[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN106119283A - 一种利用CRISPR‑Cas9靶向敲除MSTN基因的方法 - Google Patents

一种利用CRISPR‑Cas9靶向敲除MSTN基因的方法 Download PDF

Info

Publication number
CN106119283A
CN106119283A CN201610470813.6A CN201610470813A CN106119283A CN 106119283 A CN106119283 A CN 106119283A CN 201610470813 A CN201610470813 A CN 201610470813A CN 106119283 A CN106119283 A CN 106119283A
Authority
CN
China
Prior art keywords
mstn
gene
ppdna330
sequence
rgs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610470813.6A
Other languages
English (en)
Inventor
朱鹏
梁贤威
庞春英
邓廷贤
段安琴
陆杏蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGXI ZHUANG AUTONOMOUS REGION BUFFALO INSTITUTE
Original Assignee
GUANGXI ZHUANG AUTONOMOUS REGION BUFFALO INSTITUTE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUANGXI ZHUANG AUTONOMOUS REGION BUFFALO INSTITUTE filed Critical GUANGXI ZHUANG AUTONOMOUS REGION BUFFALO INSTITUTE
Priority to CN201610470813.6A priority Critical patent/CN106119283A/zh
Publication of CN106119283A publication Critical patent/CN106119283A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/02Animal zootechnically ameliorated
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公布了一种利用CRISPR‑Cas9靶向敲除MSTN基因的方法,该方法通过对多物种进行同源对比选取两对MSTN基因靶序列,利用gRNA的PAM设计原则,合成两对靶序列不同,表达的蛋白相同,带有相同BsmBI粘性末端的DNA双链,将双链与pPDNA330质粒进行连接得到携带有多物种的MSTN同源基因的重组载体,重组载体利用荧光蛋白表达法对基因敲除效率进行检测,选择敲除效率更高的载体转染多物种受体细胞,进行基因敲除并验证,完成对多物种MSTN基因进行简单、高效、精确的基因敲除。

Description

一种利用CRISPR-Cas9靶向敲除MSTN基因的方法
【技术领域】
本发明涉及分子生物学领域,特别涉及一种利用CRISPR-Cas9靶向敲除MSTN基因的方法。
【背景技术】
MSTN是肌肉生长抑制素蛋白(myostatin,MSTN),属转化生长因子-β(transforming growth factor-β)超家族成员。自1997年发现其以来,大量的研究结果表明它是一个骨骼肌生长抑制基因。MSTN-/-小鼠体重较之野生型小鼠,体重增重约30%,骨骼肌增重约1-2倍,骨骼肌肌纤维的数目增加约86%。自然情况下,黄牛MSTN基因的突变个体肌肉显著生长,出现“双肌臀”现象,这种双肌现象在自然界中多种动物体上,甚至有些相关记录表明部分人由于某些原因也会在体征上出现双肌的表型。
改变基因构造通常是进行基因突变,即将DNA分子中发生碱基对的增添、缺失或改变而引起的基因结构改变,而基因突变往往是不定向的,随机的,未知的。为提高改变基因结构的效率,在现今的分子生物学领域中,通常是从特定生物体中提取MSTN基因,再根据基因组的编码顺序来编码进行同源性替代靶基因使上述的MSTN基因被取代或破坏而失活,达到靶向敲除基因的目的,靶向敲除精确度高、容易进行形状分析筛选,大大提高了工作效率。然而该方法仅能对单一物种的某一基因进行基因敲除,不能适用于多物种。
目前,MSTN基因的资料已比较齐全,在国内外经过大量的实验后,也获得了一些MSTN基因敲除细胞系。我国的家畜、家禽的产肉性能偏低,缺少高产的肉用家畜、家禽,有研究用ZFNs技术、TALEN技术等在家畜、家禽MSTN基因的特定位点进行基因编辑使其发生突变,筛选获得有效的基因突变细胞系,并进行这两种不同基因编辑技术的突变效率的检测,为我国家禽、家畜的加速筛选和肉品质的改良及生产提供材料。
基因编辑用的ZFNs和TALEN技术,然而这两种技术如果要实现定向编辑,则必须合成DNA序列特异性结合蛋白模块,即DNA剪切的实现有赖于FokI核酸酶结构域。这一要求大大限制了这两种技术的发展,而CRISPR/cas9技术则通过gRNA引导核酸内切酶实现DNA特异位点的编辑,突破了ZFNs和TALEN技术的发展限制,是更为高效的基因特异位点的编辑技术。
目前,有些研究开始使用CRISPR/Cas9系统进行基因敲除实验,实验证明,利用CRISPR/Cas9系统进行基因敲除具有效率更高,操作更简便的优点,但是还未开发一种可同时运用于敲除多物种MSTN基因的重组载体,找出一种可快速、精确的找到靶序列的检测方法。例如PCT专利CN 105142669 A公开了基于CRISPR的基因组修饰和调控,说明了CRISPR系统可用于基因组的修饰和调控,用CRISPR系统比ZFN和TALEN更简单、高效的优点,但该专利未公布针对MSTN基因敲除的特定酶切位点和碱基序列,未公布针对MSTN基因的优选片段进行检测、选择的方法,而且也未公布本发明针对MSTN基因敲除所用的重组质粒载体的构建;中国专利CN 104232669 A公开了一种采用基因敲除法构建基于鱼类CRISPR/Cas9系统的载体及其构建方法,但本技术方案仅能针对鱼类的MSTN基因敲除,不能针对其它物种,普适率低,同时本技术方案也没有公开一种能快速、精确的找到靶序列的检测方法。因此,本发明需要解决以下几个问题:(1)构建能靶向敲除多物种的MSTN基因编辑方法;(2)现有技术在基因编辑过程特别是人和水牛基因组编辑的技术平台存在效率低,适用性低的特点,整个平台仍需进行优化和条件摸索;(3)现有技术没有一种能快速、精确的找到靶序列的检测方法,从而进一步提高基因编辑的成功率。
【发明内容】
鉴于上述内容,有必要提供一种简单、高效、准确、适用于多物种特别是针对人和水牛的MSTN基因敲除方法,并进一步提高对靶序列的检测效率,能快速、精确的找到靶序列,提高基因编辑的成功率。
为达到上述目的,本发明所采用的技术方案是:
一种利用CRISPR-Cas9靶向敲除MSTN基因的方法,所述方法包括如下步骤:
(1)构建pPDNA330-MSTN-1和pPDNA330-MSTN-2载体,构建方法如下:
A、从基因数据库中下载多物种MSTN基因的核苷酸序列,并进行同源比对选取两对靶序列,分别为MSTN靶序列1:5’-AGGCACTGGTATTTGGCAGAG-3’和MSTN靶序列2:5’-AAGATATAAGGCCAATTACTGCTC-3’;
B.根据同源对比结果和gRNA的PAM设计原则,合成两对与靶序列不同,表达的蛋白相同,带有相同BsmBI粘性末端的DNA双链,分别命名为:MSTN-1和MSTN-2;
C.用BsmBI酶切pPDNA330质粒,将酶切产物进行琼脂糖凝胶电泳,再进行切胶回收;
D.用连接酶将MSTN-1和MSTN-2分别与BsmBI酶切后的pPDNA330质粒进行连接,得到重组质粒载体,分别命名为:pPDNA330-MSTN-1和pPDNA330-MSTN-2;
(2)对重组质粒载体pPDNA330-MSTN-1和pPDNA330-MSTN-2进行敲除效率的筛选验证、对比,选择MSTN基因敲除效率更高的重组质粒载体转染受体细胞;
(3)转染不同物种的受体细胞,收集转染之后的受体细胞,并提取细胞基因组进行测序,根据基因组测序结果合成检测引物进行PCR扩增,扩增产物连接入pEASY-T1载体,挑取单克隆细菌,进行测序,对MSTN基因敲除表达结果进行检测。
进一步的,所述MSTN-1的上游序列为,5’-ACCGCTCTGCCAAATACCAGTGCCT-3’,下游序列为,5’-AAACAGGCACTGGTATTTGGCAGAG-3’;MSTN-2的上游序列5’-ACCGAAGATATAAGGCCAATTACTGCTC-3’,下游序列为,5’-AAACGAGCAGTAATTGGCCTTATATCTT-3’。。
进一步的,所述BsmBI酶切体系反应温度为50-60℃,时间为2.5-3.5h,酶切体系为:2.5-3.5μg的pPDNA330质粒,1.5-2.5μL的10×NEB Buffer3,0.2-0.8μL的BsmBI,加水至溶液为15-25μL。
进一步的,所述重组质粒载体pPDNA330-MSTN-1和pPDNA330-MSTN-2敲除效率的筛选验证选用荧光蛋白表达法进行验证,具体方法如下:
(1)利用RGS-CR做为验证报告载体:使用限制性内切酶EcoRⅠ和BamHⅠ对验证报告载体RGS-CR进行线性化;
(2)合成与MSTN靶序列1和MSTN靶序列2对应的两条带有EcoRⅠ和BamHⅠ粘性末端的DNA双链,分别命名为:#MSTN-1和#MSTN-2;
其中,#MSTN-1引物的上游序列为:5’-AATTCCTCTGCCAAATACCAGTGCCTGGGG-3’,
下游序列为:5’-GATCCCCCAGGCACTGGTATTTGGCAGAGG-3’;
#MSTN-2引物的上游序列为:5’-AATTCAAAGATATAAGGCCAATTACTGCTCTGGG-3’,
下游序列为:5’-GATCCCCAGAGCAGTAATTGGCCTTATATCTTTG-3’;
(3)采用T4连接酶将步骤(1)的RGS-CR线性化产物和步骤(2)带有EcoRⅠ和BamHⅠ粘性末端的#MSTN-1和#MSTN-2两对DNA双链进行连接得到重组质粒载体,分别命名为:RGS-#MSTN-1和RGS-#MSTN-2;
(4)取传代的HEK-293T细胞于4个培养皿中;
(5)取4个离心管编号为1、2、3、4,每个管分别加入含FBS的DMEM;
(6)然后在1号管加pPDNA330-MSTN-1和RGS-#MSTN-1,2号管加pPDNA330和RGS-#MSTN-1,3号管加pPDNA330-MSTN-2和RGS-#MSTN-2,4号管加pPDNA330和RGS-#MSTN-2;最后在每个管中加入罗氏转染试剂,混匀,室温静置后,将混合液分别加入培养皿,并于培养箱中培养,培养完成后在荧光显微镜下观察目的基因的荧光表达情况。
进一步的,所述限制性内切酶EcoRⅠ和BamHⅠ的酶切体系反应温度为35-40℃,时间为2.5-3.5h,酶切体系为:1.5-2.5μg的RGS质粒,1.5-2.5μL的10×NEB Buffer3,0.2-0.8μL的EcoRI,0.2-0.8μL BamHI加水至溶液为15-25μL。
进一步的,所述受体细胞选用人的Hela细胞或水牛的成纤维细胞。
进一步的,所述的人Hela细胞和水牛的成纤维细胞的培养条件为:用含FBS的DMEM的培养基在电转前24小时对人的Hela细胞和水牛的成纤维细胞进行培养,培养条件为35-40℃,4%-6%的CO2
进一步的,所述检测引物选用人或水牛的MSTN-2基因的上、下游序列做为检测引物,人MSTN-2基因检测引物命名为:hMSTN,hMSTN上游序列为5’-AATCTGGTACTCAAACTTGGA-3’,下游序列为5’-ATATTATTTGTTCTTTGCCATT-3’;水牛的MSTN-2基因检测引物命名为:bufMSTN,bufMSTN上游序列为5’-CATAAAGGAAGAATCAAGCCTA-3’,下游序列为5’-TTCGCCATTAAAATATAGCATA-3’。
进一步的,所述PCR体系为:10μLHS(Premix)(Takara),DNA模板1μL,上下游引物各0.5μL,水补至20μL。反应程序为:95℃预变性5min,35循环(95℃变性30sec,55℃退火30sec,72℃延伸30sec),72℃再延伸7min,4℃终止反应。取上述PCR反应的5μL PCR产物,直接进行2%的琼脂糖凝胶电泳,电压120V,时间约30min。
上述的利用CRISPR-Cas9靶向敲除MSTN基因的方法可用于人或水牛的MSTN基因敲除。
本发明具有以下有益效果:
1、本技术方案发明人通过对多物种的MSTN基因进行分析,进行同源比对,选择同源性最高的两对基因序列做为靶序列,进行对MSTN基因的敲除,有效的提高了靶序列的普适性,使利用该靶序列进行编辑的重组质粒载体能适用于多物种。虽然本发明对多物种的MSTN基因进行同源对比选择同源性高的靶序列,然而并不是每一个选择的靶序列都能正确表达,还需要进行表达验证,而且,不同物种的基因组序列是不一样的,如果仅仅利用同源对比选择靶序列而选用其它编辑技术,例如:ZFNs和TALEN编辑技术,由于这两种技术必须合成DNA序列特异性结合蛋白模块,在进行DNA剪切的时候将会受到FokI核酸酶结构域的限制,编辑效率大大降低,如果找出的同源比对的MSTN基因上下游没有FokI核酸酶结构域则不能完成基因的剪切,不能进行基因编辑,同样的,要精确找到有表达效果的靶序列,其检测手段是必不可少的,检测手段必须要简单、高效、准确,才能提高靶序列的准确性。
2、本技术方案选用的CRISPR/Cas9系统,CRISPR-Cas9里面需要两个组件,一个是gRNA,另外一个是内切酶也就是Cas9.gRNA包括crRNA和tracrRNA,gRNA结合crRNA的靶标特异性及tracrRNA的脚手架特性(如何翻译scffold)成单一转录子。当gRNA和cas9在细胞内表达时,基因组的靶标会被修饰或永久性的干扰。使用Cas9核酸内切酶只需要提供一个包含特异的20bp的小片段sgRNA(single guide RNA)来决定靶向特异性。sgRNA是由crRNA(CRISPRRNA)与tracrRNA(trans-activating CRISPR RNA)嵌合构成的一个约100个核苷酸大小的RNA。crRNA能够与靶向的DNA形成RNA-DNA复合物,这段靶向DNA序列叫做前间隔序列。crRNA与trancrRNA一起构成的sgRNA与Cas9相互作用形成核糖核蛋白。sgRNA的5’端的约20bp(对应的是crRNA)通过RNA-DNA互补配对指引Cas9与靶序列结合进而对靶位点进行切割,造成DNA双链断裂(double strand break,DSB)。在细胞中,核酸酶造成的DSB在没有修复模板的情况下,以非同源末端连接(nonhomologous end-joining,NHEJ)的方式进行修复。NHEJ能够引起随机长度的碱基插入或缺失,可以破坏编码基因的翻译阅读框架,因此,本发明使用CRISPR/Cas9系统进行基因编辑不受限制性内切酶的限制,能更简单、高效、多位点的对基因进行修饰,实现了仅构建一个表达载体就能对多物种的同一靶序列进行基因编辑的效果,同时方法简单、高效。
3、本技术方案用验证报告载体RGS-CR对两对靶基因的敲除效率进行检验,采用荧光蛋白和目的基因连接,当目的基因被同源替代靶向敲除时,能启动荧光蛋白表达,在绿光下成像,利用该方法能将基因编辑效果进行体外表达,克服了体内表达周期长的问题,能快速的对基因的转染效率做出迅速和可靠的评估,有效的提高了对靶序列的定向分析、检测作用,提高了靶序列选择的准确度。
【附图说明】
图1为MSTN多物种同源比对及靶标1的设计位点图;
图2为MSTN多物种同源比对及靶标2的设计位点图;
图3为MSTN打靶效率荧光表达检测图;
图4为HELA细胞MSTN基因突变测序结果图;
图5为水牛成纤维细胞MSTN基因突变检测结果图。
【具体实施方式】
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
实施例:
一、靶向敲除基因克隆载体的构建:
靶向多物种MSTN的gRNA寡核苷酸的设计及载体构建。从NCBI数据库中下载多物种MSTN基因的核苷酸序列,并进行同源比对。同源比对结果见说明书附图1和说明书附图2。根据gRNA的PAM设计原则及同源比对的结果,合成了MSTN-1和MSTN-2共2对引物,引物序列分别为,载体构建具体步骤如下:
1、合成MSTN靶序列1:5’-AGGCACTGGTATTTGGCAGAG-3’,其中上游序列5’-ACCGCTCTGCCAAATACCAGTGCCT-3’,其下游序列5’-AAACAGGCACTGGTATTTGGCAGAG-3’,靶序列2:5’-AAGATATAAGGCCAATTACTGCTC-3’,其中上游序列5’-ACCGAAGATATAAGGCCAATTACTGCTC-3’,其下游序列5’-AAACGAGCAGTAATTGGCCTTATATCTTt-3’,溶解后,各取4.5μL,再加入1μL10×LA PCR Buffer,混匀,95℃加热10min,然后置于室温3h,形成带有BsmBI粘性末端的DNA双链;
2、酶切pPDNA330质粒,酶切体系为pPDNA330质粒3μg,10×NEB Buffer3 2μL,0.5μL BsmBI,加水至20μL,55℃孵育3h;将酶切产物进行琼脂糖凝胶电泳,切胶回收,测定浓度,存于-20℃,备用;
3、连接上述a、b两步获得的产物,连接体系:1μL T4ligase,2μL 10×T4ligaseBuffer,BsmBI酶切的pPDNA330载体30ng,靶序列及其互补序列形成的双链DNA 5μL,加水至20μL,16℃过夜连接。将连接产物导入感受态细胞DH5α进行转化,扩大培养,提取质粒并进行序列测定,得到pPDNA330-MSTN-1和pPDNA330-MSTN-2载体。
二、基因敲除效率的验证
1、靶序列敲除效率验证报告载体RGS-CR,使用限制性内切酶EcoRⅠ和BamHⅠ对RGS载体进行线性化,酶切体系为:RGS质粒2μg,10×BufferK 2μL,0.5μL EcoRI,0.5μLBamHI,加水至20μL,37℃孵育3h;将酶切产物进行琼脂糖凝胶电泳,目的片段切胶回收,测定浓度,存于-20℃,备用;
2、合成MSTN的2条靶序列对应的RGS-CR报告载体序列#MSTN-1和#MSTN-2共2对引物,其中#MSTN-1的上游引物序列为5’-AATTCCTCTGCCAAATACCAGTGCCTGGGG-3’,下游引物序列为5’-GATCCCCCAGGCACTGGTATTTGGCAGAGG-3’,#MSTN-2的上游引物序列为5’-AATTCAAAGATATAAGGCCAATTACTGCTCTGGG-3’,下游引物序列为5’-GATCCCCAGAGCAGTAATTGGCCTTATATCTTTG-3’,引物溶解成100μM浓度后,经95℃处理15min,而后自然降温过夜退火,分别得到2条带有EcoRⅠ和BamHⅠ粘性末端的DNA双链退火产物。
3、T4连接RGS线性化产物和DNA双链退火产物,转化感受态细胞,挑取单菌落培养,去内毒提取重组质粒,并通过测序验证质粒,获得RGS-#MSTN-1和RGS-#MSTN-2重组质粒。
4、转染前一天,传代HEK-293T细胞于4个35mm的培养皿中。
5、转染当天,准备4个1.5mL的离心管,每个管中分别加入100μL的含10%FBS的DMEM,再添加质粒;其中,1号管中加1000ng的pPDNA330-MSTN-1,100ng的RGS-#MSTN-1;2号管中加1000ng的pPDNA330,200ng的RGS-#MSTN-1;3号管中加1000ng的pPDNA330-MSTN-2,200ng的RGS-#MSTN-2;4号管中加1000ng的pPDNA330,200ng的RGS-#MSTN-2;最后每个管中加入2μL的罗氏转染试剂,混匀,室温静止15min后,将混合液分别加入4个35mm的培养皿,并于37℃、5%CO2培养箱中培养,48h观察荧光表达情况(实验结果见说明书附图3)。荧光显示,pPDNA330-MSTN-2的绿色荧光的表达明显多于阴性对照pPDNA330,表明pPDNA330-MSTN-2能有效地引起DSBs,造成MSTN基因突变。
三、筛选出作用效果更好的表达载体,对人和牛的细胞进行转染,敲除MSTN基因。
1、转染前一天,人Hela细胞培养于35mm的培养皿中,培养基为含10%进口胎牛血清(FBS)的DMEM,培养条件为37℃,5%的CO2,转染当天,按照Life 3000试剂盒说明书导入2μg的pPDNA330-MSTN-2质粒,转染后48h,胰酶消化收集细胞,并提取细胞基因组。
2、合成人MSTN基因敲除检测引物hMSTN,其中上游引物5’-AATCTGGTACTCAAACTTGGA-3’,下游引物5’-ATATTATTTGTTCTTTGCCATT-3’,以pPDNA330-MSTN-2质粒转染的细胞基因组为模板,进行PCR扩增,PCR体系为:10μL HS(Premix)(Takara),DNA模板1μL,上下游引物各0.5μL,水补至20μL。反应程序:95℃预变性5min,35循环(95℃变性30sec,55℃退火30sec,72℃延伸30sec),72℃再延伸7min,4℃终止反应。取上述PCR反应的5μL PCR产物,直接进行2%的琼脂糖凝胶电泳,电压120V,时间约30min。将PCR产物切胶,回收,连接,转化,挑取单克隆,进行测序,PCR扩增产物连接入pEASY-T1载体中,并通过挑取单克隆细菌,测序,对MSTN基因突变进行检测,结果表明pPDNA330-MSTN-2能有效地对人Hela细胞MSTN基因进行编辑,实验结果见说明书附图4。
3、水牛成纤维细胞培养于60mm的培养皿中,培养基为含10%进口胎牛血清(FBS)的DMEM,培养条件为37℃,5%的CO2,电转当天,胰酶消化收集细胞,通过电转导入2μg的pPDNA330-MSTN-2质粒,转染后48h,收集细胞并提取细胞基因组。
4、合成水牛MSTN基因敲除检测引物bufMSTN,其中上游引物5’-CATAAAGGAAGAATCAAGCCTA-3’,下游引物5’-TTCGCCATTAAAATATAGCATA-3’,以pPDNA330-MSTN-2质粒转染的细胞基因组为模板,进行PCR扩增,PCR体系为:10μLHS(Premix)(Takara),DNA模板1μL,上下游引物各0.5μL,水补至20μL。反应程序:95℃预变性5min,35循环(95℃变性30sec,55℃退火30sec,72℃延伸30sec),72℃再延伸7min,4℃终止反应。取上述PCR反应的5μL PCR产物,直接进行2%的琼脂糖凝胶电泳,电压120V,时间约30min。将PCR产物切胶,回收,连接,转化,挑取单克隆,进行测序,PCR扩增产物连接入pEASY-T1载体中,并通过挑取单克隆细菌,测序,对MSTN基因突变进行检测,结果表明pPDNA330-MSTN-2能有效地对人Hela细胞MSTN基因进行编辑,实验结果见说明书附图5。
综上所述,本发明通过同源对比选择不同物种控制MSTN基因的两对同源性最高的靶序列,利用CRISPR-Cas9编辑系统构建带有靶序列基因的重组质粒,通过荧光蛋白表达法检测能对敲除试验结果进行精确分析,构建了并选择了能靶向敲除MSTN基因的重组载体,通过转染人的Hela细胞和水牛的成纤维细胞,验证了该方法能适用于不同物种,甚至多物种MSTN基因的敲除。本发明的方法具有打靶率高、准确、简单、高效、具有普适性的特点,有效的提高了基因敲除效率和准确性。
上述说明是针对本发明较佳可行实施例的详细说明,但实施例并非用以限定本发明的专利申请范围,凡本发明所提示的技术精神下所完成的同等变化或修饰变更,均应属于本发明所涵盖专利范围。

Claims (6)

1.一种利用CRISPR-Cas9靶向敲除MSTN基因的方法,其特征在于,所述方法包括如下步骤:
(1)构建pPDNA330-MSTN-1和pPDNA330-MSTN-2载体,构建方法如下:
A、从基因数据库中下载多物种MSTN基因的核苷酸序列,并进行同源比对选取两对靶序列,分别为MSTN靶序列1:5’-AGGCACTGGTATTTGGCAGAG-3’和MSTN靶序列2:5’-AAGATATAAGGCCAATTACTGCTC-3’;
B.根据同源对比结果和gRNA的PAM设计原则,合成两对与靶序列不同,表达的蛋白相同,带有相同BsmBI粘性末端的DNA双链,分别命名为:MSTN-1和MSTN-2;
C.用BsmBI酶切pPDNA330质粒,将酶切产物进行琼脂糖凝胶电泳,再进行切胶回收;
D.用连接酶将MSTN-1和MSTN-2分别与BsmBI酶切后的pPDNA330质粒进行连接,得到重组质粒载体,分别命名为:pPDNA330-MSTN-1和pPDNA330-MSTN-2;
(2)对重组质粒载体pPDNA330-MSTN-1和pPDNA330-MSTN-2进行敲除效率的筛选验证、对比,选择MSTN基因敲除效率更高的重组质粒载体转染受体细胞;
(3)转染不同物种的受体细胞,收集转染之后的受体细胞,并提取细胞基因组进行测序,根据基因组测序结果合成检测引物进行PCR扩增,扩增产物连接入pEASY-T1载体,挑取单克隆细菌,进行测序,对MSTN基因敲除表达结果进行检测。
2.根据权利要求1所述的利用CRISPR-Cas9靶向敲除MSTN基因的方法,其特征在于,所述MSTN-1的上游序列为,5’-ACCGCTCTGCCAAATACCAGTGCCT-3’,下游序列为,5’-AAACAGGCACTGGTATTTGGCAGAG-3’;MSTN-2的上游序列5’-ACCGAAGATATAAGGCCAATTACTGCTC-3’,下游序列为,5’-AAACGAGCAGTAATTGGCCTTATATCTT-3’。
3.根据权利要求1所述的利用CRISPR-Cas9靶向敲除MSTN基因的方法,其特征在于,所述重组质粒载体pPDNA330-MSTN-1和pPDNA330-MSTN-2敲除效率的筛选验证选用荧光蛋白表达法进行验证,具体方法如下:
(1)利用RGS-CR做为验证报告载体:使用限制性内切酶EcoR Ⅰ和BamH Ⅰ对验证报告载体RGS-CR进行线性化;
(2)合成与MSTN靶序列1和MSTN靶序列2对应的两条带有EcoR Ⅰ和BamH I粘性末端的DNA双链,分别命名为:#MSTN-1和#MSTN-2;
其中,#MSTN-1引物的上游序列为:5’-AATTCCTCTGCCAAATACCAGTGCCTGGGG-3’,
下游序列为:5’-GATCCCCCAGGCACTGGTATTTGGCAGAGG-3’;
#MSTN-2引物的上游序列为:5’-AATTCAAAGATATAAGGCCAATTACTGCTCTGGG-3’,
下游序列为:5’-GATCCCCAGAGCAGTAATTGGCCTTATATCTTTG-3’;
(3)采用T4连接酶将步骤(1)的RGS-CR线性化产物和步骤(2)带有EcoR Ⅰ和BamH Ⅰ粘性末端的#MSTN-1和#MSTN-2两对DNA双链进行连接得到重组质粒载体,分别命名为:RGS-#MSTN-1和RGS-#MSTN-2;
(4)取传代的HEK-293T细胞于4个培养皿中;
(5)取4个离心管编号为1、2、3、4,每个管分别加入含FBS的DMEM;
(6)然后在1号管加pPDNA330-MSTN-1和RGS-#MSTN-1,2号管加pPDNA330和RGS-#MSTN-1,3号管加pPDNA330-MSTN-2和RGS-#MSTN-2,4号管加pPDNA330和RGS-#MSTN-2;最后在每个管中加入罗氏转染试剂,混匀,室温静置后,将混合液分别加入培养皿,并于培养箱中培养,培养完成后在荧光显微镜下观察目的基因的荧光表达情况。
4.根据权利要求1所述的利用CRISPR-Cas9靶向敲除MSTN基因的方法,其特征在于,所述受体细胞选用人的Hela细胞或水牛的成纤维细胞。
5.根据权利要求1所述的利用CRISPR-Cas9靶向敲除MSTN基因的方法,其特征在于,所述检测引物选用人或水牛的MSTN-2基因的上、下游序列做为检测引物,人MSTN-2基因检测引物命名为:hMSTN,hMSTN上游序列为5’-AATCTGGTACTCAAACTTGGA-3’,下游序列为5’-ATATTATTTGTTCTTTGCCATT-3’;水牛的MSTN-2基因检测引物命名为:bufMSTN,bufMSTN上游序列为5’-CATAAAGGAAGAATCAAGCCTA-3’,下游序列为5’-TTCGCCATTAAAATATAGCATA-3’。
6.根据权利要求1-5所述任意一项利用CRISPR-Cas9靶向敲除MSTN基因的方法,其特征在于,所述利用CRISPR-Cas9靶向敲除MSTN基因的方法可用于人或水牛的MSTN基因敲除。
CN201610470813.6A 2016-06-24 2016-06-24 一种利用CRISPR‑Cas9靶向敲除MSTN基因的方法 Pending CN106119283A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610470813.6A CN106119283A (zh) 2016-06-24 2016-06-24 一种利用CRISPR‑Cas9靶向敲除MSTN基因的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610470813.6A CN106119283A (zh) 2016-06-24 2016-06-24 一种利用CRISPR‑Cas9靶向敲除MSTN基因的方法

Publications (1)

Publication Number Publication Date
CN106119283A true CN106119283A (zh) 2016-11-16

Family

ID=57269030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610470813.6A Pending CN106119283A (zh) 2016-06-24 2016-06-24 一种利用CRISPR‑Cas9靶向敲除MSTN基因的方法

Country Status (1)

Country Link
CN (1) CN106119283A (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106636002A (zh) * 2017-01-13 2017-05-10 湖北省农业科学院畜牧兽医研究所 Mstn双敲细胞系及其构建方法
CN106947780A (zh) * 2017-03-28 2017-07-14 扬州大学 一种兔mstn基因的编辑方法
CN106978445A (zh) * 2017-06-12 2017-07-25 内蒙古大学 CRISPER‑Cas9系统介导的山羊EDAR基因敲除的方法
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
CN110689924A (zh) * 2018-07-04 2020-01-14 赛业(广州)生物科技有限公司 一种基于多种敲除类型的敲除策略筛选方法及系统
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104232669A (zh) * 2014-08-25 2014-12-24 中国水产科学研究院黑龙江水产研究所 一种采用基因敲除法构建基于鱼类CRISPR/Cas9系统的载体及其构建方法
CN104531705A (zh) * 2014-12-09 2015-04-22 中国农业大学 利用CRISPR-Cas9系统敲除动物myostatin基因的方法
CN104651399A (zh) * 2014-12-31 2015-05-27 广西大学 一种利用CRISPR/Cas系统在猪胚胎细胞中实现基因敲除的方法
CN105132427A (zh) * 2015-09-21 2015-12-09 新疆畜牧科学院生物技术研究所 一种以RNA介导的特异性敲除双基因获得基因编辑绵羊的方法及其专用sgRNA
CN105671080A (zh) * 2016-03-04 2016-06-15 内蒙古大学 CRISPER-Cas9系统介导的羊MSTN基因敲除和定点整合外源基因的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104232669A (zh) * 2014-08-25 2014-12-24 中国水产科学研究院黑龙江水产研究所 一种采用基因敲除法构建基于鱼类CRISPR/Cas9系统的载体及其构建方法
CN104531705A (zh) * 2014-12-09 2015-04-22 中国农业大学 利用CRISPR-Cas9系统敲除动物myostatin基因的方法
CN104651399A (zh) * 2014-12-31 2015-05-27 广西大学 一种利用CRISPR/Cas系统在猪胚胎细胞中实现基因敲除的方法
CN105132427A (zh) * 2015-09-21 2015-12-09 新疆畜牧科学院生物技术研究所 一种以RNA介导的特异性敲除双基因获得基因编辑绵羊的方法及其专用sgRNA
CN105671080A (zh) * 2016-03-04 2016-06-15 内蒙古大学 CRISPER-Cas9系统介导的羊MSTN基因敲除和定点整合外源基因的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
任红艳 等: "CRISPR/Cas9系统介导小鼠MSTN基因定点修饰研究", 《湖北农业科学》 *
刘小凤 等: "利用CRISPR/Cas9编辑广东小耳花猪IGF2基因", 《第25届广东省科技进步活动月畜牧兽医学术与科技创新发展大会论文集》 *
杨宇 等: "利用CRISPR/Cas9技术制备敲除Myostatin基因牛胎儿成纤维细胞株", 《黑龙江畜牧兽医》 *
高晓彤 等: "应用Surrogate报告载体提高CRISPR/Cas9对TMEM215基因的打靶效率", 《现代生物医学进展》 *

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US12084663B2 (en) 2016-08-24 2024-09-10 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
CN106636002A (zh) * 2017-01-13 2017-05-10 湖北省农业科学院畜牧兽医研究所 Mstn双敲细胞系及其构建方法
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
CN106947780A (zh) * 2017-03-28 2017-07-14 扬州大学 一种兔mstn基因的编辑方法
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
CN106978445A (zh) * 2017-06-12 2017-07-25 内蒙古大学 CRISPER‑Cas9系统介导的山羊EDAR基因敲除的方法
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN110689924B (zh) * 2018-07-04 2023-07-14 广州赛业百沐生物科技有限公司 一种基于多种敲除类型的敲除策略筛选方法及系统
CN110689924A (zh) * 2018-07-04 2020-01-14 赛业(广州)生物科技有限公司 一种基于多种敲除类型的敲除策略筛选方法及系统
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2020-05-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Similar Documents

Publication Publication Date Title
CN106119283A (zh) 一种利用CRISPR‑Cas9靶向敲除MSTN基因的方法
CN105925608A (zh) 一种利用CRISPR-Cas9靶向敲除ALK6基因的方法
CN106916820B (zh) 能有效编辑猪ROSA26基因的sgRNA及其应用
CN108642055B (zh) 能有效编辑猪miR-17-92基因簇的sgRNA
CN104404036B (zh) 基于CRISPR/Cas9技术的条件性基因敲除方法
CN106566838B (zh) 一种基于CRISPR-Cas9技术的miR-126全长基因敲除试剂盒及其应用
CN104651399B (zh) 一种利用CRISPR/Cas系统在猪胚胎细胞中实现基因敲除的方法
CN105907785A (zh) 化学合成的crRNA用于CRISPR/Cpf1系统在基因编辑中的应用
CN105821116A (zh) 一种绵羊mstn基因定向敲除及其影响成肌分化的检测方法
CN103981263B (zh) 土壤中抗生素抗性基因的定量检测方法
CN109136248A (zh) 多靶点编辑载体及其构建方法和应用
CN104531686B (zh) 一种利用定点切割系统对猪h11位点定点插入的方法
CN108004270A (zh) 利用双荧光素酶报告基因检测鸭IFN-β启动子活性的方法
CN106282231A (zh) 粘多糖贮积症ii型动物模型的构建方法及应用
CN103088046A (zh) ZFNs介导的牛MSTN基因敲除和定点整合外源基因的方法
CN110438128A (zh) 利用CRISPR/Cas9系统敲除猪CCAR1基因的方法
CN103952405A (zh) 一种山羊mstn基因定点修饰系统及其应用
CN113862226A (zh) 一种Dicer基因敲除的BHK-21细胞系
CN104894255B (zh) 一种基于聚丙烯酰胺凝胶电泳检测低效率基因组编辑的方法及其应用
CN110511934A (zh) 利用CRISPR/Cas9技术构建斑马鱼asap1a基因敲除突变体的方法
CN102559760A (zh) 可线性化穿梭载体BmBacmid的构建方法
CN113604440B (zh) 一种Ago2基因敲除的BHK-21细胞系
CN104498481B (zh) 猪h11位点的dna片段及其应用
CN109971757A (zh) 一种双sgRNA位点敲除FOXR1基因的CRISPR/Cas9系统与应用
CN101397587A (zh) 基于基因置换技术的活菌内标的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161116