CN106159046A - A kind of LED epitaxial structure improving GaN crystal quality - Google Patents
A kind of LED epitaxial structure improving GaN crystal quality Download PDFInfo
- Publication number
- CN106159046A CN106159046A CN201510135171.XA CN201510135171A CN106159046A CN 106159046 A CN106159046 A CN 106159046A CN 201510135171 A CN201510135171 A CN 201510135171A CN 106159046 A CN106159046 A CN 106159046A
- Authority
- CN
- China
- Prior art keywords
- layer
- type gan
- gan layer
- growth
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 230000004888 barrier function Effects 0.000 claims abstract description 9
- 230000000903 blocking effect Effects 0.000 claims abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 3
- 230000010287 polarization Effects 0.000 abstract description 12
- 230000006798 recombination Effects 0.000 abstract description 7
- 238000005215 recombination Methods 0.000 abstract description 7
- 230000002269 spontaneous effect Effects 0.000 abstract description 6
- 230000005855 radiation Effects 0.000 abstract description 5
- 230000002708 enhancing effect Effects 0.000 abstract description 3
- 238000000605 extraction Methods 0.000 abstract description 2
- 229910002601 GaN Inorganic materials 0.000 description 96
- 238000000034 method Methods 0.000 description 8
- 230000007547 defect Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000407 epitaxy Methods 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000005701 quantum confined stark effect Effects 0.000 description 2
- 230000005428 wave function Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/815—Bodies having stress relaxation structures, e.g. buffer layers
Landscapes
- Led Devices (AREA)
Abstract
一种改善GaN晶体质量的LED外延结构,涉及发光二极管外延技术领域。本发明从下至上依次包括图形化衬底、GaN缓冲层、U型GaN层、N型GaN层、InGaN阱层、GaN垒层、电子阻挡层和P型GaN层。其结构特点是,所述U型GaN层从下至上包括U1型GaN层和U2型GaN层。所述U2型GaN层包括交替生长的2D型GaN层和3D型GaN层。同现有技术相比,本发明能有效减小自发极化和压电极化,提高辐射复合几率,从而达到增强LED出光效率的目的。
An LED epitaxial structure for improving GaN crystal quality relates to the field of light emitting diode epitaxial technology. The invention comprises a patterned substrate, a GaN buffer layer, a U-type GaN layer, an N-type GaN layer, an InGaN well layer, a GaN barrier layer, an electron blocking layer and a P-type GaN layer in order from bottom to top. Its structural feature is that the U-type GaN layer includes a U1-type GaN layer and a U2-type GaN layer from bottom to top. The U2-type GaN layer includes alternately grown 2D-type GaN layers and 3D-type GaN layers. Compared with the prior art, the invention can effectively reduce the spontaneous polarization and the piezoelectric polarization, increase the probability of radiation recombination, and thus achieve the purpose of enhancing the light extraction efficiency of the LED.
Description
技术领域 technical field
本发明涉及发光二极管外延技术领域,特别是能改善GaN晶体质量的LED外延结构。 The invention relates to the technical field of light-emitting diode epitaxy, in particular to an LED epitaxy structure capable of improving the quality of GaN crystals.
背景技术 Background technique
GaN基材料属于直接带隙半导体,并且其带隙从1.8-6.2V 连续可调,是生产高亮度蓝光、绿光和白光LED的最常用材料,由于半导体二极管具有体积小、高效、节能、使用寿命长、环保耐用等特点而广泛应用于背光源、显示屏、传感器、通讯及照明等领域。因此,很多LED专家学者致力于LED亮度的研发中,而外延生长方式对亮度的影响尤为重要。 GaN-based materials are direct bandgap semiconductors, and their bandgap is continuously adjustable from 1.8-6.2V. It is widely used in backlight, display screen, sensor, communication and lighting and other fields due to its long life, environmental protection and durability. Therefore, many LED experts and scholars are committed to the research and development of LED brightness, and the influence of epitaxial growth method on brightness is particularly important.
辐射复合效率是外延生长工艺影响亮度的关键点,影响它的因素较多,如量子限制效应,极化效应,缺陷和杂质导致的深能级,这些都会使辐射复合效率下降。而缺陷密度是影响内量子效率的主要因素,在生长过程中由于衬底和外延层的晶格失配和热失配导致LED内部存在大量的非辐射缺陷,位错密度达109cm-2 ~1011cm-2。而由此产生的自发极化和压电效应导致强大的内建电场,致使电子和空穴的波函数在空间分布上分离,即量子限制斯塔克效应QCSE,降低了发光效率,且随着注入电流的增加以及器件使用温度的升高,波长会发生漂移,发光效率也会导致下降,即Droop现象。缺陷过多也会造成P-N结发生隧道击穿,从而大大降低器件的抗静电能力,容易导致器件失效。 The radiation recombination efficiency is the key point of the epitaxial growth process affecting the brightness. There are many factors affecting it, such as quantum confinement effect, polarization effect, deep energy level caused by defects and impurities, which will reduce the radiation recombination efficiency. The defect density is the main factor affecting the internal quantum efficiency. During the growth process, due to the lattice mismatch and thermal mismatch between the substrate and the epitaxial layer, there are a large number of non-radiative defects inside the LED, and the dislocation density reaches 10 9 cm -2 ~10 11 cm −2 . The resulting spontaneous polarization and piezoelectric effect lead to a strong built-in electric field, causing the wave functions of electrons and holes to be separated in spatial distribution, that is, the quantum-confined Stark effect QCSE, which reduces the luminous efficiency, and with As the injection current increases and the temperature of the device increases, the wavelength will drift and the luminous efficiency will also decrease, that is, the Droop phenomenon. Too many defects will also cause tunneling breakdown of the PN junction, which will greatly reduce the antistatic ability of the device and easily lead to device failure.
现有技术中,参看图1,LED外延结构从下到上依次为:图形化衬底1、GaN缓冲层2、U1型氮化镓层3、N型氮化镓层4、InGaN阱层5、GaN垒层6、电子阻挡层7和P型氮化镓层8。上述传统LED外延片结构不能有效的克服图形化衬底1与GaN材料存在的晶格失配,产生自发极化和压电极化。使能带严重弯曲,降低量子阱对载流子的限制能力,从而产生较大的漏电流。而且,能带的弯曲致使本来浓度很低的空穴,不能均匀分布在由InGaN阱层5和GaN垒层6组成的有源区,从而降低复合几率,影响GaN晶体质量。 In the prior art, referring to FIG. 1 , the LED epitaxial structure is as follows from bottom to top: patterned substrate 1, GaN buffer layer 2, U1-type gallium nitride layer 3, N-type gallium nitride layer 4, and InGaN well layer 5 , GaN barrier layer 6, electron blocking layer 7 and P-type gallium nitride layer 8. The above conventional LED epitaxial wafer structure cannot effectively overcome the lattice mismatch between the patterned substrate 1 and the GaN material, resulting in spontaneous polarization and piezoelectric polarization. The energy band is seriously bent, which reduces the ability of the quantum well to confine carriers, resulting in a larger leakage current. Moreover, the bending of the energy band causes holes with a very low concentration to not be evenly distributed in the active region composed of the InGaN well layer 5 and the GaN barrier layer 6, thereby reducing the recombination probability and affecting the quality of GaN crystals.
发明内容 Contents of the invention
针对上述现有技术中存在的不足,本发明的目的是提供一种改善GaN晶体质量的LED外延结构。它能有效减小自发极化和压电极化,提高辐射复合几率,从而达到增强LED出光效率的目的。 In view of the deficiencies in the above prior art, the purpose of the present invention is to provide an LED epitaxial structure with improved GaN crystal quality. It can effectively reduce spontaneous polarization and piezoelectric polarization, and increase the probability of radiation recombination, thereby achieving the purpose of enhancing the light extraction efficiency of LEDs.
为了达到上述发明目的,本发明的技术方案以如下方式实现: In order to achieve the above-mentioned purpose of the invention, the technical solution of the present invention is realized in the following manner:
一种改善GaN晶体质量的LED外延结构,它从下至上依次包括图形化衬底、GaN缓冲层、U型GaN层、N型GaN层、InGaN阱层、GaN垒层、电子阻挡层和P型GaN层。其结构特点是,所述U型GaN层从下至上包括U1型GaN层和U2型GaN层。所述U2型GaN层包括交替生长的2D型GaN层和3D 型GaN层。 An LED epitaxial structure that improves the quality of GaN crystals, which includes a patterned substrate, a GaN buffer layer, a U-type GaN layer, an N-type GaN layer, an InGaN well layer, a GaN barrier layer, an electron blocking layer, and a P-type GaN layer from bottom to top. GaN layer. Its structural feature is that the U-type GaN layer includes a U1-type GaN layer and a U2-type GaN layer from bottom to top. The U2-type GaN layer includes alternately grown 2D-type GaN layers and 3D-type GaN layers.
在上述LED外延结构中,所述U2型GaN层在氢氮混合环境中生长,生长周期为3-30个周期。 In the above LED epitaxial structure, the U2-type GaN layer is grown in a hydrogen-nitrogen mixed environment, and the growth period is 3-30 periods.
在上述LED外延结构中,所述U2型GaN层中的2D 型GaN层先生长,然后3D 型GaN层再生长的模式交替生长。 In the above-mentioned LED epitaxial structure, the 2D GaN layer in the U2 GaN layer grows first, and then the 3D GaN layer grows alternately.
在上述LED外延结构中,所述2D型GaN层的生长温度为1050-1110℃,厚度为0.05-0.5um,生长压力100-300torr;3D型GaN层的生长温度为990-1050℃,生长厚度为0.05-0.5um,生长压力为400-650torr。 In the above LED epitaxial structure, the growth temperature of the 2D-type GaN layer is 1050-1110°C, the thickness is 0.05-0.5um, and the growth pressure is 100-300torr; the growth temperature of the 3D-type GaN layer is 990-1050°C, and the growth thickness is 0.05-0.5um, the growth pressure is 400-650torr.
本发明由于采用了上述结构,在生长蓝光LED过程中,使用3D及2D超晶格生长结构,使底层GaN晶体质量生长得更好。本发明结构可有效减小由于图形化衬底与GaN材料存在的晶格失配导致的自发极化和压电极化,提高辐射复合几率,降低了位错密度,改善了GaN晶体质量,达到增强LED出光效率的目的。 Due to the adoption of the above structure, the present invention uses 3D and 2D superlattice growth structures in the process of growing blue LEDs, so that the quality of the underlying GaN crystal grows better. The structure of the present invention can effectively reduce the spontaneous polarization and piezoelectric polarization caused by the lattice mismatch between the patterned substrate and the GaN material, increase the probability of radiation recombination, reduce the dislocation density, improve the quality of the GaN crystal, and achieve The purpose of enhancing the light output efficiency of LED.
下面结合附图和具体实施方式对本发明做进一步说明。 The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
附图说明 Description of drawings
图1为现有技术中LED外延结构示意图; FIG. 1 is a schematic diagram of an LED epitaxial structure in the prior art;
图2为本发明的LED外延结构示意图; Fig. 2 is the schematic diagram of LED epitaxial structure of the present invention;
图3为本发明中U2型GaN层外延的结构示意图。 FIG. 3 is a schematic diagram of the structure of U2-type GaN layer epitaxy in the present invention.
具体实施方式 detailed description
参看图2和图3,本发明从下至上依次包括图形化衬底1、GaN缓冲层2、U型GaN层、N型GaN层4、InGaN阱层5、GaN垒层6、电子阻挡层7和P型GaN层8。U型GaN层从下至上包括U1型GaN层3和U2型GaN层40。U2型GaN层40包括交替生长的2D型GaN层401和3D 型GaN层402,其中2D 型GaN层401先生长,然后3D 型GaN层402再生长。U2型GaN层40在氢氮混合环境中生长,生长周期为3-30个周期。2D型GaN层401的生长温度为1050-1110℃,厚度为0.05-0.5um,生长压力100-300torr;3D型GaN402层的生长温度为990-1050℃,生长厚度为0.05-0.5um,生长压力为400-650torr。 Referring to Fig. 2 and Fig. 3, the present invention includes a patterned substrate 1, a GaN buffer layer 2, a U-type GaN layer, an N-type GaN layer 4, an InGaN well layer 5, a GaN barrier layer 6, and an electron blocking layer 7 from bottom to top. and a p-type GaN layer 8 . The U-type GaN layer includes a U1-type GaN layer 3 and a U2-type GaN layer 40 from bottom to top. The U2-type GaN layer 40 includes alternately grown 2D-type GaN layers 401 and 3D-type GaN layers 402 , wherein the 2D-type GaN layer 401 grows first, and then the 3D-type GaN layer 402 re-grows. The U2-type GaN layer 40 is grown in a hydrogen-nitrogen mixed environment, and the growth period is 3-30 periods. The growth temperature of the 2D type GaN layer 401 is 1050-1110°C, the thickness is 0.05-0.5um, and the growth pressure is 100-300torr; the growth temperature of the 3D type GaN402 layer is 990-1050°C, the growth thickness is 0.05-0.5um, and the growth pressure is 400-650torr.
本发明提供的LED 外延结构通过在U1型GaN层3和N型GaN层4之间生长U2型GaN层40,能有效降低图形化衬底1与GaN层之间因晶格失配产生的应力,从而减少位错的产生;且U2型GaN层40可起到掩膜层作用,衬底的穿透位错终止于衬底和U2型GaN层40之间的界面并被阻断。本发明结构可降低由于图形化衬底1与外延层的晶格适配而造成的晶格缺陷,促进外延侧向生长,可将外延缺陷密度降低到106cm- 2 数量级以下,改善外延层质量。 The LED epitaxial structure provided by the present invention can effectively reduce the stress caused by lattice mismatch between the patterned substrate 1 and the GaN layer by growing the U2-type GaN layer 40 between the U1-type GaN layer 3 and the N-type GaN layer 4 , thereby reducing the generation of dislocations; and the U2-type GaN layer 40 can function as a mask layer, and the threading dislocation of the substrate terminates at the interface between the substrate and the U2-type GaN layer 40 and is blocked. The structure of the present invention can reduce the lattice defects caused by the lattice fit between the patterned substrate 1 and the epitaxial layer, promote the lateral growth of the epitaxial layer, reduce the epitaxial defect density to below the order of 10 6 cm - 2 , and improve the epitaxial layer quality.
而且,本发明通过U1型GaN层3和N型GaN层4之间生长的U2型GaN层40,实现后期的侧向外延生长,减少缺陷,同时有效的阻挡部分位错延伸到N型GaN层4或发光层,并且把另一部分位错集中在U2型GaN层40中区域,提高了外延片晶体质量,从而增大了外延层低位错区域,降低位错密度,有效减小由于图形化衬底1与GaN材料存在的晶格失配导致的自发极化和压电极化,进而提高有源区波函数的复合几率,提高外延片亮度。 Moreover, the present invention uses the U2-type GaN layer 40 grown between the U1-type GaN layer 3 and the N-type GaN layer 4 to achieve later lateral epitaxial growth, reduce defects, and effectively block partial dislocations from extending to the N-type GaN layer 4 or the light-emitting layer, and concentrate another part of the dislocations in the region of the U2-type GaN layer 40, which improves the crystal quality of the epitaxial wafer, thereby increasing the low dislocation area of the epitaxial layer, reducing the dislocation density, and effectively reducing the dislocation caused by the patterned substrate. The spontaneous polarization and piezoelectric polarization caused by the lattice mismatch between the bottom 1 and the GaN material can increase the recombination probability of the wave function in the active region and improve the brightness of the epitaxial wafer.
实施例一 Embodiment one
本发明LED外延结构的生长方法为: The growth method of the LED epitaxial structure of the present invention is:
1)器件在MOCVD反应炉里进行高温烘烤,去除图形化衬底1表面的残余杂质。 1) The device is baked at a high temperature in an MOCVD reactor to remove residual impurities on the surface of the patterned substrate 1 .
2)缓慢降温在400-800℃之间,在图形化衬底1上生长一层GaN缓冲层2。 2) Slowly lower the temperature between 400-800°C, and grow a layer of GaN buffer layer 2 on the patterned substrate 1.
3)迅速升温,在1000-1200℃,GaN缓冲层2上生长U1型GaN层3,生长5-50min,厚度为0.5-5um。 3) Raise the temperature rapidly, at 1000-1200°C, grow a U1-type GaN layer 3 on the GaN buffer layer 2, grow for 5-50min, and have a thickness of 0.5-5um.
4)在U1型GaN层3上再生长U2型GaN层40: 4) Re-grow a U2-type GaN layer 40 on the U1-type GaN layer 3:
a) 首先生长2D型GaN层401,生长温度为1050℃,厚度为0.05um,生长压力100torr; a) First grow a 2D-type GaN layer 401 at a growth temperature of 1050° C., a thickness of 0.05 μm, and a growth pressure of 100 torr;
b) 然后快速降温增压生长3D型GaN层402,生长温度为990℃,生长厚度为0.05um,生长压力为400torr; b) Then grow the 3D GaN layer 402 by rapid cooling and pressurization, the growth temperature is 990°C, the growth thickness is 0.05um, and the growth pressure is 400torr;
c) 所述改善GaN晶体质量的U2型GaN层40生长周期为30个周期。 c) The growth cycle of the U2-type GaN layer 40 for improving GaN crystal quality is 30 cycles.
5)生长N型GaN层5,生长温度在1000-1200℃,生长厚度在0.5-5um。 5) N-type GaN layer 5 is grown at a growth temperature of 1000-1200°C and a growth thickness of 0.5-5um.
6)生长有源区: 6) Growth active area:
首先生长InXGa1-XN阱层5,温度为500-900℃,生长厚度为3-5nm,生长压力为100-500torr,In组分为0<x<1。 然后快速升温到600-1000℃生长N型的GaN垒层6,生长厚度为5-15nm,生长压力为100-500torr,所述InXGa1-XN阱层5生长N型,掺杂元素为Si,掺杂浓度为2x1017-2x1018cm- 3。 First grow the In X Ga 1-X N well layer 5 at a temperature of 500-900° C., a growth thickness of 3-5 nm, a growth pressure of 100-500 torr, and an In composition of 0<x<1. Then rapidly raise the temperature to 600-1000° C. to grow an N-type GaN barrier layer 6 with a thickness of 5-15 nm and a growth pressure of 100-500 torr. The In X Ga 1-X N well layer 5 grows N-type and is doped with elements For Si, the doping concentration is 2x10 17 -2x10 18 cm - 3 .
7) 在700-900℃下生长P型AlxGa1-xN电子阻挡层7, Al组分为0<x<1,厚度为50-500埃。 7) Grow the P-type Al x Ga 1-x N electron blocking layer 7 at 700-900°C, the Al composition is 0<x<1, and the thickness is 50-500 angstroms.
8)最后生长P型GaN层8,生长温度在850-1050℃下生长,厚度为2000-10000埃,Mg的浓度为5x1018 ~5x1023cm- 3。 8) Finally, a P-type GaN layer 8 is grown at a growth temperature of 850-1050°C, with a thickness of 2000-10000 angstroms and a Mg concentration of 5x10 18 ~5x10 23 cm - 3 .
实施例二 Embodiment two
本发明LED外延结构的生长方法为: The growth method of the LED epitaxial structure of the present invention is:
1)器件在MOCVD反应炉里进行高温烘烤,去除图形化衬底1表面的残余杂质。 1) The device is baked at a high temperature in an MOCVD reactor to remove residual impurities on the surface of the patterned substrate 1 .
2)缓慢降温在400-800℃之间,图形化衬底1上生长一层GaN缓冲层2。 2) Slowly lower the temperature between 400-800°C, and grow a layer of GaN buffer layer 2 on the patterned substrate 1.
3)迅速升温,在1000-1200℃,GaN缓冲层2上生长U1型GaN层3,生长5-50min,厚度为0.5-5um。 3) Raise the temperature rapidly, at 1000-1200°C, grow a U1-type GaN layer 3 on the GaN buffer layer 2, grow for 5-50min, and have a thickness of 0.5-5um.
4)在U1型GaN层3上再生长U2型GaN层40: 4) Re-grow a U2-type GaN layer 40 on the U1-type GaN layer 3:
a) 首先生长2D 型GaN层401,生长温度为1080℃,厚度为0.1um,生长压力200torr; a) First grow a 2D GaN layer 401 at a growth temperature of 1080°C, a thickness of 0.1um, and a growth pressure of 200torr;
b) 然后快速降温增压生长3D型GaN层402,生长温度为1020℃,生长厚度为0.1um,生长压力为500torr; b) Then grow the 3D GaN layer 402 by rapid cooling and pressurization, the growth temperature is 1020°C, the growth thickness is 0.1um, and the growth pressure is 500torr;
c) 所述改善GaN晶体质量的U2型GaN层40生长周期为15个周期。 c) The growth cycle of the U2-type GaN layer 40 for improving GaN crystal quality is 15 cycles.
5)生长N型GaN层4,生长温度在1000-1200℃,生长厚度在0.5-5um。 5) N-type GaN layer 4 is grown at a growth temperature of 1000-1200°C and a growth thickness of 0.5-5um.
6)生长有源区: 6) Growth active area:
首先生长InXGa1-XN阱层5,温度为500-900℃,生长厚度为3-5nm,生长压力为100-500torr,In组分为0<x<1。 然后快速升温到600-1000℃生长N型GaN垒层6,生长厚度为5-15nm,生长压力为100-500torr,所述InXGa1-XN阱层5生长N型,掺杂元素为Si,掺杂浓度为2x1017-2x1018cm- 3。 First grow the In X Ga 1-X N well layer 5 at a temperature of 500-900° C., a growth thickness of 3-5 nm, a growth pressure of 100-500 torr, and an In composition of 0<x<1. Then rapidly raise the temperature to 600-1000° C. to grow an N-type GaN barrier layer 6 with a thickness of 5-15 nm and a growth pressure of 100-500 torr. The In X Ga 1-X N well layer 5 grows N-type, and the doping element is Si, the doping concentration is 2x10 17 -2x10 18 cm - 3 .
7) 在700-900℃下生长P型AlxGa1-xN电子阻挡层7, Al组分为0<x<1,厚度为50-500埃。 7) Grow the P-type Al x Ga 1-x N electron blocking layer 7 at 700-900°C, the Al composition is 0<x<1, and the thickness is 50-500 angstroms.
8)生长P型GaN层8,生长温度在850-1050℃下生长,厚度为2000-10000埃,Mg的浓度为5x1018 ~5x1023cm- 3。 8) Growing a P-type GaN layer 8 at a growth temperature of 850-1050°C, with a thickness of 2000-10000 angstroms, and a Mg concentration of 5x10 18 ~5x10 23 cm - 3 .
实施例三 Embodiment Three
本发明LED外延结构的生长方法为: The growth method of the LED epitaxial structure of the present invention is:
1)器件在MOCVD反应炉里进行高温烘烤,去除图形化衬底1表面的残余杂质。 1) The device is baked at a high temperature in an MOCVD reactor to remove residual impurities on the surface of the patterned substrate 1 .
2)缓慢降温在400-800℃之间,生长一层GaN缓冲层2。 2) Slowly lower the temperature between 400-800°C to grow a layer of GaN buffer layer 2.
3)迅速升温,在1000-1200℃之间,GaN缓冲层2上生长U1型GaN层3,生长5-50min,厚度为0.5-5um。 3) Raise the temperature rapidly, between 1000-1200°C, grow a U1-type GaN layer 3 on the GaN buffer layer 2, grow for 5-50min, and have a thickness of 0.5-5um.
4)生长U2型GaN层40: 4) Growing U2-type GaN layer 40:
a) 首先生长2D 型GaN层401生长温度为1110℃,厚度为0.5um,生长压力300torr; a) First grow a 2D GaN layer 401 at a growth temperature of 1110°C, a thickness of 0.5um, and a growth pressure of 300torr;
b) 然后快速降温增压生长3D 型GaN层402,生长温度为1050℃,生长厚度为0.5um,生长压力为650torr; b) Then grow the 3D GaN layer 402 by rapid cooling and pressurization, the growth temperature is 1050°C, the growth thickness is 0.5um, and the growth pressure is 650torr;
c) 所述改善GaN晶体质量的U2型GaN层生长周期为3个周期。 c) The growth period of the U2-type GaN layer for improving GaN crystal quality is 3 periods.
5)生长N型GaN层4,生长温度在1000-1200℃,生长厚度在0.5-5um。 5) N-type GaN layer 4 is grown at a growth temperature of 1000-1200°C and a growth thickness of 0.5-5um.
6)生长有源区: 6) Growth active area:
首先生长InXGa1-XN阱层5,温度为500-900℃,生长厚度为3-5nm,生长压力为100-500torr,In组分为0<x<1。 然后快速升温到600-1000℃生长N型GaN垒层6,生长厚度为5-15nm,生长压力为100-500torr,所述InXGa1-XN阱层5生长N型,掺杂元素为Si,掺杂浓度为2x1017-2x1018cm- 3。 First grow the In X Ga 1-X N well layer 5 at a temperature of 500-900° C., a growth thickness of 3-5 nm, a growth pressure of 100-500 torr, and an In composition of 0<x<1. Then rapidly raise the temperature to 600-1000° C. to grow an N-type GaN barrier layer 6 with a thickness of 5-15 nm and a growth pressure of 100-500 torr. The In X Ga 1-X N well layer 5 grows N-type, and the doping element is Si, the doping concentration is 2x10 17 -2x10 18 cm - 3 .
7) 在700-900℃下生长P型AlxGa1-xN电子阻挡层7, Al组分为0<x<1,厚度为50-500埃。 7) Grow the P-type Al x Ga 1-x N electron blocking layer 7 at 700-900°C, the Al composition is 0<x<1, and the thickness is 50-500 angstroms.
8)生长P型GaN层8,生长温度在850-1050℃下生长,厚度为2000-10000埃,Mg的浓度为5x1018 ~5x1023cm- 3。 8) Growing a P-type GaN layer 8 at a growth temperature of 850-1050°C, with a thickness of 2000-10000 angstroms, and a Mg concentration of 5x10 18 ~5x10 23 cm - 3 .
以上所述,仅为本发明的具体实施例,并不限于本发明的其它实施方式,凡属本发明的技术路线原则之内,所做的任何显而易见的修改、替换或改进,均应属于本发明的保护范围之内。 The above is only a specific embodiment of the present invention, and is not limited to other implementations of the present invention. Any obvious modifications, replacements or improvements made within the technical route principles of the present invention shall belong to the present invention. within the scope of protection of the invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510135171.XA CN106159046A (en) | 2015-03-26 | 2015-03-26 | A kind of LED epitaxial structure improving GaN crystal quality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510135171.XA CN106159046A (en) | 2015-03-26 | 2015-03-26 | A kind of LED epitaxial structure improving GaN crystal quality |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106159046A true CN106159046A (en) | 2016-11-23 |
Family
ID=57340101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510135171.XA Pending CN106159046A (en) | 2015-03-26 | 2015-03-26 | A kind of LED epitaxial structure improving GaN crystal quality |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106159046A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108767074A (en) * | 2018-06-22 | 2018-11-06 | 湘能华磊光电股份有限公司 | Improve the LED epitaxial growth methods of bottom crystal quality |
CN116093226A (en) * | 2023-04-10 | 2023-05-09 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101060076A (en) * | 2007-05-14 | 2007-10-24 | 武汉大学 | A manufacture method for GaN insulation or semi-insulation epitaxy layer |
CN101771121A (en) * | 2009-12-28 | 2010-07-07 | 山东华光光电子有限公司 | Structure of SiC or Si substrate GaN-based crystal and method for growing same |
CN102394261A (en) * | 2011-11-17 | 2012-03-28 | 扬州中科半导体照明有限公司 | Method of epitaxially growing nitride epitaxial film on sapphire patterned substrate |
CN103441200A (en) * | 2013-08-14 | 2013-12-11 | 淮安澳洋顺昌光电技术有限公司 | Light-emitting diode epitaxial wafer provided with low-temperature uGaN layer |
US20140158976A1 (en) * | 2012-12-06 | 2014-06-12 | Sansaptak DASGUPTA | Iii-n semiconductor-on-silicon structures and techniques |
CN104167475A (en) * | 2014-07-16 | 2014-11-26 | 华灿光电股份有限公司 | Light-emitting diode epitaxial wafer and manufacturing method thereof |
CN104347761A (en) * | 2013-08-06 | 2015-02-11 | 甘志银 | Crystal quality-controllable GaN thin film epitaxial growth method |
-
2015
- 2015-03-26 CN CN201510135171.XA patent/CN106159046A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101060076A (en) * | 2007-05-14 | 2007-10-24 | 武汉大学 | A manufacture method for GaN insulation or semi-insulation epitaxy layer |
CN101771121A (en) * | 2009-12-28 | 2010-07-07 | 山东华光光电子有限公司 | Structure of SiC or Si substrate GaN-based crystal and method for growing same |
CN102394261A (en) * | 2011-11-17 | 2012-03-28 | 扬州中科半导体照明有限公司 | Method of epitaxially growing nitride epitaxial film on sapphire patterned substrate |
US20140158976A1 (en) * | 2012-12-06 | 2014-06-12 | Sansaptak DASGUPTA | Iii-n semiconductor-on-silicon structures and techniques |
CN104347761A (en) * | 2013-08-06 | 2015-02-11 | 甘志银 | Crystal quality-controllable GaN thin film epitaxial growth method |
CN103441200A (en) * | 2013-08-14 | 2013-12-11 | 淮安澳洋顺昌光电技术有限公司 | Light-emitting diode epitaxial wafer provided with low-temperature uGaN layer |
CN104167475A (en) * | 2014-07-16 | 2014-11-26 | 华灿光电股份有限公司 | Light-emitting diode epitaxial wafer and manufacturing method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108767074A (en) * | 2018-06-22 | 2018-11-06 | 湘能华磊光电股份有限公司 | Improve the LED epitaxial growth methods of bottom crystal quality |
CN116093226A (en) * | 2023-04-10 | 2023-05-09 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101488550B (en) | Manufacturing method for LED in high In ingredient multiple InGaN/GaN quantum wells structure | |
CN105206726A (en) | LED structure and growth method thereof | |
CN101488548A (en) | LED in high In ingredient multiple InGaN/GaN quantum wells structure | |
CN104733579B (en) | Light emitting semiconductor device and preparation method thereof | |
WO2017185773A1 (en) | Light-emitting diode and manufacturing method therefor | |
CN104409587A (en) | An InGaN-based blue-green light-emitting diode epitaxial structure and growth method | |
CN106159047B (en) | Light-emitting diode epitaxial structure with PN-doped quantum barrier and preparation method thereof | |
CN102214740A (en) | Method for improving antistatic capability of gallium nitride based light emitting diode | |
CN105870283A (en) | Light-emitting diode with composite polar face electron blocking layer | |
CN110364606A (en) | A kind of epitaxial structure of ultraviolet light-emitting diode and its manufacturing method | |
CN105304781B (en) | Lift the LED epitaxial structure and its growing method of Mg hole concentrations | |
CN104253181A (en) | LED (Light Emitting Diode) epitaxy structure with multiple barrier layers | |
CN105047776A (en) | Light-emitting diode epitaxial structure containing AlGaN conducting layer, and manufacturing method thereof | |
CN107316922A (en) | LED epitaxial structure based on GaN hexagonal pyramid arrays and preparation method thereof | |
CN104319317B (en) | Epitaxial production method capable of effectively improving P-GaN hole injection layer quality | |
CN106784181B (en) | Method and structure for improving luminous efficiency of green light or longer wavelength InGaN quantum well | |
CN210156417U (en) | Ultraviolet light emitting diode epitaxial structure | |
CN103996766B (en) | Gallium nitride based light emitting diode and preparation method thereof | |
KR20120126981A (en) | Non-polar nitride-based light emitting device and method for the same | |
CN108231964B (en) | Method for improving quantum efficiency in light-emitting diode | |
CN104253182B (en) | A blue LED epitaxial structure with asymmetric barrier layer | |
CN106159046A (en) | A kind of LED epitaxial structure improving GaN crystal quality | |
CN103985799B (en) | Light-emitting diode and manufacturing method thereof | |
CN104167476A (en) | Light-emitting diode structure capable of reducing blue-light LED defect density | |
CN103137808A (en) | Gallium nitride light-emitting diode (LED) with low-temperature n-type inserted layer and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20161123 |