CN106067817A - 1.5 redundancy bits based on controlled asymmetric dynamic comparator accelerate gradual approaching A/D converter - Google Patents
1.5 redundancy bits based on controlled asymmetric dynamic comparator accelerate gradual approaching A/D converter Download PDFInfo
- Publication number
- CN106067817A CN106067817A CN201610411806.9A CN201610411806A CN106067817A CN 106067817 A CN106067817 A CN 106067817A CN 201610411806 A CN201610411806 A CN 201610411806A CN 106067817 A CN106067817 A CN 106067817A
- Authority
- CN
- China
- Prior art keywords
- dynamic
- bit
- comparator
- input
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0675—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
- H03M1/069—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy by range overlap between successive stages or steps
- H03M1/0695—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy by range overlap between successive stages or steps using less than the maximum number of output states per stage or step, e.g. 1.5 per stage or less than 1.5 bit per stage type
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
本发明属于集成电路技术领域,具体为基于可控非对称动态比较器的1.5比特冗余加速的逐次逼近型模数转换器。本发明提供的模数转换器结构包括两个相同的栅压自举开关,一组对称的N位二进制电容阵列,两个可控非对称动态比较器,一个普通动态比较器和SAR ADC的数字逻辑电路模块。本发明引入1.5比特冗余加速技术,缩短了等待前几位建立完全的时间,加快了模数转换器的转换速率,增加了冗余度,减少误码、失码,提高精度。相比于传统技术,能够大幅度简化电路规模,特别是省略参考电压产生电路,继而降低模数转换器的功耗和面积,迅速变化建立等效参考电压值,加快模数转换器的转换速度,且具有普适性,可以应用于其他0.5比特的应用场景。
The invention belongs to the technical field of integrated circuits, and specifically relates to a 1.5-bit redundancy accelerated successive approximation analog-to-digital converter based on a controllable asymmetrical dynamic comparator. The analog-to-digital converter structure provided by the present invention includes two identical gate voltage bootstrap switches, a group of symmetrical N-bit binary capacitor arrays, two controllable asymmetric dynamic comparators, a common dynamic comparator and the digital Logic circuit modules. The invention introduces 1.5-bit redundant acceleration technology, which shortens the time for waiting for the first few bits to be completely established, accelerates the conversion rate of the analog-to-digital converter, increases redundancy, reduces code errors and missing codes, and improves precision. Compared with traditional technology, it can greatly simplify the circuit scale, especially omit the reference voltage generation circuit, thereby reducing the power consumption and area of the analog-to-digital converter, quickly changing the equivalent reference voltage value, and speeding up the conversion speed of the analog-to-digital converter , and is universal, and can be applied to other 0.5-bit application scenarios.
Description
技术领域technical field
本发明属于集成电路技术领域,具体涉及一种基于可控非对称动态比较器的1.5比特冗余加速逐次逼近型数模转换器 。The invention belongs to the technical field of integrated circuits, and in particular relates to a 1.5-bit redundant accelerated successive approximation digital-to-analog converter based on a controllable asymmetric dynamic comparator.
背景技术Background technique
1.5比特的技术在流水线型模数转换器中应用广泛,用过增加冗余度的来消除由小幅度静态偏移误差造成的模数转换器精度下降。而1.5比特技术第一次应用在逐次逼近型模数转换器中,还是Chun-Cheng Liu和 Soon-Jyh Chang于2010年在超大规模集成电路会议(Symposium on VLSI circuits)上首次发布,虽然当时没有提出1.5比特的概念,但是其中实施的冗余方法确实是1.5比特的做法。图1所示是Chun-Cheng Liu在该会议上发表的前四位采用1.5比特比较建立的10MS/s,10bit顶极板采样的逐次逼近型模数转换器的结构示意图。图1主要包括两个栅压自举开关101,与输入信号和10位二进制电容阵列102的顶极板和节点103、104连接;10位二进制电容阵列102,电容阵列的顶极板连接在一起与动态比较器105、106、107连接到节点103、104,和传统的顶极板采样逐次逼近型模数转换器的结构相比,图1的电容阵列102的前四位被拆分成等量的两部分,底极板电平的转向被分别控制;动态比较器105、106、107,图一的动态比较器数量不再是传统结构中的一个,而被扩展到三个,其中106、107用于1.5比特比较建立;一个六位子数模转换器108,通过电容底极板翻转产生每级1.5比特比较建立的参考电压,这部分电路是传统的逐次逼近性模数转换器没有的;SAR ADC逻辑电路模块109,时钟产生方式、控制电平转换方向和输出码组合逻辑与传统逐次逼近型模数转换器也有不同。The 1.5-bit technology is widely used in pipelined analog-to-digital converters, and the accuracy of the analog-to-digital converters caused by small-magnitude static offset errors is eliminated by increasing redundancy. The first application of 1.5-bit technology in successive approximation analog-to-digital converters was first published by Chun-Cheng Liu and Soon-Jyh Chang at the Symposium on VLSI circuits in 2010, although there was no The concept of 1.5 bits is proposed, but the redundant method implemented therein is indeed a 1.5-bit approach. Figure 1 is a schematic diagram of the structure of a 10MS/s, 10bit top plate sampling successive approximation analog-to-digital converter published by Chun-Cheng Liu at the conference. Fig. 1 mainly includes two gate voltage bootstrap switches 101, which are connected with the input signal and the top plate of the 10-bit binary capacitor array 102 and nodes 103, 104; the 10-bit binary capacitor array 102, and the top plate of the capacitor array are connected together Compared with the dynamic comparator 105, 106, 107 connected to the nodes 103, 104, and the structure of the traditional top plate sampling successive approximation analog-to-digital converter, the first four bits of the capacitance array 102 of Fig. 1 are split into equal The two parts of the quantity, the steering of the bottom plate level are controlled separately; dynamic comparators 105, 106, 107, the number of dynamic comparators in Figure 1 is no longer one in the traditional structure, but is expanded to three, of which 106 , 107 are used for 1.5-bit comparison and establishment; a six-bit digital-to-analog converter 108 generates a reference voltage for each level of 1.5-bit comparison by flipping the bottom plate of the capacitor. This part of the circuit is not available in traditional successive approximation analog-to-digital converters ; SAR ADC logic circuit module 109, clock generation method, control level conversion direction and output code combination logic are also different from traditional successive approximation analog-to-digital converters.
图1所示结构的前四位1.5比特是由两个动态比较器106、107和一个六位子数模转换器实现的。两个动态比较器106、107分别接对称的10位电容阵列的顶极板和六位子数模转换器108,即两个动态比较器106、107的输入端分别连接节点103、110和节点104、110。六位的子模数转换器108产生的参考电压范围是共模电压的二分之一到共模电压的十六分之十五,当两个电容阵列上极板电压都高于参考电压时,该位的电容组低极板不翻转;当两个电容阵列上极板电压一个低于参考电压,一个高于参考电压时,高侧的电容组底极板接地,低侧的电容组底极板接参考电压。The first four 1.5 bits of the structure shown in FIG. 1 are realized by two dynamic comparators 106, 107 and a six-bit sub-digital-to-analog converter. The two dynamic comparators 106, 107 are respectively connected to the top plate of the symmetrical 10-bit capacitor array and the six-bit digital-to-analog converter 108, that is, the input ends of the two dynamic comparators 106, 107 are respectively connected to the nodes 103, 110 and the node 104 , 110. The reference voltage range generated by the six-bit sub-analog-to-digital converter 108 is one-half of the common-mode voltage to fifteen-sixteenths of the common-mode voltage. When the plate voltages on the two capacitor arrays are higher than the reference voltage , the low plate of the capacitor group of this bit does not flip; when the upper plate voltage of the two capacitor arrays is lower than the reference voltage and the other is higher than the reference voltage, the bottom plate of the high side capacitor group is grounded, and the bottom plate of the low side capacitor group is grounded. The plate is connected to the reference voltage.
上述电路的工作方式如下。当CK为高电平,栅压自举开关101开启,将输入信号采样到模数转换器的二进制电容阵列102的顶极板上,此时电容组C1a~C4a的底极板接地,其余的电容组(C1b~C4b和C5~C9)接参考电压,动态比较器105、106、107均关断,模数转换器处于采样阶段。当CK为低电平,栅压自举开关101关断,电容阵列102悬空,电荷量不变,下降沿时刻的输入信号就被保持到电容阵列102上,模数转换器处于量化阶段。将保持的输入信号分别由两个动态比较器106、107与参考电压比较,比较器的数据传输到SAR ADC的逻辑电路模块109中,经组合逻辑产生逻辑控制信号,控制第一位电容组C1a和C1b底极板的翻转方向,经一段时间的建立完全后,开始下一个1.5比特的比较,直到第四位。第四位比较结束后,动态比较器106、107将被关断直到下一个量化周期,第四位建立结束,动态比较器105开启,完成之后六位的比较,直到第十位。动态比较器105、106、107量化出的数据在SAR ADC的逻辑电路模块109中经过数字逻辑运算产生十位的二进制码,存储在寄存器里,在下一个外部采样时钟的上升沿输出。The above circuit works as follows. When CK is at a high level, the gate voltage bootstrap switch 101 is turned on, and the input signal is sampled to the top plate of the binary capacitor array 102 of the analog-to-digital converter. At this time, the bottom plates of the capacitor groups C 1a ~ C 4a are grounded, The remaining capacitor groups (C 1b ~C 4b and C 5 ~C 9 ) are connected to the reference voltage, the dynamic comparators 105, 106, 107 are all turned off, and the analog-to-digital converter is in the sampling phase. When CK is at low level, the gate voltage bootstrap switch 101 is turned off, the capacitor array 102 is suspended, the charge remains unchanged, the input signal at the falling edge moment is kept on the capacitor array 102, and the analog-to-digital converter is in the quantization stage. The held input signal is compared with the reference voltage by two dynamic comparators 106 and 107 respectively, the data of the comparator is transmitted to the logic circuit module 109 of the SAR ADC, and the logic control signal is generated through the combinational logic to control the first capacitor group C 1a and C 1b The reverse direction of the bottom plate, after a period of time is completely established, start the next 1.5-bit comparison until the fourth bit. After the comparison of the fourth bit is completed, the dynamic comparators 106 and 107 will be turned off until the next quantization cycle, the establishment of the fourth bit is completed, and the dynamic comparator 105 is turned on, and the comparison of the subsequent six bits is completed until the tenth bit. The data quantized by the dynamic comparators 105, 106, and 107 are processed in the logic circuit module 109 of the SAR ADC to generate ten-bit binary codes through digital logic operations, stored in registers, and output at the next rising edge of the external sampling clock.
由前述内容可知,Chun-Cheng Liu构建的前四位1.5比特比较建立的10MS/s,10bit顶极板采样的逐次逼近型模数转换器主要目的是降低翻转几率,以来减少功耗,而速度上没有提速,所能增加的冗余度也十分有限。而且该设计采用的工艺为0.18um CMOS工艺,单位电容值为5fF。而随着工艺发展,金属线的线性度更好,在65nm C MOS工艺下构建的单位电容值基本为1fF,这就说明相同位数的电容阵列的总电容值减少到五分之一,电平建立时间大大缩短,故而采用四位1.5比特的十位逐次逼近型比较器,硬件的消耗和延迟更大。该设计采用一个六位子数模转换器108生成参考电压,不仅消耗了一定面积和功耗,且容易干扰逐次逼近型比较器的电容阵列102上的电平建立,有可能引入失调,在高频情况下影响更大。这也就限制了这种结构下的逐次逼近型比较器的速率。It can be known from the foregoing that the first four 1.5-bit comparisons built by Chun-Cheng Liu are based on the 10MS/s, 10-bit top plate sampling successive approximation analog-to-digital converter. There is no speed increase, and the redundancy that can be increased is very limited. Moreover, the technology used in this design is 0.18um CMOS technology, and the unit capacitance value is 5fF. With the development of the technology, the linearity of the metal line is better. The unit capacitance value constructed under the 65nm C MOS process is basically 1fF, which means that the total capacitance value of the capacitor array with the same number of digits is reduced to one-fifth. The flat settling time is greatly shortened, so the use of four 1.5-bit ten-bit successive approximation comparators consumes more hardware and delays. This design uses a six-bit digital-to-analog converter 108 to generate the reference voltage, which not only consumes a certain area and power consumption, but also easily interferes with the establishment of the level on the capacitor array 102 of the successive approximation comparator, and may introduce an offset. case has a greater impact. This also limits the rate of the successive approximation comparator under this structure.
发明内容Contents of the invention
本发明的目的在于提出一种新型基于可控非对称动态比较器的1.5比特冗余加速逐次逼近型模数转换器的结构。其特点在于在第一位之后引入了1.5比特冗余加速的技术,在MSB的电容底极板电平翻转之后,电容阵列顶极板电平尚未完全建立之时将顶极板电平交叉输入两个可控非对称动态比较器,进行比较,根据结果选择将该组电容的底极板接参考电压高电平、参考电压低电平或者是维持共模电平。本发明引入的1.5比特冗余加速技术,不仅缩短了等待前几位建立完全的时间,加快了模数转换器的转换速率,而且还增加了冗余度,减少误码、失码,提高精度。The purpose of the present invention is to propose a new structure of a 1.5-bit redundant accelerated successive approximation analog-to-digital converter based on a controllable asymmetrical dynamic comparator. It is characterized by the introduction of 1.5-bit redundant acceleration technology after the first bit. After the level of the bottom plate of the MSB capacitor is reversed, the level of the top plate of the capacitor array is not fully established. The level of the top plate is cross-input Two controllable asymmetric dynamic comparators are used for comparison, and according to the result, the bottom plate of the group of capacitors is selected to be connected to the high level of the reference voltage, the low level of the reference voltage or to maintain the common mode level. The 1.5-bit redundant acceleration technology introduced by the present invention not only shortens the time for waiting for the first few bits to be completely established, accelerates the conversion rate of the analog-to-digital converter, but also increases redundancy, reduces bit errors and missing bits, and improves accuracy .
本发明提供的基于可控非对称动态比较器的1.5比特冗余加速逐次逼近型模数转换器,其结构如图2所示。其电路包含:两个相同的栅压自举开关201,一组对称的N位二进制电容阵列202,两个可控非对称动态比较器205、206,一个普通动态比较器207和SAR ADC的数字逻辑电路模块208;其中:The structure of the 1.5-bit redundant accelerated successive approximation analog-to-digital converter based on the controllable asymmetric dynamic comparator provided by the present invention is shown in FIG. 2 . Its circuit includes: two identical gate voltage bootstrap switches 201, a group of symmetrical N-bit binary capacitor arrays 202, two controllable asymmetric dynamic comparators 205, 206, a common dynamic comparator 207 and the digital logic circuit module 208; wherein:
栅压自举开关201含有一个信号输入端,一个时钟输入端,一个输出端;The gate voltage bootstrap switch 201 includes a signal input terminal, a clock input terminal, and an output terminal;
N位二进制电容阵列202中含N组电容,其中第N组电容值与第N-1组电容值相等,均为单位电容,从第N-1组到第一组,电容值二倍等比递增;每一组电容的顶极板互联接节点203、204,每一组电容的底极板接三组传输门开关210、211;The N-bit binary capacitor array 202 contains N groups of capacitors, wherein the capacitor value of the Nth group is equal to the capacitor value of the N-1 group, both of which are unit capacitors. From the N-1 group to the first group, the capacitance value is twice the same ratio Incremental; the top plates of each group of capacitors are connected to nodes 203 and 204, and the bottom plates of each group of capacitors are connected to three groups of transmission gate switches 210 and 211;
每个传输门210、211包含一N型场效应晶体管和一P型场效应晶体管,两者沟道平行排布,两者的漏极端相互连接构成传输门电路的漏极端,源极端相互连接构成传输门电路的源极端,N型场效应晶体管的栅极端构成传输门电路的N栅极端,P型场效应晶体管的栅极端构成传输门电路的P栅极端;Each transmission gate 210, 211 includes an N-type field effect transistor and a P-type field effect transistor, the channels of the two are arranged in parallel, the drain terminals of the two are connected to each other to form the drain terminal of the transmission gate circuit, and the source terminals are connected to each other to form a transmission gate circuit. The source terminal of the transmission gate circuit, the gate terminal of the N-type field effect transistor constitutes the N gate terminal of the transmission gate circuit, and the gate terminal of the P-type field effect transistor constitutes the P gate terminal of the transmission gate circuit;
每个可控非对称动态比较器205、206具有一个正输入端、一负输入端、一个时钟输入端、一正输出端和一负输出端;Each controllable asymmetric dynamic comparator 205, 206 has a positive input terminal, a negative input terminal, a clock input terminal, a positive output terminal and a negative output terminal;
每个普通动态比较器207有两个不分极性的输入端,一个时钟控制端,有两个相对应的输出端;Each ordinary dynamic comparator 207 has two input terminals regardless of polarity, a clock control terminal, and two corresponding output terminals;
SAR ADC的数字逻辑电路模块208包含:The digital logic circuit block 208 of the SAR ADC includes:
时钟产生模块,根据三个比较器的数据流产生时钟信号222、223;A clock generation module generates clock signals 222 and 223 according to the data streams of the three comparators;
数字逻辑处理模块,用于产生N位二进制电容阵列202底极板电平翻转的逻辑控制信号220、221以及寄存器模块存储输出数据码;The digital logic processing module is used to generate the logical control signals 220, 221 for level inversion of the bottom plate of the N-bit binary capacitor array 202 and the register module to store the output data code;
本发明中,两个栅压自举开关信号输入分别接差分信号输入,时钟输入端均接整个逐次逼近型比较器的外部控制时钟,及采样保持时钟,输出端接对称的N位二进制电容阵列202的顶极板和节点203、204,采样阶段将输入信号采集在电容阵列顶极板上后开关断开,电压值保存在电容阵列的顶极板上;In the present invention, the two grid voltage bootstrap switch signal inputs are respectively connected to the differential signal input, the clock input terminals are connected to the external control clock of the entire successive approximation comparator, and the sample and hold clock, and the output terminal is connected to a symmetrical N-bit binary capacitor array The top plate of 202 and the nodes 203 and 204, in the sampling stage, the input signal is collected on the top plate of the capacitor array, and then the switch is turned off, and the voltage value is stored on the top plate of the capacitor array;
本发明中,N位二进制电容阵列202中每一组电容的顶极板互联接栅压自举开关201、两个可控非对称动态比较器的输入端205、206、一个普通动态比较器的输入端207和节点203、204;每一组电容的底极板接三组传输门开关210、211,由SAR ADC的逻辑电路模块208产生的逻辑控制接参考电压高电平、参考电压低电平或共模电平;这样,每一位电容阵列顶极板电平的比较结果经由SAR ADC的逻辑电路模块208处理产生电容底极板电平翻转控制信号220、221,控制当位的电容组的底极板接参考电压高电平、参考电压低电平或共模电平,以在电容阵列顶极板上产生下一位的比较电平;In the present invention, the top plate of each group of capacitors in the N-bit binary capacitor array 202 is interconnected with the grid voltage bootstrap switch 201, the input terminals 205, 206 of two controllable asymmetric dynamic comparators, and the input terminals 205 and 206 of an ordinary dynamic comparator. Input terminal 207 and nodes 203 and 204; the bottom plates of each group of capacitors are connected to three groups of transmission gate switches 210 and 211, and the logic control generated by the logic circuit module 208 of the SAR ADC is connected to the reference voltage high level and the reference voltage low level In this way, the comparison result of the level of the top plate of each capacitor array is processed by the logic circuit module 208 of the SAR ADC to generate the level reversal control signals 220 and 221 of the bottom plate of the capacitor to control the current capacitor. The bottom plate of the group is connected to the reference voltage high level, the reference voltage low level or the common mode level to generate the comparison level of the next bit on the top plate of the capacitor array;
本发明中,两个可控非对称性动态比较器205、206的正负输入端交叉输入N位二进制电容阵列202的两个顶极板电压,及交叉接入节点203、204;时钟输入接SAR ADC的逻辑电路模块208产生的控制信号220、221,控制可控非对称性动态比较器205、206的开断;可控非对称性比较器205、206利用比较器内锁存器的负载非对称或者是比较器的输入对管阈值的非对称,在比较器的一侧输入信号上叠加一个可调参考电压,这样的接法相当于将N位二进制电容阵列202两个顶极板的差分电压与可调参考电压比较,产生1.5比特的输出码,实现1.5比特冗余加速;输出的码传输到SAR ADC的逻辑电路模块208,产生比较器的控制时钟222、223,和电容底极板电平翻转控制信号220、221;In the present invention, the positive and negative input terminals of the two controllable asymmetrical dynamic comparators 205, 206 cross-input the two top plate voltages of the N-bit binary capacitor array 202, and the cross-connection nodes 203, 204; the clock input connection The control signals 220 and 221 generated by the logic circuit module 208 of the SAR ADC control the opening and closing of the controllable asymmetrical dynamic comparators 205 and 206; the controllable asymmetrical comparators 205 and 206 utilize the load of the latch in the comparator Asymmetry or asymmetry between the input of the comparator and the threshold of the tube, an adjustable reference voltage is superimposed on the input signal of one side of the comparator. This connection is equivalent to connecting the two top plates of the N-bit binary capacitor array 202 The differential voltage is compared with the adjustable reference voltage to generate a 1.5-bit output code to achieve 1.5-bit redundant acceleration; the output code is transmitted to the logic circuit module 208 of the SAR ADC to generate the control clocks 222 and 223 of the comparator and the bottom electrode of the capacitor Board level flip control signals 220, 221;
本发明中,一个普通动态比较器207输入端接N位二进制电容阵列202的两个顶极板电压,及接入节点203、204;时钟输入接SAR ADC的逻辑电路模块208产生的控制信号220、221,控制普通动态比较器207的开断;对N位二进制电容阵列202的两个顶极板电压在控制比较,产生1比特的输出码;输出的码传输到SAR ADC的逻辑电路模块208,产生比较器的控制时钟222、223,和电容底极板电平翻转控制信号220、221;In the present invention, an ordinary dynamic comparator 207 input terminal is connected to the two top plate voltages of the N-bit binary capacitor array 202, and the access nodes 203, 204; the clock input is connected to the control signal 220 generated by the logic circuit module 208 of the SAR ADC , 221, control the opening and closing of the ordinary dynamic comparator 207; control and compare the two top plate voltages of the N-bit binary capacitor array 202, and generate a 1-bit output code; the output code is transmitted to the logic circuit module 208 of the SAR ADC , generating comparator control clocks 222, 223, and capacitor bottom plate level inversion control signals 220, 221;
本发明中,第一位与第M到N位的比较均由普通动态比较器207比较触发下一位建立,而在第二位到第M位的比较由两个可控非对称动态比较器205、206比较触发下一位建立;In the present invention, the comparison between the first bit and the M to N bits is compared by the ordinary dynamic comparator 207 to trigger the establishment of the next bit, and the comparison between the second bit and the M bit is performed by two controllable asymmetric dynamic comparators 205, 206 comparison triggers the establishment of the next bit;
本发明中, SAR ADC的数字逻辑电路模块208根据三个比较器的数据流产生时钟信号222、223,N位二进制电容阵列202底极板电平翻转的逻辑控制信号220、221以及存储输出数据码;In the present invention, the digital logic circuit module 208 of the SAR ADC generates the clock signals 222, 223 according to the data streams of the three comparators, the logic control signals 220, 221 for level inversion of the bottom plate of the N-bit binary capacitor array 202, and stores the output data code;
本发明进一步提供基于可控非对称动态比较器的1.5比特冗余加速逐次逼近型模数转换器的工作流程,具体如下:The present invention further provides the workflow of a 1.5-bit redundant accelerated successive approximation analog-to-digital converter based on a controllable asymmetric dynamic comparator, specifically as follows:
当CK为高电平,栅压自举开关201开启,将输入信号采样到模数转换器的二进制电容阵列202的顶极板上,此时电容阵列的每组电容组的底极板接共模电平Vcm,普通动态比较器207和可控非对称比较器205、206均关断,模数转换器处于采样阶段;When CK is at a high level, the gate voltage bootstrap switch 201 is turned on, and the input signal is sampled to the top plate of the binary capacitor array 202 of the analog-to-digital converter. Modulus level V cm , the ordinary dynamic comparator 207 and the controllable asymmetric comparator 205, 206 are all turned off, and the analog-to-digital converter is in the sampling phase;
当CK为低电平,栅压自举开关201关断,电容阵列202悬空,电荷量不变,下降沿时刻的输入信号就被保持到电容阵列202上,模数转换器处于量化阶段;When CK is at a low level, the gate voltage bootstrap switch 201 is turned off, the capacitor array 202 is suspended, and the amount of charge remains unchanged, the input signal at the time of the falling edge is kept on the capacitor array 202, and the analog-to-digital converter is in the quantization stage;
普通动态比较器207在SAR ADC的逻辑电路模块208产生的时钟信号222、223的控制下对保持的输入信号进行比较,动态比较器207的数据传输到SAR ADC的逻辑电路模块208中,经组合逻辑产生逻辑控制信号220、221,通过三组传输门开关210控制第一位电容组底极板的对称翻转方向,参考电压高电平或参考电压低电平;经一段短时间的延迟,此时第一位的电平建立尚未完成,两个可控非对称动态比较器开始1.5比特的比较,对称的顶极板电平交叉输入两个可控非对称动态比较器205、206,即将节点203、204交叉接入两个可控非对称动态比较器205、206的正输入端和负输入端,在SAR ADC的逻辑电路模块208产生的时钟信号222、223的控制下对建立信号进行比较,两个可控非对称动态比较器205、206数据传输到SAR ADC的逻辑电路模块208中,经组合逻辑产生逻辑控制信号220、221,通过三组传输门开关210控制将第二组电容的底极板接参考电压高电平、参考电压低电平或者是维持共模电平,重复该步骤,直至最后一位1.5比特级;The ordinary dynamic comparator 207 compares the input signal held under the control of the clock signals 222 and 223 generated by the logic circuit module 208 of the SAR ADC, the data of the dynamic comparator 207 is transmitted to the logic circuit module 208 of the SAR ADC, and combined The logic generates logic control signals 220, 221, through three groups of transmission gate switches 210 to control the symmetrical flip direction of the bottom plate of the first capacitor group, the reference voltage is high or the reference voltage is low; after a short delay, this When the level establishment of the first bit has not been completed, the two controllable asymmetric dynamic comparators start the comparison of 1.5 bits, and the symmetrical top plate level is cross-input to the two controllable asymmetric dynamic comparators 205, 206. 203, 204 are cross-connected to the positive input terminal and negative input terminal of two controllable asymmetric dynamic comparators 205, 206, and the establishment signal is compared under the control of the clock signal 222, 223 generated by the logic circuit module 208 of the SAR ADC , the two controllable asymmetrical dynamic comparators 205, 206 transmit data to the logic circuit module 208 of the SAR ADC, the logic control signals 220, 221 are generated through combinational logic, and the second group of capacitors are controlled by three groups of transmission gate switches 210 The bottom plate is connected to the high level of the reference voltage, the low level of the reference voltage or maintains the common mode level, and repeats this step until the last bit is at the 1.5-bit level;
最后一位1.5比特级比较结束后,可控非对称动态比较器205、206将被关断直到下一个量化周期,该位电平建立完全后,普通动态比较器207开启,完成之后位数的比较,直到N位;After the last 1.5 bit-level comparison is completed, the controllable asymmetric dynamic comparators 205 and 206 will be turned off until the next quantization period. After the bit level is completely established, the ordinary dynamic comparator 207 is turned on. Compare until N bits;
动态比较器205、206、207量化出的数据在SAR ADC的逻辑电路模块208中经过数字逻辑运算产生N位的二进制码,存储在寄存器里,在下一个外部采样时钟的上升沿输出。The data quantized by the dynamic comparators 205, 206, and 207 are processed in the logic circuit module 208 of the SAR ADC to generate an N-bit binary code through digital logic operations, stored in the register, and output at the rising edge of the next external sampling clock.
本发明中的用于实现1.5比特的可控非对称动态比较器如图3所示。可控非对称动态比较器实现的方法有两种,不同的实现方法的可控非对称动态比较器的结构稍有不同。第一种是动态比较器锁存器负载可控非对称,包含输入对管301、302,在图3中是N型晶体管M1、M2;尾电流源管303,在图3中是N型晶体管M3;锁存器304,两个首尾相接的反相器构成,在图3中由P型晶体管M6、M7和N型晶体管M4、M5构成;复位晶体管305、306、307、308,在图3中是P型晶体管M9、M10、M11、M12;输出缓冲器309A、309B,在图3中是由P型晶体管M14、M15和N型晶体管M12、M13构成的;可控非对称动态比较器的锁存器输出节点310、311;312A、312B是可控非对称动态比较器的锁存器输出可控电容阵列。实现方式如下:动态比较器的锁存器304与带开关的电容负载阵列312A、312B连接在节点310、311,通过控制开关331、332的通断,构造采集锁存器304两端的负载大小差异,通过负载大小的不同构造出锁存器的翻转阈值电压的不同,等效到输入端,人为造出输入阈值的不匹配,制造出在一端输入信号上叠加一个参考电压的效果。而通过调节比较器锁存器304两端负载的差值,可以调节出大小不同的参考电压效果。第二种实现方法就是动态比较器输入对管阈值电压可控非对称,包含输入对管301、302,在图3中是N型晶体管M1、M2;尾电流源管303,在图3中是N型晶体管M3;锁存器304,两个首尾相接的反相器构成,在图3中由P型晶体管M6、M7和N型晶体管M4、M5构成;复位晶体管305、306、307、308,在图3中是P型晶体管M9、M10、M11、M12;输出缓冲器309A、309B,在图3中是由P型晶体管M14、M15和N型晶体管M12、M13构成的;可控非对称动态比较器的锁存器输出节点310、311;可控非对称动态比较器的输入对管的体端电压320、321外接。实现方式如下:将输入对管301、302的体端引出,外接电压,通过改变MOS管源端和体端的电压差调节输入对管301、302的阈值电压,制造出在一端输入信号上叠加一个参考电压的效果。而通过调节输入对管体端电压差值,可以调节出大小不同参考电压的效果。但有一点需要注意,利用第二种方法需要输入对管是P型晶体管或者是深阱N型晶体管。本发明提供的方法虽不能构建出精确的参考电压值,但是之后会详解,在1.5比特冗余加速电路中,参考电压值不需要特别精确,只需满足在一定范围中即可。这种基于可控非对称动态比较器的1.5比特实现方法相比于传统的1.5比特实现所需的两个四输入比较器加对应参考电压或两个二输入比较器加冗余参考电压产生电路,能够大幅度简化电路规模,特别是省略了参考电压产生电路,继而降低模数转换器的功耗和面积,能够迅速变化建立等效参考电压值(如果需要),加快模数转换器的转换速度,且具有普适性,可以应用于其他0.5比特的应用场景。The controllable asymmetric dynamic comparator for realizing 1.5 bits in the present invention is shown in FIG. 3 . There are two ways to realize the controllable asymmetric dynamic comparator, and the structure of the controllable asymmetric dynamic comparator in different realization methods is slightly different. The first is a dynamic comparator latch load controllable asymmetry, including input pair transistors 301, 302, which are N-type transistors M1, M2 in FIG. 3; tail current source transistor 303, which is an N-type transistor in FIG. 3 M3; latch 304, two end-to-end inverters are formed, in Fig. 3 by P-type transistors M6, M7 and N-type transistors M4, M5; reset transistors 305, 306, 307, 308, in Fig. 3 are P-type transistors M9, M10, M11, M12; output buffers 309A, 309B are composed of P-type transistors M14, M15 and N-type transistors M12, M13 in FIG. 3; controllable asymmetric dynamic comparator The latch output nodes 310, 311; 312A, 312B are latch output controllable capacitor arrays of controllable asymmetric dynamic comparators. The implementation method is as follows: the latch 304 of the dynamic comparator is connected to the nodes 310 and 311 with the capacitive load arrays 312A and 312B with switches, and by controlling the on and off of the switches 331 and 332, the load difference between the two ends of the latch 304 is constructed and collected. , The difference in the flipping threshold voltage of the latch is constructed through the difference in load size, which is equivalent to the input terminal, artificially creating a mismatch in the input threshold value, and creating the effect of superimposing a reference voltage on the input signal at one end. By adjusting the difference between the loads at both ends of the comparator latch 304 , different reference voltage effects can be adjusted. The second implementation method is the controllable asymmetry of the threshold voltage of the dynamic comparator input pair transistors, including the input pair transistors 301 and 302, which are N-type transistors M1 and M2 in FIG. 3; the tail current source transistor 303 is N-type transistor M3; latch 304, composed of two end-to-end inverters, constituted by P-type transistors M6, M7 and N-type transistors M4, M5 in FIG. , in Fig. 3 are P-type transistors M9, M10, M11, M12; output buffers 309A, 309B are composed of P-type transistors M14, M15 and N-type transistors M12, M13 in Fig. 3; controllable asymmetry The latch output nodes 310, 311 of the dynamic comparator; the input of the controllable asymmetric dynamic comparator are externally connected to the bulk terminal voltages 320, 321 of the transistor. The implementation method is as follows: lead out the body terminals of the input pair tubes 301 and 302, connect the external voltage, adjust the threshold voltage of the input pair tubes 301 and 302 by changing the voltage difference between the source terminal and the body terminal of the MOS tube, and create an input signal superimposed on one end. effect of the reference voltage. By adjusting the voltage difference between the input and the tube body, the effect of different reference voltages can be adjusted. But one thing to note is that using the second method requires the input pair to be a P-type transistor or a deep-well N-type transistor. Although the method provided by the present invention cannot construct an accurate reference voltage value, it will be explained in detail later. In the 1.5-bit redundant acceleration circuit, the reference voltage value does not need to be particularly accurate, but only needs to be within a certain range. This 1.5-bit implementation method based on a controllable asymmetric dynamic comparator is compared with two four-input comparators plus a corresponding reference voltage or two two-input comparators plus a redundant reference voltage generation circuit required by the traditional 1.5-bit implementation , can greatly simplify the circuit scale, especially omit the reference voltage generation circuit, and then reduce the power consumption and area of the analog-to-digital converter, and can quickly change to establish an equivalent reference voltage value (if necessary), speeding up the conversion of the analog-to-digital converter Speed, and universal, can be applied to other 0.5-bit application scenarios.
前述内容大致叙述了本发明的特征和技术优点,下文特举出实施例,用以更加明晰地说明本发明的思想。任何本领域普通技术人员应可了解的是,可根据本发明所揭示的观念及特定实施例修改或设计出实现本发明相同目的的架构,此类同等架构并不超出本发明后附的权利要求所定义的精神和范围。The foregoing content generally describes the features and technical advantages of the present invention, and the following examples are given to illustrate the idea of the present invention more clearly. Anyone skilled in the art should be able to understand that the concepts and specific embodiments disclosed in the present invention can be modified or designed to achieve the same purpose of the structure of the present invention, such equivalent structure does not exceed the appended claims of the present invention spirit and scope as defined.
附图说明Description of drawings
图1为Chun-Cheng Liu于2010年发表的前四位1.5比特的逐次逼近型模数转换器结构示意图。Figure 1 is a schematic diagram of the structure of the first four 1.5-bit successive approximation analog-to-digital converters published by Chun-Cheng Liu in 2010.
图2为本发明提供基于可控非对称动态比较器的1.5比特冗余加速逐次逼近型模数转换器的结构示意图。FIG. 2 is a schematic structural diagram of a 1.5-bit redundant accelerated successive approximation analog-to-digital converter based on a controllable asymmetric dynamic comparator provided by the present invention.
图3为本发明提供的可控非对称动态比较器的电路图。Fig. 3 is a circuit diagram of the controllable asymmetric dynamic comparator provided by the present invention.
图4为本发明提供的实例,第二位为1.5比特冗余加速的逐次逼近型模数转换器量化过程中顶级板电压建立示意图。Fig. 4 is an example provided by the present invention, the second bit is a schematic diagram of establishment of the top board voltage during the quantization process of the successive approximation analog-to-digital converter accelerated by 1.5 bits redundancy.
图5为本发明提供的实例,第二位为1.5比特冗余加速的逐次逼近型模数转换器的数字校准逻辑。Fig. 5 is an example provided by the present invention, the second bit is the digital calibration logic of the 1.5-bit redundancy accelerated successive approximation analog-to-digital converter.
图中标号:Labels in the figure:
101是Chun-Cheng Liu于2010年发表的前四位1.5比特的逐次逼近型模数转换器的两个栅压自举开关101;102是该SAR ADC的10位二进制电容阵列,103、104电容阵列的顶极板连接在一起与动态比较器连接的节点;105、106、107是该SAR ADC的三个动态比较器,其中106、107用于1.5比特比较建立;108是该SAR ADC的六位子数模转换器,通过电容底极板翻转产生每级1.5比特比较建立的参考电压;108是该SAR ADC的逻辑电路模块。101 is the two gate voltage bootstrap switches 101 of the first four 1.5-bit successive approximation analog-to-digital converters published by Chun-Cheng Liu in 2010; 102 is the 10-bit binary capacitor array of the SAR ADC, and the capacitors 103 and 104 are The top plate of the array is connected together with the node connected to the dynamic comparator; 105, 106, 107 are three dynamic comparators of the SAR ADC, wherein 106, 107 are used for 1.5 bit comparison establishment; 108 is the six of the SAR ADC A bit digital-to-analog converter generates a reference voltage established by 1.5-bit comparison for each level by flipping the bottom plate of the capacitor; 108 is a logic circuit module of the SAR ADC.
201是基于可控非对称动态比较器的1.5比特冗余加速逐次逼近型模数转换器的两个相同的栅压自举开关;202是该发明的N位二进制电容阵列;203、204电容阵列的顶极板连接在一起与动态比较器连接的节点;205、206是该发明的两个可控非对称动态比较器;207是该发明的一个普通动态比较器;208是该发明的SAR ADC的数字逻辑电路模块;210、211是该发明的N位二进制电容的底极板传输门开关;220、221是该发明的SAR ADC的数字逻辑电路模块产生的逻辑控制信号;222、223该发明的SAR ADC的数字逻辑电路模块产生的动态比较器时钟信号。201 is two identical gate voltage bootstrap switches of the 1.5-bit redundant acceleration successive approximation analog-to-digital converter based on controllable asymmetric dynamic comparator; 202 is the N-bit binary capacitor array of the invention; 203, 204 capacitor arrays 205, 206 are two controllable asymmetric dynamic comparators of the invention; 207 is a common dynamic comparator of the invention; 208 is the SAR ADC of the invention 210 and 211 are the bottom plate transmission gate switches of the N-bit binary capacitor of the invention; 220 and 221 are the logic control signals generated by the digital logic circuit module of the SAR ADC of the invention; 222 and 223 of the invention The digital logic circuit block of the SAR ADC generates the dynamic comparator clock signal.
301、302是本发明提供的可控非对称动态比较器的输入对管,在图3中是体端电压被引出的深阱N型晶体管M1、M2;303是可控非对称动态比较器的尾电流源管,N型晶体管M3;304是可控非对称动态比较器的锁存器;305、306、307、308是可控非对称动态比较器的复位晶体管,P型晶体管M9、M10、M11、M12;309A、309B是可控非对称动态比较器的输出缓冲器;310、311是可控非对称动态比较器的锁存器输出节点;312A、312B是可控非对称动态比较器的锁存器输出可控电容阵列; 320、321是可控非对称动态比较器的输入对管的体端电压。301 and 302 are the input pair tubes of the controllable asymmetric dynamic comparator provided by the present invention, and in Fig. 3 are the deep-well N-type transistors M1 and M2 whose body terminal voltage is drawn; Tail current source tube, N-type transistor M3; 304 is the latch of the controllable asymmetric dynamic comparator; 305, 306, 307, 308 are reset transistors of the controllable asymmetric dynamic comparator, P-type transistors M9, M10, M11, M12; 309A, 309B are the output buffers of the controllable asymmetric dynamic comparator; 310, 311 are the latch output nodes of the controllable asymmetric dynamic comparator; 312A, 312B are the controllable asymmetric dynamic comparator The latch outputs a controllable capacitor array; 320 and 321 are the input to the body terminal voltage of the controllable asymmetric dynamic comparator.
401是传统顶极板采样的逐次逼近型模数转换器的顶极板电压建立示意图,其中410是传统顶极板采样的逐次逼近型模数转换器的第一位建立的冗余度;402是本发明提供的实例,第二位为1.5比特冗余加速的逐次逼近型模数转换器量化过程中顶级板电压建立示意图,其中411是第二位为1.5比特冗余加速的逐次逼近型模数转换器的第一位建立的冗余度,412是第二位为1.5比特冗余加速的逐次逼近型模数转换器的第二位建立的冗余度;403是本发明提供的实例,第二位为1.5比特冗余加速的逐次逼近型模数转换器的动态比较器组,413是可控非对称动态比较器,414是普通动态比较器;404是本发明提供的实例,第二位为1.5比特冗余加速的逐次逼近型模数转换器的动态比较器组的控制时钟,其中415是控制两个可控非对称动态比较器的时钟,416是控制动态比较器的时钟。401 is a schematic diagram of establishing the top plate voltage of the successive approximation analog-to-digital converter of traditional top plate sampling, wherein 410 is the first established redundancy of the successive approximation analog-digital converter of traditional top plate sampling; 402 It is an example provided by the present invention, the second bit is a schematic diagram of the establishment of the top board voltage in the quantization process of the successive approximation analog-to-digital converter of 1.5 bit redundancy acceleration, wherein 411 is the second bit is the successive approximation model of 1.5 bit redundancy acceleration The redundancy established by the first bit of the digital converter, 412 is the redundancy established by the second bit of the successive approximation type analog-to-digital converter for 1.5 bit redundancy acceleration; 403 is an example provided by the present invention, The second is the dynamic comparator group of the successive approximation analog-to-digital converter of 1.5 bit redundant acceleration, 413 is a controllable asymmetric dynamic comparator, 414 is a common dynamic comparator; 404 is an example provided by the present invention, the second The bits are the control clocks of the dynamic comparator group of the successive approximation analog-to-digital converter with 1.5-bit redundant acceleration, wherein 415 is the clock for controlling two controllable asymmetric dynamic comparators, and 416 is the clock for controlling the dynamic comparators.
501是本发明提供的实例,第二位为1.5比特冗余加速的逐次逼近型模数转换器中单级一比特的数据;502是第二位为1.5比特冗余加速的逐次逼近型模数转换器中1.5比特每级的数据;503是第二位为1.5比特冗余加速的逐次逼近型模数转换器的输出数据。501 is an example provided by the present invention, and the second bit is the data of single-stage one bit in the successive approximation analog-to-digital converter of 1.5 bit redundancy acceleration; 502 is the second bit is the successive approximation modulus of 1.5 bit redundancy acceleration 1.5 bits per level of data in the converter; 503 is the output data of the second successive approximation analog-to-digital converter accelerated by 1.5 bits of redundancy.
具体实施方式detailed description
下面结合附图对本发明提供的校正方法进行详细说明。值得注意的是,本发明提供的1.5比特冗余加速的逐次逼近型模数转换器有不同的指标及性能实现方法,本发明中基于可控非对称动态比较器的1.5比特实现也可以有多种应用场景。下文的实例为本发明提供一个典型实现电路,仅用以说明本发明的形成与使用,并非用以限定本发明。The correction method provided by the present invention will be described in detail below in conjunction with the accompanying drawings. It should be noted that the successive approximation analog-to-digital converter of 1.5 bit redundant acceleration provided by the present invention has different indexes and performance realization methods, and the 1.5 bit realization based on the controllable asymmetric dynamic comparator in the present invention can also have many application scenarios. The following example provides a typical implementation circuit of the present invention, which is only used to illustrate the formation and use of the present invention, and is not intended to limit the present invention.
本发明提供的基于可控非对称动态比较器的1.5比特冗余加速主次逼近型模数转换器实例,实施目标为实现一款第二位1.5比特冗余加速顶极板采样的150MS/s采样率,10位精度的逐次逼近型模数转换器,具体结构图如图2所示。所述结构包括包含两个相同的栅压自举开关201,一组对称的10位二进制电容阵列202,两个可控非对称动态比较器205、206,一个普通动态比较器207和SAR ADC的数字逻辑电路模块208;其中:The example of the 1.5-bit redundant acceleration primary and secondary approximation analog-to-digital converter based on the controllable asymmetric dynamic comparator provided by the present invention, the implementation goal is to realize a 150MS/s second-bit 1.5-bit redundant acceleration top plate sampling Sampling rate, 10-bit precision successive approximation analog-to-digital converter, the specific structure diagram is shown in Figure 2. The structure includes two identical gate voltage bootstrap switches 201, a group of symmetrical 10-bit binary capacitor arrays 202, two controllable asymmetric dynamic comparators 205, 206, a common dynamic comparator 207 and a SAR ADC. digital logic circuit module 208; wherein:
两个栅压自举开关信号输入分别接差分信号输入,时钟输入端均接整个逐次逼近型比较器的外部控制时钟,及采样保持时钟,输出端接对称的10位二进制电容阵列202的顶极板、两个可控非对称动态比较器205、206的输入端、一个普通动态比较器207的输入端和节点203、204,采样阶段将输入信号采集在电容阵列顶极板上后开关断开,电压值保存在电容阵列的顶极板上;10位二进制电容阵列202的每一组电容的底极板接三组传输门开关210、211,由SAR ADC的逻辑电路模块208产生的逻辑控制220、221接参考电压高电平、参考电压低电平或共模电平;两个可控非对称性动态比较器205、206的正负输入端交叉输入N位二进制电容阵列202的两个顶极板电压,及交叉接入节点203、204;时钟输入接SAR ADC的逻辑电路模块208产生的控制信号222、223,控制可控非对称性动态比较器205、206的开断;可控非对称性比较器205、206利用比较器内锁存器的负载非对称或者是比较器的输入对管阈值的非对称,在比较器的一侧输入信号上叠加一个可调参考电压,这样的接法相当于将10位二进制电容阵列202两个顶极板的差分电压与可调参考电压比较,产生1.5比特的输出码,实现1.5比特冗余加速;输出的码传输到SAR ADC的逻辑电路模块208,产生比较器的控制时钟222、223,和电容底极板电平翻转控制信号220、221。本实例中第一位与第三到十位的比较均由普通动态比较器207比较触发下一位建立,而在第二位的比较由两个可控非对称动态比较器205、206比较触发下一位建立;The two gate voltage bootstrap switch signal inputs are respectively connected to the differential signal input, the clock input terminals are connected to the external control clock of the entire successive approximation comparator, and the sample and hold clock, and the output terminal is connected to the top pole of the symmetrical 10-bit binary capacitor array 202 plate, the input terminals of two controllable asymmetric dynamic comparators 205, 206, the input terminals of a common dynamic comparator 207 and nodes 203, 204, and the switch is disconnected after the input signal is collected on the top plate of the capacitor array in the sampling phase , the voltage value is stored on the top plate of the capacitor array; the bottom plate of each group of capacitors in the 10-bit binary capacitor array 202 is connected to three groups of transmission gate switches 210, 211, and the logic control generated by the logic circuit module 208 of the SAR ADC 220, 221 are connected to the reference voltage high level, the reference voltage low level or the common mode level; the positive and negative input terminals of the two controllable asymmetrical dynamic comparators 205, 206 are cross-input to two of the N-bit binary capacitor array 202 The top plate voltage, and the cross access nodes 203, 204; the clock input is connected to the control signal 222, 223 generated by the logic circuit module 208 of the SAR ADC, to control the opening and closing of the controllable asymmetric dynamic comparator 205, 206; the controllable The asymmetry comparator 205, 206 utilizes the asymmetry of the load of the latch in the comparator or the asymmetry of the input of the comparator to the threshold value of the tube, and superimposes an adjustable reference voltage on one side of the comparator input signal, such The connection method is equivalent to comparing the differential voltage of the two top plates of the 10-bit binary capacitor array 202 with the adjustable reference voltage to generate a 1.5-bit output code to achieve 1.5-bit redundant acceleration; the output code is transmitted to the logic circuit of the SAR ADC The module 208 generates the control clocks 222 and 223 of the comparator, and the level inversion control signals 220 and 221 of the bottom plate of the capacitor. In this example, the comparison between the first digit and the third to ten digits is compared and triggered by the ordinary dynamic comparator 207, and the next digit is established, while the comparison at the second digit is triggered by the comparison of two controllable asymmetric dynamic comparators 205, 206. next build;
该实例的动态比较器的工作时序如图4中415、416所示,结合时序图对其工作过程做如下说明:The working sequence of the dynamic comparator of this example is shown as 415 and 416 in Figure 4, and its working process is explained as follows in conjunction with the sequence diagram:
(1)上述基于可控非对称动态比较器的第二位1.5比特冗余加速逐次逼近型模数转换器在CK为高时,CK为高电平,栅压自举开关201开启,将输入信号采样到模数转换器的二进制电容阵列202的顶极板上,此时电容阵列的每组电容组的底极板接共模电平Vcm,普通动态比较器207和可控非对称比较器205、206均关断,模数转换器处于采样阶段;(1) When CK is high, the gate voltage bootstrap switch 201 is turned on when CK is high, and the gate voltage bootstrap switch 201 is turned on to input The signal is sampled to the top plate of the binary capacitor array 202 of the analog-to-digital converter. At this time, the bottom plate of each group of capacitor groups in the capacitor array is connected to the common mode level V cm , and the common dynamic comparator 207 and the controllable asymmetric comparison Both the devices 205 and 206 are turned off, and the analog-to-digital converter is in the sampling phase;
(2)当CK为低电平,栅压自举开关201关断,电容阵列202悬空,电荷量不变,下降沿时刻的输入信号就被保持到电容阵列202上,模数转换器处于量化阶段。普通动态比较器207在SAR ADC的逻辑电路模块208产生的时钟信号222、223控制下,及信号416高电平时,对保持的输入信号进行比较,动态比较器207的数据传输到SAR ADC的逻辑电路模块208中,经组合逻辑产生逻辑控制信号220、221,通过三组传输门开关210控制第一位电容组底极板的对称翻转方向,参考电压高电平或参考电压低电平;(2) When CK is at low level, the gate voltage bootstrap switch 201 is turned off, the capacitor array 202 is suspended, the charge remains unchanged, the input signal at the falling edge moment is kept on the capacitor array 202, and the analog-to-digital converter is in quantization stage. Under the control of the clock signals 222 and 223 generated by the logic circuit module 208 of the SAR ADC, the ordinary dynamic comparator 207 compares the input signal held when the signal 416 is high, and the data of the dynamic comparator 207 is transmitted to the logic of the SAR ADC. In the circuit module 208, the logical control signals 220 and 221 are generated by combinational logic, and the three sets of transmission gate switches 210 are used to control the symmetrical inversion direction of the bottom plate of the first capacitor group, the reference voltage is high or the reference voltage is low;
(3)经一段短时间的延迟,此时第一位的电平建立尚未完成,两个可控非对称动态比较器开始第二位的1.5比特的比较,对称的顶极板电平交叉输入两个可控非对称动态比较器205、206,即将节点203、204交叉接入两个可控非对称动态比较器205、206的正输入端和负输入端,在SAR ADC的逻辑电路模块208产生的时钟信号222、223的控制下,及信号415高电平时,对建立信号进行比较,两个可控非对称动态比较器205、206数据传输到SAR ADC的逻辑电路模块208中,经组合逻辑产生逻辑控制信号220、221,通过三组传输门开关210控制将第二组电容的底极板接参考电压高电平、参考电压低电平或者是维持共模电平,可控非对称动态比较器205、206将被关断直到下一个量化周期;(3) After a short period of delay, the establishment of the level of the first bit has not yet been completed, and the two controllable asymmetric dynamic comparators start the 1.5-bit comparison of the second bit, and the symmetrical top plate level is cross-input Two controllable asymmetric dynamic comparators 205, 206, that is, nodes 203, 204 are cross-connected to the positive and negative input terminals of the two controllable asymmetric dynamic comparators 205, 206, in the logic circuit module 208 of the SAR ADC Under the control of the generated clock signals 222, 223, and when the signal 415 is at a high level, the set-up signals are compared, and the data of the two controllable asymmetric dynamic comparators 205, 206 are transmitted to the logic circuit module 208 of the SAR ADC. The logic generates logic control signals 220 and 221, and controls the bottom plate of the second group of capacitors to be connected to the reference voltage high level, the reference voltage low level or maintain the common mode level through three sets of transmission gate switches 210, controllable asymmetry The dynamic comparators 205, 206 will be turned off until the next quantization cycle;
(4)经过一段时间延时,第二位电平建立完全后,信号416高电平时,普通动态比较器207开启,对建立信号进行比较,动态比较器207的数据传输到SAR ADC的逻辑电路模块208中,经组合逻辑产生逻辑控制信号220、221,通过三组传输门开关210控制第一位电容组底极板的对称翻转方向,参考电压高电平或参考电压低电平;(4) After a period of delay, after the second bit level is completely established, when the signal 416 is high, the ordinary dynamic comparator 207 is turned on, and the established signal is compared, and the data of the dynamic comparator 207 is transmitted to the logic circuit of the SAR ADC In module 208, logical control signals 220 and 221 are generated through combinational logic, and the three groups of transmission gate switches 210 are used to control the symmetrical inversion direction of the bottom plate of the first capacitor group, the reference voltage is high or the reference voltage is low;
(5)动态比较器205、206量化的数据B2H和B2L,207量化出的数据B1,B3~B10在SAR ADC的逻辑电路模块208中按照图5中的逻辑运算方法运算,产生10位的二进制码,存储在寄存器里,在下一个外部采样时钟的上升沿输出。(5) The data B2H and B2L quantized by the dynamic comparators 205 and 206, and the data B1, B3~B10 quantized by 207 are operated in the logic circuit module 208 of the SAR ADC according to the logical operation method in FIG. 5 to generate 10-bit binary The code is stored in the register and output on the rising edge of the next external sampling clock.
本发明的内容及优点虽然已详细揭示如上,然而必须说明的是,本发明的范围并不受限于说明书中所描述的方法及步骤等特定实施例,在不脱离本发明的精神和范围内,任何本领域普通技术人员皆可根据本发明所揭示的内容做出许多变形和修改,这些也应视为本发明的保护范围。Although the content and advantages of the present invention have been disclosed in detail above, it must be noted that the scope of the present invention is not limited to specific embodiments such as methods and steps described in the description, and the scope of the present invention can be achieved without departing from the spirit and scope of the present invention. , any person of ordinary skill in the art can make many variations and modifications according to the content disclosed in the present invention, and these should also be regarded as the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610411806.9A CN106067817B (en) | 2016-06-14 | 2016-06-14 | A 1.5-Bit Redundant Accelerated Successive Approximation Analog-to-Digital Converter Based on Controllable Asymmetric Dynamic Comparator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610411806.9A CN106067817B (en) | 2016-06-14 | 2016-06-14 | A 1.5-Bit Redundant Accelerated Successive Approximation Analog-to-Digital Converter Based on Controllable Asymmetric Dynamic Comparator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106067817A true CN106067817A (en) | 2016-11-02 |
CN106067817B CN106067817B (en) | 2019-02-26 |
Family
ID=57420256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610411806.9A Active CN106067817B (en) | 2016-06-14 | 2016-06-14 | A 1.5-Bit Redundant Accelerated Successive Approximation Analog-to-Digital Converter Based on Controllable Asymmetric Dynamic Comparator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106067817B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107395205A (en) * | 2017-06-22 | 2017-11-24 | 西安电子科技大学 | Gradual approaching A/D converter based on asymmetric differential capacitance array |
CN108777580A (en) * | 2018-05-24 | 2018-11-09 | 西安电子科技大学 | It mixes capacitance turnover technology and controls SAR ADC level switch methods |
CN109995368A (en) * | 2017-12-29 | 2019-07-09 | 钜泉光电科技(上海)股份有限公司 | A kind of analog-digital converter of successive approximation |
CN110166045A (en) * | 2019-04-25 | 2019-08-23 | 复旦大学 | A kind of snapshot circuit extracting signal intensity edge |
CN110198167A (en) * | 2019-04-17 | 2019-09-03 | 西安电子科技大学 | A kind of asymmetrical SAR ADC capacitance switch sequence circuit and method |
CN111091818A (en) * | 2019-12-24 | 2020-05-01 | 广东美的白色家电技术创新中心有限公司 | Voice recognition circuit, voice interaction equipment and household appliance |
CN111478704A (en) * | 2020-04-17 | 2020-07-31 | 北方工业大学 | Low-Power Analog-to-Digital Converters |
CN111865319A (en) * | 2020-07-28 | 2020-10-30 | 西安电子科技大学 | An ultra-low power successive approximation analog-to-digital converter based on a four-input comparator |
CN111865320A (en) * | 2020-07-30 | 2020-10-30 | 楚天龙股份有限公司 | Low-power-consumption successive approximation type analog-to-digital converter |
CN112737584A (en) * | 2020-12-31 | 2021-04-30 | 中国电子科技集团公司第十四研究所 | On-chip fully integrated capacitor mismatch calibration circuit |
CN113922819A (en) * | 2021-12-14 | 2022-01-11 | 之江实验室 | One-step two-bit successive approximation type analog-to-digital converter based on background calibration |
TWI779960B (en) * | 2021-12-09 | 2022-10-01 | 瑞昱半導體股份有限公司 | Analog-to-digital conversion circuit and method having speed-up comparison mechanism |
CN118337216A (en) * | 2024-04-25 | 2024-07-12 | 成都士模微电子有限责任公司 | Capacitor flipping method in analog-to-digital converter and successive approximation analog-to-digital converter |
CN118783957A (en) * | 2024-09-10 | 2024-10-15 | 西安电子科技大学杭州研究院 | Low power consumption, low latency and high precision analog-to-digital converter based on high-order code pre-assignment |
CN118868946A (en) * | 2024-09-24 | 2024-10-29 | 西安电子科技大学 | A successive approximation analog-to-digital converter and a switching method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104639169A (en) * | 2015-02-12 | 2015-05-20 | 西安交通大学 | Two-step conversion gradual approach type analog-to-digital conversion circuit structure |
CN104967451A (en) * | 2015-07-31 | 2015-10-07 | 中国科学院电子学研究所 | Successive Approximation Analog-to-Digital Converter |
-
2016
- 2016-06-14 CN CN201610411806.9A patent/CN106067817B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104639169A (en) * | 2015-02-12 | 2015-05-20 | 西安交通大学 | Two-step conversion gradual approach type analog-to-digital conversion circuit structure |
CN104967451A (en) * | 2015-07-31 | 2015-10-07 | 中国科学院电子学研究所 | Successive Approximation Analog-to-Digital Converter |
Non-Patent Citations (3)
Title |
---|
YING-ZU LIN 等: "《2010 Symposium on VLSI Circuits/Technial Digest of Technical Papers》", 31 October 2010 * |
代国宪 等: "一种具有2-bit/cycle结构的400-MS/s 8-bit逐次逼近型模数转换器设计", 《复旦学报(自然科学版)》 * |
林涛 等: "一种12bit 50-MS/s 4-mW带比较器失调校正的逐次逼近型模数转换器", 《复旦学报(自然科学版)》 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107395205B (en) * | 2017-06-22 | 2020-06-19 | 西安电子科技大学 | Successive approximation type analog-digital converter based on asymmetric differential capacitor array |
CN107395205A (en) * | 2017-06-22 | 2017-11-24 | 西安电子科技大学 | Gradual approaching A/D converter based on asymmetric differential capacitance array |
CN109995368A (en) * | 2017-12-29 | 2019-07-09 | 钜泉光电科技(上海)股份有限公司 | A kind of analog-digital converter of successive approximation |
CN108777580A (en) * | 2018-05-24 | 2018-11-09 | 西安电子科技大学 | It mixes capacitance turnover technology and controls SAR ADC level switch methods |
CN108777580B (en) * | 2018-05-24 | 2020-02-21 | 西安电子科技大学 | Hybrid Capacitor Inversion Technology Controlling SAR ADC Level Switching Method |
CN110198167A (en) * | 2019-04-17 | 2019-09-03 | 西安电子科技大学 | A kind of asymmetrical SAR ADC capacitance switch sequence circuit and method |
CN110198167B (en) * | 2019-04-17 | 2021-01-08 | 西安电子科技大学 | Asymmetric SAR ADC capacitance switch sequential circuit and method |
CN110166045B (en) * | 2019-04-25 | 2021-06-04 | 复旦大学 | A Snapshot Circuit for Extracting Signal Change Edges |
CN110166045A (en) * | 2019-04-25 | 2019-08-23 | 复旦大学 | A kind of snapshot circuit extracting signal intensity edge |
CN111091818A (en) * | 2019-12-24 | 2020-05-01 | 广东美的白色家电技术创新中心有限公司 | Voice recognition circuit, voice interaction equipment and household appliance |
CN111478704A (en) * | 2020-04-17 | 2020-07-31 | 北方工业大学 | Low-Power Analog-to-Digital Converters |
CN111865319A (en) * | 2020-07-28 | 2020-10-30 | 西安电子科技大学 | An ultra-low power successive approximation analog-to-digital converter based on a four-input comparator |
CN111865320B (en) * | 2020-07-30 | 2024-02-09 | 楚天龙股份有限公司 | Low-power-consumption successive approximation type analog-to-digital converter |
CN111865320A (en) * | 2020-07-30 | 2020-10-30 | 楚天龙股份有限公司 | Low-power-consumption successive approximation type analog-to-digital converter |
CN112737584A (en) * | 2020-12-31 | 2021-04-30 | 中国电子科技集团公司第十四研究所 | On-chip fully integrated capacitor mismatch calibration circuit |
CN112737584B (en) * | 2020-12-31 | 2023-08-01 | 中国电子科技集团公司第十四研究所 | On-chip full-integrated capacitance mismatch calibration circuit |
TWI779960B (en) * | 2021-12-09 | 2022-10-01 | 瑞昱半導體股份有限公司 | Analog-to-digital conversion circuit and method having speed-up comparison mechanism |
CN113922819A (en) * | 2021-12-14 | 2022-01-11 | 之江实验室 | One-step two-bit successive approximation type analog-to-digital converter based on background calibration |
CN113922819B (en) * | 2021-12-14 | 2022-04-12 | 之江实验室 | One-step two-bit successive approximation analog-to-digital converter based on background calibration |
CN118337216A (en) * | 2024-04-25 | 2024-07-12 | 成都士模微电子有限责任公司 | Capacitor flipping method in analog-to-digital converter and successive approximation analog-to-digital converter |
CN118337216B (en) * | 2024-04-25 | 2024-12-06 | 成都士模微电子有限责任公司 | Capacitor flipping method in analog-to-digital converter and successive approximation analog-to-digital converter |
CN118783957A (en) * | 2024-09-10 | 2024-10-15 | 西安电子科技大学杭州研究院 | Low power consumption, low latency and high precision analog-to-digital converter based on high-order code pre-assignment |
CN118868946A (en) * | 2024-09-24 | 2024-10-29 | 西安电子科技大学 | A successive approximation analog-to-digital converter and a switching method thereof |
CN118868946B (en) * | 2024-09-24 | 2024-11-29 | 西安电子科技大学 | Successive approximation type analog-to-digital converter and switching method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN106067817B (en) | 2019-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106067817A (en) | 1.5 redundancy bits based on controlled asymmetric dynamic comparator accelerate gradual approaching A/D converter | |
CN104811203B (en) | A kind of 2bits per circle high speed gradual approaching A/D converters | |
CN104967451B (en) | Gradual approaching A/D converter | |
CN107835021B (en) | A variable delay asynchronous timing control circuit and control method | |
CN104124971B (en) | Two-stage flow-line modulus converter based on Approach by inchmeal principle | |
CN104796148B (en) | A kind of high-speed low-power-consumption gradual approaching A/D converter | |
WO2020173225A1 (en) | High-speed digital logic circuit for sar_adc, and sampling adjustment method | |
CN107425852B (en) | Successive approximation type analog-to-digital converter based on binary weighted charge redistribution | |
CN108449087A (en) | An ultra-low power asynchronous successive approximation register analog-to-digital converter | |
CN111865319A (en) | An ultra-low power successive approximation analog-to-digital converter based on a four-input comparator | |
CN110474623B (en) | Maladjustment self-correcting dynamic comparator for successive approximation type analog-to-digital converter | |
CN111934688A (en) | Successive approximation type analog-to-digital converter and method | |
CN103905046A (en) | Nine-stage ten-bit pipelined ADC circuit | |
US9083375B1 (en) | Asynchronous successive approximation register ADC | |
CN102332922A (en) | Current source and drive circuit for improving high-frequency characteristics of digital-to-analog converter | |
CN1561000B (en) | Pipeline structure analogue/digital converter of controlling input common-mode drift | |
CN103746694B (en) | Slope conversion circuit applied to two-step type integral analog-to-digital converter | |
CN108233931B (en) | Sample-hold and compare latch circuit | |
CN104113339A (en) | High-speed asynchronous successive approximation type analog-to-digital converter | |
CN110086471A (en) | A kind of three gradual approaching A/D converters of a step | |
CN103916126A (en) | Pipelined ADC circuit with digital correction module | |
CN114710155A (en) | Logic control circuit for SAR analog-digital converter and SAR analog-digital converter | |
US12199631B2 (en) | Comparator and analog to digital converter | |
CN108777580A (en) | It mixes capacitance turnover technology and controls SAR ADC level switch methods | |
CN103036568B (en) | A kind of gradual approaching A/D converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |