CN106190344B - A kind of method and its fuel for preparing the compound hydrocarbon fuel of high energy - Google Patents
A kind of method and its fuel for preparing the compound hydrocarbon fuel of high energy Download PDFInfo
- Publication number
- CN106190344B CN106190344B CN201610644388.8A CN201610644388A CN106190344B CN 106190344 B CN106190344 B CN 106190344B CN 201610644388 A CN201610644388 A CN 201610644388A CN 106190344 B CN106190344 B CN 106190344B
- Authority
- CN
- China
- Prior art keywords
- nano
- boron powder
- hydrocarbon fuel
- fuel
- mixed solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 80
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 50
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 40
- -1 compound hydrocarbon Chemical class 0.000 title description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 47
- 239000012046 mixed solvent Substances 0.000 claims abstract description 29
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 22
- 239000002131 composite material Substances 0.000 claims abstract description 21
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 claims description 22
- 238000003756 stirring Methods 0.000 claims description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 9
- 230000007062 hydrolysis Effects 0.000 claims description 9
- 238000006460 hydrolysis reaction Methods 0.000 claims description 9
- 239000003350 kerosene Substances 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 3
- YGUFXEJWPRRAEK-UHFFFAOYSA-N dodecyl(triethoxy)silane Chemical compound CCCCCCCCCCCC[Si](OCC)(OCC)OCC YGUFXEJWPRRAEK-UHFFFAOYSA-N 0.000 claims description 3
- RSKGMYDENCAJEN-UHFFFAOYSA-N hexadecyl(trimethoxy)silane Chemical compound CCCCCCCCCCCCCCCC[Si](OC)(OC)OC RSKGMYDENCAJEN-UHFFFAOYSA-N 0.000 claims description 3
- FZMJEGJVKFTGMU-UHFFFAOYSA-N triethoxy(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OCC)(OCC)OCC FZMJEGJVKFTGMU-UHFFFAOYSA-N 0.000 claims description 3
- NMEPHPOFYLLFTK-UHFFFAOYSA-N trimethoxy(octyl)silane Chemical compound CCCCCCCC[Si](OC)(OC)OC NMEPHPOFYLLFTK-UHFFFAOYSA-N 0.000 claims description 3
- 238000007385 chemical modification Methods 0.000 claims description 2
- BAAAEEDPKUHLID-UHFFFAOYSA-N decyl(triethoxy)silane Chemical compound CCCCCCCCCC[Si](OCC)(OCC)OCC BAAAEEDPKUHLID-UHFFFAOYSA-N 0.000 claims description 2
- KQAHMVLQCSALSX-UHFFFAOYSA-N decyl(trimethoxy)silane Chemical compound CCCCCCCCCC[Si](OC)(OC)OC KQAHMVLQCSALSX-UHFFFAOYSA-N 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- SLYCYWCVSGPDFR-UHFFFAOYSA-N octadecyltrimethoxysilane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OC)(OC)OC SLYCYWCVSGPDFR-UHFFFAOYSA-N 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- AXNJHBYHBDPTQF-UHFFFAOYSA-N trimethoxy(tetradecyl)silane Chemical compound CCCCCCCCCCCCCC[Si](OC)(OC)OC AXNJHBYHBDPTQF-UHFFFAOYSA-N 0.000 claims description 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- SCPWMSBAGXEGPW-UHFFFAOYSA-N dodecyl(trimethoxy)silane Chemical compound CCCCCCCCCCCC[Si](OC)(OC)OC SCPWMSBAGXEGPW-UHFFFAOYSA-N 0.000 claims 1
- OYGYKEULCAINCL-UHFFFAOYSA-N triethoxy(hexadecyl)silane Chemical compound CCCCCCCCCCCCCCCC[Si](OCC)(OCC)OCC OYGYKEULCAINCL-UHFFFAOYSA-N 0.000 claims 1
- XVKXMTGNOIVVLP-UHFFFAOYSA-N triethyl(octyl)silane Chemical compound CCCCCCCC[Si](CC)(CC)CC XVKXMTGNOIVVLP-UHFFFAOYSA-N 0.000 claims 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 42
- 238000002485 combustion reaction Methods 0.000 abstract description 7
- 125000001165 hydrophobic group Chemical group 0.000 abstract 1
- 239000000725 suspension Substances 0.000 abstract 1
- 229910052796 boron Inorganic materials 0.000 description 24
- 239000012299 nitrogen atmosphere Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000004062 sedimentation Methods 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 5
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 5
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 5
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 5
- 239000005642 Oleic acid Substances 0.000 description 5
- 238000000498 ball milling Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 5
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 5
- ZMBHCYHQLYEYDV-UHFFFAOYSA-N trioctylphosphine oxide Chemical compound CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC ZMBHCYHQLYEYDV-UHFFFAOYSA-N 0.000 description 5
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- KIDBBTHHMJOMAU-UHFFFAOYSA-N propan-1-ol;hydrate Chemical compound O.CCCO KIDBBTHHMJOMAU-UHFFFAOYSA-N 0.000 description 3
- XTUSEBKMEQERQV-UHFFFAOYSA-N propan-2-ol;hydrate Chemical compound O.CC(C)O XTUSEBKMEQERQV-UHFFFAOYSA-N 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- MSRJTTSHWYDFIU-UHFFFAOYSA-N octyltriethoxysilane Chemical compound CCCCCCCC[Si](OCC)(OCC)OCC MSRJTTSHWYDFIU-UHFFFAOYSA-N 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- WVPGXJOLGGFBCR-UHFFFAOYSA-N trioctyl phosphate Chemical compound CCCCCCCCOP(=O)(OCCCCCCCC)OCCCCCCCC WVPGXJOLGGFBCR-UHFFFAOYSA-N 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 238000001132 ultrasonic dispersion Methods 0.000 description 2
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- SPEUIVXLLWOEMJ-UHFFFAOYSA-N 1,1-dimethoxyethane Chemical compound COC(C)OC SPEUIVXLLWOEMJ-UHFFFAOYSA-N 0.000 description 1
- DSRLBAXILVQKCX-UHFFFAOYSA-N CO[SiH](OC)OC.CCCCCCCCCCCC Chemical compound CO[SiH](OC)OC.CCCCCCCCCCCC DSRLBAXILVQKCX-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- KPSZQYZCNSCYGG-UHFFFAOYSA-N [B].[B] Chemical compound [B].[B] KPSZQYZCNSCYGG-UHFFFAOYSA-N 0.000 description 1
- GIMJUMHDIKAZBS-UHFFFAOYSA-N [SiH4].C(CCCCCCCCCCCCCCC)[Si](OCC)(OCC)OCC Chemical compound [SiH4].C(CCCCCCCCCCCCCCC)[Si](OCC)(OCC)OCC GIMJUMHDIKAZBS-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000713 high-energy ball milling Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000002352 steam pyrolysis Methods 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- SVKDNKCAGJVMMY-UHFFFAOYSA-N triethoxy(tetradecyl)silane Chemical compound CCCCCCCCCCCCCC[Si](OCC)(OCC)OCC SVKDNKCAGJVMMY-UHFFFAOYSA-N 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/12—Inorganic compounds
- C10L1/1291—Silicon and boron containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2270/00—Specifically adapted fuels
- C10L2270/02—Specifically adapted fuels for internal combustion engines
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种制备高能复合碳氢燃料的方法及其燃料。硅烷偶联剂溶解在混合溶剂中,在一定温度下水解若干时间;水解后的硅烷偶联剂滴加到纳米硼粉与混合溶剂组成的悬浮液中,在一定温度下反应若干时间,使纳米硼粉表面引入疏水基团;把表面修饰后的纳米硼粉添加到碳氢燃料中,超声分散得到分散均匀的高能复合碳氢燃料。本发明用于提高不同类型的碳氢燃料的能量密度,制成的燃料具有较高的重量和体积燃烧热值,可作为航空或航天发动机的高能燃料使用,具有很好的应用前景。The invention discloses a method for preparing high-energy composite hydrocarbon fuel and the fuel thereof. The silane coupling agent is dissolved in a mixed solvent and hydrolyzed at a certain temperature for a certain period of time; the hydrolyzed silane coupling agent is added dropwise to the suspension composed of nano boron powder and mixed solvent, and reacted for a certain period of time at a certain temperature to make the nano Hydrophobic groups are introduced into the surface of the boron powder; the surface-modified nano-boron powder is added to the hydrocarbon fuel, and ultrasonically dispersed to obtain a uniformly dispersed high-energy composite hydrocarbon fuel. The invention is used to improve the energy density of different types of hydrocarbon fuels, and the prepared fuel has higher weight and volume combustion calorific value, can be used as high-energy fuel for aviation or aerospace engines, and has good application prospects.
Description
技术领域technical field
本发明属于高能燃料的制备方法,尤其是涉及了一种制备高能复合碳氢燃料的方法及其燃料。The invention belongs to a method for preparing high-energy fuel, and in particular relates to a method for preparing high-energy composite hydrocarbon fuel and the fuel thereof.
背景技术Background technique
航空煤油、火箭煤油等碳氢燃料已用于航空航天发动机,具有无毒、燃烧热值高等优点。随着大运载火箭及高超声速飞行器的发展,对燃料的能量密度提出了更高的要求,现有的碳氢燃料已无法满足这些要求。Hydrocarbon fuels such as aviation kerosene and rocket kerosene have been used in aerospace engines, and have the advantages of non-toxicity and high combustion calorific value. With the development of large launch vehicles and hypersonic vehicles, higher requirements are placed on the energy density of fuels, and the existing hydrocarbon fuels can no longer meet these requirements.
提高燃料能量密度通常有两条途径:一是通过化学方法直接合成高能燃料;二是在燃料中添加高能物质,如铝、镁、硼等。化学合成方法是获得新型高能燃料的一条重要途径,但往往存在合成收率低、成本高等缺点,合成的燃料难以大规模应用。在燃料中添加高能物质是目前提高燃料能量密度最为有效而简单的办法。There are usually two ways to increase the energy density of fuels: one is to directly synthesize high-energy fuels through chemical methods; the other is to add high-energy substances, such as aluminum, magnesium, and boron, to the fuels. Chemical synthesis method is an important way to obtain new high-energy fuels, but it often has disadvantages such as low synthesis yield and high cost, and the synthesized fuels are difficult to be applied on a large scale. Adding high-energy substances to fuel is currently the most effective and simple way to increase the energy density of fuel.
单质硼具有很高的燃烧热值,其重量燃烧热值约为59kJ/g,仅次于氢和铍,但氢燃料的密度很小,而铍的燃烧产物有剧毒。单质硼的体积燃烧热值约为140kJ/cm3,是所有元素中最高的,分别是金属铝(83.6kJ/cm3)和镁(43.7kJ/cm3)的1.7倍和3.2倍,因此单质硼是提高碳氢燃料能量密度最理想的高能添加物质。但遗憾的是,由于单质硼与碳氢燃料的相容性较差,把单质硼直接添加到碳氢燃料中无法得到稳定的高能复合燃料。Elemental boron has a high combustion calorific value, and its weight combustion calorific value is about 59kJ/g, second only to hydrogen and beryllium, but the density of hydrogen fuel is very small, and the combustion products of beryllium are highly toxic. The volumetric combustion calorific value of elemental boron is about 140kJ/cm 3 , which is the highest among all elements, 1.7 times and 3.2 times that of metal aluminum (83.6kJ/cm 3 ) and magnesium (43.7kJ/cm 3 ), so elemental boron Boron is the most ideal high-energy additive to increase the energy density of hydrocarbon fuels. Unfortunately, due to the poor compatibility of elemental boron with hydrocarbon fuels, it is impossible to obtain stable high-energy composite fuels by directly adding elemental boron to hydrocarbon fuels.
分析已公开发表的专利和文献,发现表面疏水化的纳米单质硼在碳氢燃料中有较好的分散稳定性,有利于制备高能复合碳氢燃料。Analyzing published patents and documents, it is found that surface hydrophobized nano boron has better dispersion stability in hydrocarbon fuels, which is beneficial to the preparation of high-energy composite hydrocarbon fuels.
美国加州大学戴维斯分校的Pickering等人于2007年报道了一种通过液相还原直接合成表面功能化的纳米单质硼的方法(A L Pickering,C Mitterbauer,N D Browing等.Chem.Commun.2007,580-582)。该方法的基本原理是:在无水二(甲氧基)乙烷溶剂中,用萘基钠还原三溴化硼(BBr3)得到表面被溴原子包覆的纳米单质硼,后者再与过量的高级脂肪醇(如辛醇)反应,得到表面疏水化的纳米单质硼。该方法以三溴化硼为原料,直接合成表面疏水化的纳米单质硼,具有原料易得、工艺简单等优点,但反应收率很低。这些表面功能化的纳米硼粉在碳氢燃料中是否容易分散,该文没有报道。In 2007, Pickering et al. from the University of California, Davis reported a method for directly synthesizing surface-functionalized nano-elemental boron by liquid phase reduction (AL Pickering, C Mitterbauer, ND Browing et al. Chem.Commun.2007, 580-582). The basic principle of the method is: in anhydrous di(methoxy)ethane solvent, reduce boron tribromide (BBr 3 ) with naphthyl sodium to obtain nanometer elemental boron whose surface is covered by bromine atoms, and the latter is combined with Excessive higher aliphatic alcohols (such as octanol) react to obtain surface-hydrophobized nanometer elemental boron. The method uses boron tribromide as a raw material to directly synthesize surface-hydrophobized nanometer elemental boron, which has the advantages of easy-to-obtain raw materials and simple process, but the reaction yield is very low. Whether these surface-functionalized nano-boron powders are easy to disperse in hydrocarbon fuels is not reported in this paper.
2009年,美国伊利诺伊大学厄巴纳-香槟分校的Bellott等人以癸硼烷(B10H14)为原料,通过蒸汽高温分解(700~900℃),得到了直径为10~150nm、表面不含氧化物的结晶态单质硼(B J Bellott,W Noh,R G Nuzzo等.Chem.Commun.2009,3214-3215)。据报道,该法制备的纳米单质硼很容易分散在甲苯和戊烷等有机溶剂中,但放置几小时后即出现沉降。Bellott等人还讨论了纳米硼粉的表面功能化,发现纳米单质硼与Br2(苯为溶剂)或XeF2(苯为溶剂)反应后得到的产物,即表面溴化或氟化的纳米硼粉,需要在更高的温度下才能被氧化。至于表面修饰后的纳米硼粉在碳氢燃料中是否容易分散,该文也没有报道。In 2009, Bellott et al. from the University of Illinois at Urbana-Champaign in the United States used decaborane (B 10 H 14 ) as a raw material to obtain a diameter of 10-150nm through steam pyrolysis (700-900°C). Crystalline elemental boron with oxides (BJ Bellott, W Noh, RG Nuzzo et al. Chem. Commun. 2009, 3214-3215). According to reports, the nanometer boron prepared by this method is easy to disperse in organic solvents such as toluene and pentane, but it settles after a few hours. Bellott et al. also discussed the surface functionalization of nano-boron powder, and found that the product obtained after the reaction of nano-elemental boron with Br 2 (benzene as solvent) or XeF 2 (benzene as solvent), that is, surface brominated or fluorinated nano-boron Powder needs to be oxidized at a higher temperature. As for whether the surface-modified nano-boron powder is easy to disperse in hydrocarbon fuels, this paper does not report.
2009年,美国Utah大学的Anderson等人利用高能球磨法制备了表面不含氧化物的纳米硼粉(B V Devener,J P L Perez,S L Anderson.Journal of Materials Research,2009,24(11):3462-3464)。典型的操作条件为:氮气保护下,2g原始硼粉(平均尺寸为800nm)与15mL正己烷混合,再加入1mL油酸,混合均匀后球磨。据报道,该法制备的纳米硼粉在碳氢燃料中的分散性较好(未给出具体的实验结果),但球磨时如果不添加油酸,则得到的纳米硼粉在碳氢燃料中的分散性很差,其原因是:球磨过程中添加了油酸,则大颗粒硼粉被磨碎为小颗粒硼粉的时候,在小颗粒硼粉表面会包覆一层由油酸分子组成的保护膜。该保护膜可防止硼被氧化,同时也有利于在有机溶剂或碳氢燃料中的分散。虽然球磨法制备的纳米硼粉有很多优点,但通常含较多的杂质。球磨用的罐子和球的材质一般为碳化钨,其硬度与硼相当,因此在球磨过程中,不仅硼颗粒被磨碎,而且碳化钨也会被磨损,作为杂质与硼混在一起,很难分离。In 2009, Anderson et al. of Utah University in the U.S. used high-energy ball milling to prepare nano boron powder (B V Devener, J P L Perez, S L Anderson. Journal of Materials Research, 2009, 24 (11): 3462-3464 without oxide on the surface. ). Typical operating conditions are: under nitrogen protection, 2g of original boron powder (average size 800nm) is mixed with 15mL of n-hexane, then 1mL of oleic acid is added, mixed evenly and then ball milled. It is reported that the nano-boron powder prepared by this method has better dispersibility in hydrocarbon fuels (no specific experimental results are given), but if oleic acid is not added during ball milling, the obtained nano-boron powder has a good dispersion in hydrocarbon fuels. The reason for this is that oleic acid is added during the ball milling process, and when the large-particle boron powder is ground into small-particle boron powder, a layer of oleic acid molecules will be coated on the surface of the small-particle boron powder. protective film. This protective film prevents boron from being oxidized and also facilitates dispersion in organic solvents or hydrocarbon fuels. Although the nano-boron powder prepared by the ball milling method has many advantages, it usually contains more impurities. The jars and balls used for ball milling are generally made of tungsten carbide, whose hardness is equivalent to that of boron. Therefore, during the ball milling process, not only the boron particles are ground, but also the tungsten carbide is also worn out, which is mixed with boron as impurities and is difficult to separate. .
2015年,天津大学的张香文课题组报道了一种将纳米硼粉均匀分散于JP-10碳氢燃料中的方法(X E,X Zhi,Y Zhang等.Chemical Engineering Science,2015,129:9-13)。该方法的原理是:以纳米单质硼为原料,利用分子间相互作用,在纳米硼粉表面包覆一层保护性配体,增加其在碳氢燃料中的分散性。他们试验了油胺、油酸、十二硫醇、十二腈、三正辛基磷酸酯(TOP)、三正辛基氧膦(TOPO)、磷酸三苯酯(TPP)等若干种配体的包覆效果,发现TOPO的包覆效果最佳。TOPO修饰的纳米硼粉能均匀分散在JP-10碳氢燃料中,并有一定的稳定性,但该方法的重现性较差。In 2015, Zhang Xiangwen's research group at Tianjin University reported a method for uniformly dispersing nano boron powder in JP-10 hydrocarbon fuel (X E, X Zhi, Y Zhang et al. Chemical Engineering Science, 2015,129:9-13 ). The principle of the method is: using nanometer elemental boron as a raw material, using intermolecular interactions to coat a layer of protective ligands on the surface of nanometer boron powder to increase its dispersibility in hydrocarbon fuels. They tested several ligands such as oleylamine, oleic acid, dodecyl mercaptan, dodecyl nitrile, tri-n-octyl phosphate (TOP), tri-n-octyl phosphine oxide (TOPO), and triphenyl phosphate (TPP). The coating effect of TOPO was found to be the best. TOPO-modified nano-boron powder can be uniformly dispersed in JP-10 hydrocarbon fuel with certain stability, but the reproducibility of this method is poor.
发明内容Contents of the invention
本发明的目的在于提供一种制备高能复合碳氢燃料的方法及其燃料,该方法可适用于制备不同类型的碳氢燃料,具有工艺简单、成本低、收率高等优点。The object of the present invention is to provide a method for preparing high-energy composite hydrocarbon fuel and its fuel. The method is applicable to the preparation of different types of hydrocarbon fuels and has the advantages of simple process, low cost and high yield.
本发明的目的是通过以下步骤的技术方案来实现的:The purpose of the present invention is achieved through the technical solution of the following steps:
一、一种制备高能复合碳氢燃料的方法:One, a kind of method for preparing high-energy composite hydrocarbon fuel:
1)硅烷偶联剂水解:硅烷偶联剂溶解在混合溶剂中,在一定温度下水解若干时间;1) Hydrolysis of the silane coupling agent: the silane coupling agent is dissolved in a mixed solvent and hydrolyzed for a certain period of time at a certain temperature;
2)纳米硼粉表面化学修饰:称取纳米硼粉分散在混合溶剂中,然后滴加第一步水解后的硅烷偶联剂,在一定温度下反应若干时间,得到表面疏水化的纳米硼粉;2) Surface chemical modification of nano-boron powder: Weigh nano-boron powder and disperse it in a mixed solvent, then add dropwise the silane coupling agent after the first step of hydrolysis, and react at a certain temperature for several hours to obtain surface-hydrophobized nano-boron powder ;
3)高能复合碳氢燃料制备:把表面修饰后的纳米硼粉添加到液体碳氢燃料中,超声分散5-30min,得到分散均匀的高能复合碳氢燃料。3) Preparation of high-energy composite hydrocarbon fuel: adding the surface-modified nano-boron powder into liquid hydrocarbon fuel, and ultrasonically dispersing for 5-30 minutes to obtain a uniformly dispersed high-energy composite hydrocarbon fuel.
所述的步骤1)中水解温度为25~75℃,水解时间为0.5~12h。In the step 1), the hydrolysis temperature is 25-75° C., and the hydrolysis time is 0.5-12 hours.
所述的步骤2)中的反应温度为50~120℃,反应时间为1~12h。The reaction temperature in the step 2) is 50-120°C, and the reaction time is 1-12h.
所述的步骤2)具体是将纳米硼粉溶于醇水混合溶剂中,超声分散,再在氮气气氛下搅拌加热至50~120℃,加入水解后的硅烷偶联剂溶液,反应1~12h,抽滤,采用依次用醇水混合溶剂洗涤固体、再抽滤的方式重复三次,置于恒温环境中干燥,获得表面修饰后的纳米硼粉。The step 2) is to dissolve the nano-boron powder in the mixed solvent of alcohol and water, disperse it ultrasonically, stir and heat it to 50-120°C under nitrogen atmosphere, add the hydrolyzed silane coupling agent solution, and react for 1-12 hours , suction filtration, the method of washing the solid with alcohol-water mixed solvent, and suction filtration was repeated three times, and dried in a constant temperature environment to obtain surface-modified nano-boron powder.
所述步骤2)中硅烷偶联剂与纳米硼粉的质量之比为0.50:1~1.25:1。The mass ratio of the silane coupling agent to the nano boron powder in the step 2) is 0.50:1˜1.25:1.
所述的步骤1)中的硅烷偶联剂为正辛基三甲氧基硅烷、正辛基三乙氧基硅烷、正癸基三甲氧基硅烷、正癸基三乙氧基硅烷、十二烷基三甲氧基硅烷、十二烷基三乙氧基硅烷、十四烷基三甲氧基硅烷、十四烷基三乙氧基硅烷、十六烷基三甲氧基硅烷、十六基三乙氧基硅烷、十八烷基三甲氧基硅烷、十八烷基三乙氧基硅烷等。The silane coupling agent in the step 1) is n-octyltrimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, n-decyltriethoxysilane, dodecane Trimethoxysilane, Dodecyltriethoxysilane, Tetradecyltrimethoxysilane, Tetradecyltriethoxysilane, Hexadecyltrimethoxysilane, Hexadecyltriethoxysilane silane, octadecyltrimethoxysilane, octadecyltriethoxysilane, etc.
所述的步骤1)中的混合溶剂,为甲醇、乙醇、1-丙醇或者2-丙醇的有机溶剂与纯水按比例混合而成,混合溶剂中纯水的体积百分数为10~90%。The mixed solvent in the step 1) is formed by mixing an organic solvent of methanol, ethanol, 1-propanol or 2-propanol with pure water in proportion, and the volume percentage of pure water in the mixed solvent is 10-90%. .
所述的步骤3)中的碳氢燃料包括航空煤油、火箭煤油、JP-10、十氢萘等。The hydrocarbon fuel in the described step 3) includes aviation kerosene, rocket kerosene, JP-10, decahydronaphthalene and the like.
所述的步骤3)中的纳米硼粉在碳氢燃料中的含量不高于30wt%。The content of the nano boron powder in the said step 3) in the hydrocarbon fuel is not higher than 30wt%.
二、一种高能复合碳氢燃料是采用上述方法制备而成。2. A high-energy composite hydrocarbon fuel is prepared by the above-mentioned method.
硅烷偶联剂修饰纳米硼粉的机理是:利用水解后硅烷偶联剂中的羟基与硼表面发生化学反应,硅烷偶联剂中的疏水性长碳链包覆在硼颗粒表面,一方面可抑制纳米硼粉之间的团聚,另一方面增强了硼颗粒表面的疏水性,从而改善了纳米硼粉与碳氢燃料之间的相容性,有利于获得均匀稳定的高能燃料。The mechanism of silane coupling agent to modify nano-boron powder is: after hydrolysis, the hydroxyl group in the silane coupling agent reacts with the surface of boron, and the hydrophobic long carbon chain in the silane coupling agent coats the surface of boron particles. On the one hand, it can Inhibiting the agglomeration between nano-boron powders, on the other hand, enhances the hydrophobicity of the surface of boron particles, thereby improving the compatibility between nano-boron powders and hydrocarbon fuels, and is conducive to obtaining uniform and stable high-energy fuels.
本发明与背景技术相比具有的有益效果是:The beneficial effect that the present invention has compared with background technology is:
本发明采用硅烷偶联剂对纳米硼粉进行表面修饰,修饰后的硼粉很容易分散于十氢萘等碳氢燃料中,稳定性和重现性均较好。The invention uses a silane coupling agent to modify the surface of the nano-boron powder, and the modified boron powder is easily dispersed in hydrocarbon fuels such as decahydronaphthalene, and has good stability and reproducibility.
本发明碳氢燃料中加入用硅烷偶联剂修饰后的硼粉,可提高不同类型的碳氢燃料的能量密度,制成的燃料具有较高的重量和体积燃烧热值,可作为航空或航天发动机的高能燃料使用,具体可用于大运载火箭和高超声速飞行器的发动机燃料使用,具有很好的应用前景和价值。Adding boron powder modified with silane coupling agent to the hydrocarbon fuel of the present invention can increase the energy density of different types of hydrocarbon fuels, and the fuel produced has a higher weight and volume calorific value of combustion, and can be used as a fuel for aviation or spaceflight. The use of high-energy fuel for the engine, specifically for the use of engine fuel for large launch vehicles and hypersonic vehicles, has good application prospects and value.
附图说明Description of drawings
图1为原始纳米硼粉、按现有技术的对比实施例制备的纳米硼粉及本发明实施例1制备的纳米硼粉分散在十氢萘燃料中的照片。图中:A表示原始纳米硼粉;B表示对比实施例制备的纳米硼粉;C表示本发明实施例1制备的纳米硼粉。Fig. 1 is the photo of the original nano-boron powder, the nano-boron powder prepared according to the comparative example of the prior art and the nano-boron powder prepared in Example 1 of the present invention dispersed in decahydronaphthalene fuel. Among the figures: A represents the original nano-boron powder; B represents the nano-boron powder prepared in the comparative example; C represents the nano-boron powder prepared in Example 1 of the present invention.
图2为本发明实施例制备的纳米硼粉分散在不同类型碳氢燃料中的照片。图中:A表示JP-10燃料;B表示航空煤油。Fig. 2 is a photo of nano-boron powder prepared in the embodiment of the present invention dispersed in different types of hydrocarbon fuels. In the figure: A represents JP-10 fuel; B represents aviation kerosene.
具体实施方式detailed description
下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with drawings and embodiments.
本发明的实施例如下:Embodiments of the present invention are as follows:
对比实施例(按张香文等人提出的方法)Comparative example (by the method that people such as Zhang Xiangwen proposes)
称取1.00g原始纳米硼粉和1.00g三正辛基氧膦(TOPO),加入至15mL十氢萘中,超声分散5min,氮气气氛下升温至190℃,搅拌反应6h,抽滤,固体用十氢萘超声分散、抽滤,如此反复洗涤三次,最后把硼粉置于60℃烘箱中干燥。Weigh 1.00g of original nano-boron powder and 1.00g of tri-n-octylphosphine oxide (TOPO), add it to 15mL of decahydronaphthalene, ultrasonically disperse for 5min, heat up to 190°C under nitrogen atmosphere, stir for 6h, filter with suction, use for solid The decahydronaphthalene is ultrasonically dispersed, filtered with suction, washed three times in this way, and finally the boron powder is dried in an oven at 60°C.
在十氢萘燃料中加入一定量上述方法修饰后的纳米硼粉(B的含量为1wt%),超声分散5min后静置,经4h后,出现明显的沉降,经24h后,上层溶液变清(如图1所示)。Add a certain amount of nano-boron powder modified by the above method (the content of B is 1wt%) in the decahydronaphthalene fuel, and leave it standing after ultrasonic dispersion for 5 minutes. After 4 hours, obvious sedimentation occurs. After 24 hours, the upper layer solution becomes clear. (As shown in Figure 1).
本发明实施例1Embodiment 1 of the present invention
称取1.00g十六烷基三甲氧基硅烷,溶解于30mL甲醇-水混合溶剂(体积比2:1)中,25℃下搅拌水解3h。Weigh 1.00 g of hexadecyltrimethoxysilane, dissolve it in 30 mL of methanol-water mixed solvent (volume ratio 2:1), stir and hydrolyze at 25° C. for 3 h.
在三口烧瓶中加入1.00g原始纳米硼粉和30mL甲醇-水混合溶剂(体积比2:1),超声分散5min,氮气气氛下搅拌加热至70℃,然后滴加上述水解后的硅烷偶联剂溶液,反应3h,抽滤,用甲醇-水混合溶剂洗涤固体,再抽滤,如此反复洗涤三次,最后把硼粉置于60℃烘箱中干燥。Add 1.00g of original nano-boron powder and 30mL of methanol-water mixed solvent (volume ratio 2:1) into a three-necked flask, ultrasonically disperse for 5min, stir and heat to 70°C under nitrogen atmosphere, then add the above hydrolyzed silane coupling agent dropwise The solution was reacted for 3 hours, filtered with suction, the solid was washed with methanol-water mixed solvent, and then filtered with suction, and the washing was repeated three times in this way, and finally the boron powder was dried in an oven at 60°C.
在十氢萘燃料中加入上述方法修饰后的纳米硼粉(B的含量为1wt%),超声分散5min后静置,经24h后,体系仍很均匀,未出现沉降(如图1所示)。可见,本发明制备的纳米硼粉能均匀分散于十氢萘中,且稳定性远远优于对比实施例制备的纳米硼粉。Add the nano-boron powder modified by the above method (the content of B is 1wt%) in the decahydronaphthalene fuel, and let it stand after ultrasonic dispersion for 5 minutes. After 24 hours, the system is still very uniform, and no sedimentation occurs (as shown in Figure 1) . It can be seen that the nano-boron powder prepared by the present invention can be uniformly dispersed in decahydronaphthalene, and its stability is far better than that of the nano-boron powder prepared by the comparative example.
本发明实施例2Embodiment 2 of the present invention
称取1.00g正辛基三甲氧基硅烷,溶解于30mL甲醇-水混合溶剂(体积比2:1)中,25℃下搅拌水解12h。Weigh 1.00 g of n-octyltrimethoxysilane, dissolve it in 30 mL of methanol-water mixed solvent (volume ratio 2:1), and stir and hydrolyze at 25° C. for 12 h.
在三口烧瓶中加入1.00g原始纳米硼粉和30mL甲醇-水混合溶剂(体积比2:1),超声分散15min,氮气气氛下搅拌加热至80℃,然后滴加上述水解后的硅烷偶联剂溶液,反应6h,抽滤,用甲醇-水混合溶剂洗涤固体,再抽滤,如此反复洗涤三次,最后把硼粉置于60℃烘箱中干燥。Add 1.00g of original nano-boron powder and 30mL of methanol-water mixed solvent (volume ratio 2:1) into a three-neck flask, ultrasonically disperse for 15min, stir and heat to 80°C under a nitrogen atmosphere, then add the above-mentioned hydrolyzed silane coupling agent dropwise The solution was reacted for 6 hours, filtered with suction, the solid was washed with methanol-water mixed solvent, and then filtered with suction, and the washing was repeated three times in this way, and finally the boron powder was dried in an oven at 60°C.
在十氢萘燃料中加入上述方法修饰后的纳米硼粉(B的含量为10wt%),超声分散5min后静置,经24h后,体系仍很均匀,未出现沉降。Add the nano-boron powder modified by the above method (the content of B is 10wt%) to the decahydronaphthalene fuel, ultrasonically disperse it for 5 minutes and let it stand still. After 24 hours, the system is still very uniform without sedimentation.
本发明实施例3Embodiment 3 of the present invention
称取1.00g十八烷基三乙氧基硅烷,溶解于30mL乙醇-水混合溶剂(体积比2:1)中,55℃下搅拌水解12h。Weigh 1.00g of octadecyltriethoxysilane, dissolve it in 30mL of ethanol-water mixed solvent (volume ratio 2:1), and stir and hydrolyze at 55°C for 12h.
三口烧瓶中加入1.00g原始纳米硼粉和30mL乙醇-水混合溶剂(体积比2:1),超声分散10min,氮气气氛下搅拌加热至90℃,然后滴加上述水解后的硅烷偶联剂溶液,反应12h,抽滤,用乙醇-水混合溶剂洗涤固体,再抽滤,如此反复洗涤三次,最后把硼粉置于60℃烘箱中干燥。Add 1.00g of original nano-boron powder and 30mL of ethanol-water mixed solvent (volume ratio 2:1) into the three-necked flask, ultrasonically disperse for 10min, stir and heat to 90°C under nitrogen atmosphere, then add dropwise the hydrolyzed silane coupling agent solution , react for 12 hours, filter with suction, wash the solid with ethanol-water mixed solvent, and filter with suction again, repeat the washing three times in this way, and finally put the boron powder in an oven at 60°C to dry.
在JP-10燃料中加入上述方法修饰后的纳米硼粉(B的含量为10wt%),超声分散5min后静置,经24h后,体系仍很均匀,未出现沉降(如图2所示)。Add the nano-boron powder modified by the above method (the content of B is 10wt%) to the JP-10 fuel, ultrasonically disperse it for 5 minutes and let it stand. After 24 hours, the system is still very uniform without sedimentation (as shown in Figure 2) .
本发明实施例4Embodiment 4 of the present invention
称取1.00g十二烷基三乙氧基硅烷,溶解于30mL2-丙醇-水混合溶剂(体积比2:1)中,75℃下搅拌水解8h。Weigh 1.00g of dodecyltriethoxysilane, dissolve it in 30mL of 2-propanol-water mixed solvent (volume ratio 2:1), stir and hydrolyze at 75°C for 8h.
三口烧瓶中加入1.00g原始纳米硼粉和30mL2-丙醇-水混合溶剂(体积比2:1),超声分散10min,氮气气氛下搅拌加热至80℃,然后滴加上述水解后的硅烷偶联剂溶液,反应10h,抽滤,用2-丙醇-水混合溶剂洗涤固体,再抽滤,如此反复洗涤三次,最后把硼粉置于60℃烘箱中干燥。Add 1.00g of original nano-boron powder and 30mL of 2-propanol-water mixed solvent (volume ratio 2:1) into the three-necked flask, ultrasonically disperse for 10min, stir and heat to 80°C under nitrogen atmosphere, then dropwise add the above-mentioned hydrolyzed silane coupling solution, reacted for 10 hours, filtered with suction, washed the solid with a mixed solvent of 2-propanol-water, and filtered with suction again, repeated washing in this way three times, and finally dried the boron powder in an oven at 60°C.
在航空煤油中加入上述方法修饰后的纳米硼粉(B的含量为10wt%),超声分散5min后静置,经24h后,体系仍很均匀,未出现沉降(如图2所示)。Add the nano-boron powder modified by the above method (the content of B is 10wt%) to the aviation kerosene, ultrasonically disperse it for 5 minutes and let it stand. After 24 hours, the system is still very uniform without sedimentation (as shown in Figure 2).
本发明实施例5Embodiment 5 of the present invention
称取1.00g正辛基三乙氧基硅烷,溶解于30mL 1-丙醇-水混合溶剂(体积比2:1)中,45℃下搅拌水解10h。Weigh 1.00 g of n-octyltriethoxysilane, dissolve it in 30 mL of 1-propanol-water mixed solvent (volume ratio 2:1), stir and hydrolyze at 45°C for 10 h.
三口烧瓶中加入1.00g原始纳米硼粉和30mL 1-丙醇-水混合溶剂(体积比2:1),超声分散5min,氮气气氛下搅拌加热至100℃,然后滴加上述水解后的硅烷偶联剂溶液,反应8h,抽滤,用1-丙醇-水混合溶剂洗涤固体,再抽滤,如此反复洗涤三次,最后把硼粉置于60℃烘箱中干燥。Add 1.00g of original nano-boron powder and 30mL of 1-propanol-water mixed solvent (volume ratio 2:1) into a three-necked flask, ultrasonically disperse for 5min, stir and heat to 100°C under nitrogen atmosphere, then add dropwise the hydrolyzed silane distillate The joint agent solution was reacted for 8 hours, filtered with suction, and the solid was washed with a mixed solvent of 1-propanol-water, and then filtered with suction, and the washing was repeated three times in this way, and finally the boron powder was dried in an oven at 60°C.
在十氢萘燃料中加入上述方法修饰后的纳米硼粉(B的含量为30wt%),超声分散30min后静置,经24h后,体系仍很均匀,未出现沉降。Add the nano-boron powder modified by the above method (the content of B is 30wt%) to the decahydronaphthalene fuel, ultrasonically disperse it for 30 minutes and let it stand still. After 24 hours, the system is still very uniform without sedimentation.
由以上各实施例与对比实施例相比较,采用现有方法无法得到稳定的添加硼粉的高能碳氢燃料,而采用本发明的制备方法,很容易得到分散均匀的添加硼粉的高能复合碳氢燃料,用本发明技术修饰的纳米硼粉,可用作不同类型碳氢燃料的高能添加物质,所得高能复合碳氢燃料具有良好的均匀性和稳定性。Compared with the comparative examples by the above examples, the existing method cannot obtain stable high-energy hydrocarbon fuels with boron powder added, and adopts the preparation method of the present invention, it is easy to obtain the high-energy composite carbon with boron powder added uniformly dispersed The hydrogen fuel, the nano-boron powder modified by the technology of the present invention, can be used as a high-energy additive for different types of hydrocarbon fuels, and the obtained high-energy composite hydrocarbon fuel has good uniformity and stability.
上述具体实施方式中的实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。The embodiments in the above-mentioned specific embodiments are used to illustrate the present invention, rather than to limit the present invention, within the spirit of the present invention and the scope of protection of the claims, any amendments and changes made to the present invention all fall within the scope of the present invention. protected range.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610644388.8A CN106190344B (en) | 2016-08-04 | 2016-08-04 | A kind of method and its fuel for preparing the compound hydrocarbon fuel of high energy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610644388.8A CN106190344B (en) | 2016-08-04 | 2016-08-04 | A kind of method and its fuel for preparing the compound hydrocarbon fuel of high energy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106190344A CN106190344A (en) | 2016-12-07 |
CN106190344B true CN106190344B (en) | 2017-11-14 |
Family
ID=57513739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610644388.8A Active CN106190344B (en) | 2016-08-04 | 2016-08-04 | A kind of method and its fuel for preparing the compound hydrocarbon fuel of high energy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106190344B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106929114B (en) * | 2017-03-30 | 2019-07-09 | 陕西科技大学 | A kind of modified method for improving slurry performance in low-order coal surface |
CN109694759A (en) * | 2019-03-07 | 2019-04-30 | 西安近代化学研究所 | A kind of punching engine slurry fuel |
CN111138236B (en) * | 2019-12-24 | 2021-09-17 | 湖州师范学院 | 1,2, 4-triazole nitrate coated boron-magnesium composite metal powder fuel and preparation method thereof |
CN115595183B (en) * | 2022-10-12 | 2023-10-20 | 上海交通大学 | Sustainable aviation fuel-based nanofluid fuel and implementation method thereof |
CN116891765A (en) * | 2023-08-25 | 2023-10-17 | 常州大学 | Method for preparing nano fluid fuel by taking magnesium diboride as additive |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6652608B1 (en) * | 1994-03-02 | 2003-11-25 | William C. Orr | Fuel compositions exhibiting improved fuel stability |
PL2698416T3 (en) * | 2007-03-08 | 2021-02-08 | Virent, Inc. | Synthesis of Liquid Fuels from Oxygenated Hydrocarbons |
US8075642B2 (en) * | 2008-04-14 | 2011-12-13 | Wisconsin Alumni Research Foundation | Single-reactor process for producing liquid-phase organic compounds from biomass |
CN104059697B (en) * | 2014-06-23 | 2016-01-20 | 浙江大学 | There is high heat sink hydrocarbon fuel composition |
-
2016
- 2016-08-04 CN CN201610644388.8A patent/CN106190344B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN106190344A (en) | 2016-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106190344B (en) | A kind of method and its fuel for preparing the compound hydrocarbon fuel of high energy | |
CN104962185B (en) | Graphene-supported nanometer Fe3O4/ aqueous polyurethane composite magnetic conductive wave-absorbing coating material and preparation method thereof | |
CN108002376A (en) | A kind of high stable graphene dispersion body and preparation method thereof | |
CN110918108A (en) | MXene composite nano material and preparation method and application thereof | |
CN105712404B (en) | A kind of MoS2The preparation method of quantum dot | |
Ge et al. | Preparation and characterization of PS‐PMMA/ZnO nanocomposite films with novel properties of high transparency and UV‐shielding capacity | |
CN110713820B (en) | Preparation method of hydrophobic modified diamond abrasive | |
An et al. | Preparation and evaluation of effective combustion catalysts based on Cu (I)/Pb (II) or Cu (II)/Bi (II) nanocomposites carried by graphene oxide (GO) | |
CN108047768A (en) | A kind of preparation method for the nano-sized iron oxide that surface hydrophobicity is modified | |
Lan et al. | Surface modification of magnesium hydroxide particles using silane coupling agent by dry process | |
CN111447821B (en) | Preparation method of carbide/carbon nano composite material | |
CN111995933B (en) | Three-dimensional graphene water-based epoxy anti-corrosion coating, its preparation method and its use method | |
CN111574984A (en) | Method for modifying polymer, compound polymer prepared by method and application of compound polymer | |
CN100436007C (en) | Method for laminating round metallic aluminium in aqueous solution | |
CN1172467A (en) | Ceramic powder with hydrophobized surface and its preparation method and use | |
CN103333581A (en) | Nano cerium oxide/epoxy composite paint and preparation method thereof | |
CN109082072B (en) | Graphene/epoxy resin composite wave-absorbing material and preparation method and application thereof | |
Salman et al. | Preparation, characterization, and application of nano-silica from agricultural wastes in cement mortar | |
Zhang et al. | Preparation of silica powder in epoxy resin wear-resistant coating | |
CN116970300A (en) | Anti-electromagnetic coating and preparation method thereof | |
CN1219696C (en) | Method for preparing nanometer carbon black powder | |
CN109761226A (en) | A method for preparing two-dimensional graphite nanosheets by liquid-phase ball milling | |
CN1521219A (en) | Production of nm- pigments and nm- magnetic materials using ferric oxide | |
US9822320B1 (en) | Hybrid metallized organic fuels | |
CN102634217A (en) | Asphalt modifier and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |