射频光纤稳相传输系统
CN113670466B (zh) * 2021-08-05 2022-09-30 北京航空航天大学 一种基于光吸收测温的碱金属气室温控方法
CN113776695B (zh) * 2021-08-06 2024-02-06 中国长江三峡集团有限公司 低温至室温温度区间光纤光栅温度传感器标定系统及方法
US20230050682A1 (en) * 2021-08-12 2023-02-16 Mitsubishi Electric Research Laboratories, Inc. Frequency Modulation Continuous Wave (FMCW)-Based System for Estimation and Compensation of Nonlinearity in Linearly Swept Sources
CN113959943B (zh) * 2021-09-22 2024-03-19 武汉雷施尔光电信息工程有限公司 一种平面型光纤探针传感器的空泡份额测量系统及方法
CN113959606B (zh) * 2021-10-20 2023-09-26 南京信息工程大学 一种基于级联增强游标效应的混合型横向压力传感器
CN114076737B (zh) * 2021-11-18 2024-03-12 国网安徽省电力有限公司电力科学研究院 一种基于光纤光声传感的分布式在线监测系统及方法
CN114235018B (zh) * 2021-12-09 2023-08-08 山东微感光电子有限公司 一种温度自适应的fbg解调方法及系统
CN114235044A (zh) * 2021-12-14 2022-03-25 山东航天电子技术研究所 一种大容量光纤光栅传感解调装置及解调方法
CN114485901B (zh) * 2021-12-31 2024-03-26 武汉烽理光电技术有限公司 一种基于可调谐激光光源的高速调制解调系统和方法
CN114604289A (zh) * 2022-03-16 2022-06-10 武汉理工大学 一种光纤光栅阵列传感的无砟轨道板状态监测系统及方法
CN114877923B (zh) * 2022-04-24 2023-06-09 海南大学 基于阵列波导光栅和神经网络算法的Fabry-Perot干涉传感器解调系统及方法
CN114924281B (zh) * 2022-07-19 2022-11-04 天津大学四川创新研究院 一种基于h13c14n气体池的调频连续波同时测距和测速方法及系统
FR3143111A1 (fr) * 2022-12-09 2024-06-14 Commissariat à l'Energie Atomique et aux Energies Alternatives Dispositif de mesure d’une grandeur physique
CN116026381B (zh) * 2023-01-13 2024-07-09 武汉理工大学 一种光纤光栅波长解调方法及系统
CN116136422A (zh) * 2023-04-18 2023-05-19 武汉昊衡科技有限公司 提高ofdr解调全同弱反射光纤光栅阵列量程装置及方法
CN116781149B (zh) * 2023-05-31 2024-07-26 中国科学技术大学 基于偏转光栅的耦合自校准装置及方法
CN117387673B (zh) * 2023-12-08 2024-02-23 山东星冉信息科技有限公司 一种基于参考气室的光纤光栅解调方法及设备
CN117879699B (zh) * 2024-01-11 2024-11-01 威海激光通信先进技术研究院 一种用于空间光耦合的光纤倾斜和离焦高精度检测方法
CN117686009B (zh) * 2024-02-04 2024-05-14 武汉理工大学 光纤双fp复合传感监测设备
CN118464081B (zh) * 2024-07-15 2024-09-10 山东科技大学 基于可调谐激光器的光纤光栅高速检测方法及系统
CN118687611A (zh) * 2024-08-26 2024-09-24 山东科技大学 一种可调谐激光器的光强波动干扰检测修正系统和方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696579A (en) * 1995-09-08 1997-12-09 Mcdonnell Douglas Method, apparatus and system for determining the differential rate of change of strain
US6909538B2 (en) * 2002-03-08 2005-06-21 Lightwave Electronics Fiber amplifiers with depressed cladding and their uses in Er-doped fiber amplifiers for the S-band
CN101718942B (zh) * 2009-11-25 2011-10-26 北京航空航天大学 一种多通道光纤光栅解调仪
CN102095487B (zh) * 2010-11-10 2013-02-13 中国科学院声学研究所 时分复用光纤水听器阵列的光路结构及其调制解调方法
US20120183004A1 (en) * 2010-12-13 2012-07-19 Redfern Integrated Optics, Inc. Ultra-Low Frequency-Noise Semiconductor Laser With Electronic Frequency Feedback Control and Homodyne Optical Phase Demodulation
CN102322880B (zh) * 2011-08-18 2013-06-05 天津大学 偏振敏感的分布式光频域反射扰动传感装置和解调方法
US8909040B1 (en) * 2013-02-05 2014-12-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus of multiplexing and acquiring data from multiple optical fibers using a single data channel of an optical frequency-domain reflectometry (OFDR) system
CN103759750B (zh) * 2014-01-23 2016-05-25 中国科学院半导体研究所 基于相位生成载波技术的分布式光纤传感系统
CN104567959B (zh) * 2015-01-27 2017-01-11 中国人民解放军国防科学技术大学 基于双通道非平衡干涉仪的大动态干涉型光纤传感器
CN104931081B (zh) * 2015-06-10 2017-08-11 天津大学 基于复合波长参考的光纤光栅传感解调装置与方法
CN105698871B (zh) * 2016-03-29 2018-08-21 天津大学 基于光频域反射的分布式应变温度同时测量装置及方法

Also Published As

Publication number Publication date
CN106248121A (zh) 2016-12-21
WO2018028051A1 (zh) 2018-02-15
US11181400B2 (en) 2021-11-23
US20190178688A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
CN106248121B (zh) 环境变温下波动抑制的光纤光栅传感解调装置与解调方法
CN104931081B (zh) 基于复合波长参考的光纤光栅传感解调装置与方法
CN102384799B (zh) 基于布里渊分布式光纤传感系统相干检测方案的扫频及数据处理方法
CN104864911B (zh) 基于光纤法珀腔与光纤光栅双参量联合测量的高速解调装置及方法
CN103674110B (zh) 一种基于布里渊光放大检测的分布式光纤温度应变传感器
CN100541148C (zh) 一种光纤傅立叶变换白光干涉测量法
CN102607621A (zh) 同时检测温度和应变的分布式光纤布里渊传感装置和方法
CN102589588A (zh) 利用光纤光栅解调Fabry–Pérot腔腔长的方法
CN104457803A (zh) 基于f-p标准具和参考光栅的波长解调系统和方法
CN104215368A (zh) 一种f-p腔光纤压力传感装置及其解调方法
CN103592261A (zh) 全光纤温度补偿型气体传感器及其补偿方法
CN102506913A (zh) 干涉型光纤分布式扰动传感器及其扰动定位方法
CN108917804A (zh) 基于啁啾链的快速长距离分布式布里渊光纤传感装置
CN109186643B (zh) 一种基于反射功能谐振滤波器的精确传感系统及传感方法
CN104697558A (zh) 光纤分布式多参量传感测量系统
CN104776871B (zh) 光纤布里渊分布式测量光路、装置和方法
CN106153225A (zh) 基于微波光子滤波器的光纤布拉格光栅横向压力传感器系统及测量方法
CN105066899B (zh) 一种互参考的光纤激光静态应变传感解调系统
CN105091740B (zh) 一种基于标定高分辨率频率扫描干涉仪色散啁啾斜率补偿色散的方法
CN207300268U (zh) 光纤布拉格光栅解调装置
CN105115528B (zh) 基于参考光纤激光器的高精度静态应变拍频解调系统
CN209783610U (zh) 基于色散补偿光栅对的光电振荡器双参量传感装置
CN106225816A (zh) 一种基于布里渊滤波器的光栅传感装置与方法
CN109556756B (zh) 基于多波长光纤激光器游标效应的温度传感器
CN104729750A (zh) 一种基于布里渊散射分布式光纤温度传感器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant