[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN106045804B - A method of based on temperature sensitive type ionic liquid chirality Salen Ti composition catalyst aqueous catalysis thioether asymmetric oxidation reaction - Google Patents

A method of based on temperature sensitive type ionic liquid chirality Salen Ti composition catalyst aqueous catalysis thioether asymmetric oxidation reaction Download PDF

Info

Publication number
CN106045804B
CN106045804B CN201610390141.8A CN201610390141A CN106045804B CN 106045804 B CN106045804 B CN 106045804B CN 201610390141 A CN201610390141 A CN 201610390141A CN 106045804 B CN106045804 B CN 106045804B
Authority
CN
China
Prior art keywords
ionic liquid
temperature
oxidation reaction
asymmetric oxidation
salen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610390141.8A
Other languages
Chinese (zh)
Other versions
CN106045804A (en
Inventor
谭蓉
张瑶瑶
银董红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Normal University
Original Assignee
Hunan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Normal University filed Critical Hunan Normal University
Priority to CN201610390141.8A priority Critical patent/CN106045804B/en
Publication of CN106045804A publication Critical patent/CN106045804A/en
Application granted granted Critical
Publication of CN106045804B publication Critical patent/CN106045804B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

The invention discloses a kind of methods based on temperature sensitive type ionic liquid chirality Salen Ti composition catalyst aqueous catalysis thioether asymmetric oxidation reaction;This method is that in an aqueous medium, chiral sulfide compound and hydrogen peroxide carry out asymmetric oxidation reaction under the catalytic action of temperature sensitive type ionic liquid chirality Salen Ti composition catalyst to get chiral sulfoxides;Temperature sensitive type ionic liquid chirality Salen Ti composition catalyst contains chiral Salen Ti composition catalyst unit and temperature sensing material unit simultaneously: compared with traditional chiral Salen Ti catalyst, the catalyst good water solubility, catalysis reaction can be carried out in an aqueous medium, and is easily recycled reuse;Applied to the aqueous catalysis oxidation reaction of chiral thioether, have the characteristics that high catalytic efficiency, chiral sulfoxide are selectively good.

Description

一种基于温敏型离子液体手性Salen Ti配合物催化剂水相催 化硫醚不对称氧化反应的方法A thermosensitive ionic liquid based chiral Salen Ti complex catalyst for aqueous catalysis Method for Asymmetric Oxidation of Thioether

技术领域technical field

本发明涉及一种改进的手性Salen Ti配合物催化剂,特别涉及一种温敏型离子液体手性Salen Ti配合物催化剂,以及基于所述的温敏型离子液体手性Salen Ti配合物催化剂水相催化硫醚不对称氧化反应的方法,属于催化新材料制备和医药中间体合成技术领域。The invention relates to an improved chiral Salen Ti complex catalyst, in particular to a temperature-sensitive ionic liquid chiral Salen Ti complex catalyst, and water based on the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst The invention discloses a method for phase-catalyzed asymmetric oxidation reaction of sulfide, belonging to the technical field of catalysis new material preparation and pharmaceutical intermediate synthesis.

背景技术Background technique

光学纯的亚砜是一种重要的手性辅剂,它被广泛应用于不对称合成反应中,例如C-C键形成反应,C-O键形成反应,不对称Michael加成反应,羰基的还原反应,Diels-Alder反应以及自由基加成反应等(Chemical Communications,2009,6129-6144)。光学纯的手性亚砜是许多药物的活性基团,它们在合成具有生物活性化合物方面的应用也十分广泛,如一些在市场上热销药物莫达非尼、舒林达克和埃索拉唑。许多生物活性分子中都含有一个手性亚磺酰基单元,而且立体化学结构不同的对映体具有不同的生理活性和代谢作用。同时手性亚砜还可以作为手性配体应用于对映选择性催化反应中。因此,获得高对映选择性的亚砜具有重要的理论意义和现实价值。在过去的几十年中,研究者们在发展各种制备光学纯亚砜的方法方面做出来很大的努力,主要有生物方法和化学方法。生物亚砜化方法包括酶、微生物等制备手性亚砜,具有底物专一性、高效、绿色等优点,但生物酶或微生物因稳定性差、价格高、以及底物范围比较窄等方面的不足,其应用受到限制。化学方法分为手性辅剂诱导、拆分和不对称催化氧化等方法,迄今为止,其中硫醚的不对称氧化是制备手性亚砜最具有实用性的方法。1984年,Kagan使用改良的Sharpless环氧化催化剂首次实现了硫醚的不对称氧化(Synthesis,1984,325-326;Tetrahedron Letters,1984,25,1049-1052),之后,研究者们对这一领域进行了广泛深入的研究,开发了一系列基于金属钛、钒、铝、铁、铜等催化体系(Tanaka,T.;Saito,B.;Katsuki,T.Tetrahedron Lett.2002,43,3259;Katsuki,T.J.Am.Chem.Soc.2007,129,8940;O Mahony,G.E.;Ford,A.;Maguire,A.R.J.Org.Chem.2012,77,3288;Matsumoto,K.;Yamaguchi,T.;Katsuki,T.Chem.Commum.2008,1704.),并且实现了一些简单的底物如芳香烷基硫醚的转化,但是对于环、大位阻或长链类硫醚这些具有挑战的底物的进展却很缓慢,直到2013年,受金属卟啉的启发,Gao使用一种手性四齿氮有机配体和金属锰化合物形成的络合物为催化剂,双氧水为氧化剂,成功实现了大位阻、长链或者支链类具有挑战的底物的转化(Dai,W.;Li,J.;Chen,B.;Li,G.;Lv,Y.;Wang,L.;Gao,S.Org.Lett.2013,15,5658)。目前文献报道过渡金属催化不对称氧化体系按手性配体分类主要包括:具有C2对称性手性二醇(酚)-钛催化体系,具有C3对称性手性三醇胺-钛和镐催化体系,手性卟啉金属络合催化体系,手性Schiff碱金属络合物催化体系(Arkivoc,2011,(i),1-110;Journal of Sulfur Chemistry,2013,34(3),301-341)。然而,该系列催化剂体系是在非环境友好的溶剂二氯甲烷中进行,且产物亚砜选择性低,给产品的分离和纯化带来了很大的困难。这些问题的存在大大增加了手性亚砜的合成成本,限制了硫醚不对称氧化反应的工业生产。Optically pure sulfoxide is an important chiral auxiliary, which is widely used in asymmetric synthesis reactions, such as C-C bond formation reaction, C-O bond formation reaction, asymmetric Michael addition reaction, carbonyl reduction reaction, Diels -Alder reaction and radical addition reaction, etc. (Chemical Communications, 2009, 6129-6144). Optically pure chiral sulfoxides are the active groups of many drugs, and they are widely used in the synthesis of biologically active compounds, such as some popular drugs on the market, such as modafinil, sulindac and esola. azoles. Many biologically active molecules contain a chiral sulfinyl unit, and enantiomers with different stereochemical structures have different physiological activities and metabolic effects. At the same time, chiral sulfoxides can also be used as chiral ligands in enantioselective catalytic reactions. Therefore, obtaining sulfoxides with high enantioselectivity has important theoretical significance and practical value. In the past few decades, researchers have made great efforts to develop various methods for preparing optically pure sulfoxides, mainly biological methods and chemical methods. Biological sulfoxide methods include enzymes, microorganisms, etc. to prepare chiral sulfoxides, which have the advantages of substrate specificity, high efficiency, and greenness. Insufficient, its application is limited. Chemical methods can be divided into chiral auxiliary induction, resolution and asymmetric catalytic oxidation. So far, the asymmetric oxidation of thioether is the most practical method for preparing chiral sulfoxide. In 1984, Kagan used a modified Sharpless epoxidation catalyst to achieve the first asymmetric oxidation of thioethers (Synthesis, 1984, 325-326; Tetrahedron Letters, 1984, 25, 1049-1052), after that, researchers have studied this In this field, extensive and in-depth research has been carried out, and a series of catalytic systems based on metals such as titanium, vanadium, aluminum, iron, and copper have been developed (Tanaka, T.; Saito, B.; Katsuki, T. Tetrahedron Lett. 2002, 43, 3259; Katsuki, T.J.Am.Chem.Soc.2007,129,8940; O Mahony, G.E.; Ford, A.; Maguire, A.R.J.Org.Chem.2012,77,3288; T.Chem.Commum.2008, 1704.), and realized the transformation of some simple substrates such as arylalkyl sulfides, but progress for challenging substrates such as cyclic, bulky or long chain thioethers But it was very slow. Until 2013, inspired by metal porphyrins, Gao used a complex formed by a chiral tetradentate nitrogen organic ligand and a metal manganese compound as a catalyst, and hydrogen peroxide as an oxidant, and successfully achieved large steric hindrance, Conversion of long-chain or branched-chain challenging substrates (Dai, W.; Li, J.; Chen, B.; Li, G.; Lv, Y.; Wang, L.; Gao, S. Org. Lett. 2013, 15, 5658). The current literature reports that transition metal catalyzed asymmetric oxidation systems are classified according to chiral ligands, including: chiral diol (phenol)-titanium catalytic system with C2 symmetry, and chiral triolamine-titanium and potassium catalytic system with C3 symmetry , chiral porphyrin metal complex catalytic system, chiral Schiff alkali metal complex catalytic system (Arkivoc, 2011, (i), 1-110; Journal of Sulfur Chemistry, 2013, 34(3), 301-341) . However, this series of catalyst systems are carried out in the non-environmentally friendly solvent dichloromethane, and the selectivity of the product sulfoxide is low, which brings great difficulties to the separation and purification of the product. The existence of these problems greatly increases the synthesis cost of chiral sulfoxides and limits the industrial production of asymmetric thioether oxidation reactions.

国际专利W091/12221和W094/27988描述了直接将外消旋体的亚砜类化合物拆分成单一对映体的方法,特别提到将奥美拉唑拆分成单一对映体。中国专利CN1087739,国际专利申请W02006/094904、W02007/013743等描述了用(S)-联二萘酚或酒石酸拆分奥美拉唑得到左旋奥美拉唑的内包结物,然后再用硅胶柱或碱解离此包结物得到左旋奥美拉唑的方法。用此类拆分法拆分奥美拉唑会浪费一半的奥美拉唑,造成环境污染和经济损失,而且有光学活性的拆分剂价格也较昂贵,因此这种拆分法在工业上的大规模使用受到限制。International patents WO91/12221 and WO94/27988 describe methods for the direct resolution of racemic sulfoxides into single enantiomers, with particular reference to the resolution of omeprazole into single enantiomers. Chinese patent CN1087739, international patent applications WO2006/094904, WO2007/013743, etc. describe the use of (S)-binaphthol or tartaric acid to split omeprazole to obtain the inner inclusion of levomeprazole, and then use silica gel column Or the method of alkali dissociation of this inclusion compound to obtain L-omeprazole. Splitting omeprazole with this kind of splitting method will waste half of the omeprazole, causing environmental pollution and economic losses, and the price of optically active splitting agents is also more expensive, so this splitting method is industrially used. large-scale use is limited.

国际专利W096/02535,中国专利CN1070489公开了在手性双齿配体酒石酸二乙酯与钛金属络合物和碱存在下,用过氧化氢类衍生物氧化奥美拉唑硫醚得到S-奥美拉唑的方法。国际专利W003/089408描述了在手性单齿(S)-(+)-扁桃酸酯与钛或钒的络合物催化下,同时在碱的存在下氧化奥美拉唑硫醚得到左旋奥美拉唑的方法。International patent WO96/02535, Chinese patent CN1070489 disclose that in the presence of chiral bidentate ligand diethyl tartrate and titanium metal complex and alkali, use hydrogen peroxide derivatives to oxidize omeprazole sulfide to obtain S- method of omeprazole. International patent WO03/089408 describes the catalysis of chiral monodentate (S)-(+)-mandelate complexes with titanium or vanadium, and simultaneous oxidation of omeprazole sulfide in the presence of a base to obtain levorotene method of meprazole.

中国专利CN200380104409.8,国际专利W02004/052881描述了使用手性镐络合物或手性铪络合物制备S-泮托拉唑的方法。该方法是在(+)-或(-)-酒石 酸衍生物和烷氧基镐或烷氧基铪存在下,选择性氧化硫醚合成S-泮托拉唑。CN200610023955和CN181080803B描述了一种使用金属钛试剂和手性二醇配位原位生成的含钛催化剂,在叔丁基过氧化氢作用下,选择性氧化硫醚。Chinese patent CN200380104409.8 and international patent WO2004/052881 describe methods for preparing S-pantoprazole using chiral halide complexes or chiral hafnium complexes. The method is to selectively oxidize sulfide to synthesize S-pantoprazole in the presence of (+)- or (-)-tartaric acid derivatives and alkoxy halide or alkoxy hafnium. CN200610023955 and CN181080803B describe a titanium-containing catalyst formed in situ by the coordination of a metal titanium reagent and a chiral diol, and under the action of tert-butyl hydroperoxide, the sulfide is selectively oxidized.

国际专利W096/17076和W096/17077描述了使用微生物进行选择性氧化硫醚或选择性还原砜类化合物,来获得单一对映体的亚砜类化合物的方法。International Patents WO96/17076 and WO96/17077 describe the use of microorganisms for selective oxidation of thioethers or selective reduction of sulfones to obtain single enantiomers of sulfoxides.

发明内容SUMMARY OF THE INVENTION

针对现有技术存在的缺陷,本发明的目的是在于提供一种含有温敏材料单元,可以通过温度条件来实现亲水-疏水转化的温敏型离子液体手性Salen Ti配合物催化剂水相催化硫醚不对称氧化反应的方法,该催化剂具有优异的催化活性和选择性,且实现了在水溶剂中催化硫醚化合物选择性氧化成亚砜,且通过温度调控催化剂的水溶性,实现催化剂的回收,该方法简单高效、对环境友好、反应条件温和,满足工艺生产要求。In view of the defects existing in the prior art, the purpose of the present invention is to provide a temperature-sensitive ionic liquid chiral Salen Ti complex catalyst containing a temperature-sensitive material unit that can realize hydrophilic-hydrophobic conversion through temperature conditions. Water-phase catalysis The method for asymmetric oxidation reaction of sulfide, the catalyst has excellent catalytic activity and selectivity, and realizes the selective oxidation of sulfide compound to sulfoxide in water solvent, and the water solubility of the catalyst is regulated by temperature to realize the catalytic performance of the catalyst. The method is simple, efficient, environmentally friendly, mild in reaction conditions, and meets the requirements of technological production.

为了实现上述技术目的,本发明提供了一种基于温敏型离子液体手性SalenTi配合物催化剂水相催化硫醚不对称氧化反应的方法,该方法是在水介质中,式2结构硫醚化合物和过氧化氢在式1结构温敏型离子液体手性Salen Ti配合物催化剂的催化作用下进行不对称氧化反应,即得式3结构手性亚砜化合物:In order to achieve the above technical purpose, the present invention provides a method for catalyzing the asymmetric oxidation reaction of thioether in water phase based on a temperature-sensitive ionic liquid chiral SalenTi complex catalyst. The method is that in an aqueous medium, a thioether compound of formula 2 The asymmetric oxidation reaction with hydrogen peroxide is carried out under the catalysis of the thermosensitive ionic liquid chiral Salen Ti complex catalyst of formula 1 to obtain the chiral sulfoxide compound of formula 3:

其中,in,

为温敏单元; is a temperature sensitive unit;

X/Y为(1~100):1。X/Y is (1~100):1.

R1、R2、R3独立地选自氢、烷基、芳基、芳基取代烷基或烷氧基;R 1 , R 2 , R 3 are independently selected from hydrogen, alkyl, aryl, aryl-substituted alkyl or alkoxy;

R4n为0~3; R4 is n is 0 to 3;

R5为C1~C3的烷基或氢原子;R 5 is a C 1 -C 3 alkyl group or a hydrogen atom;

R6和R7独立地选自芳基、含杂环基团、烷基或取代烷基。R6 and R7 are independently selected from aryl, heterocyclic - containing group, alkyl or substituted alkyl.

优选的方案,温敏型离子液体手性Salen Ti配合物催化剂中R1、R2和R3独立地选自氢、C1~C5的烷基、苯基、含苯基取代基的C1~C5的烷基或C1~C5的烷氧基;R4n为0~2;R5为氢原子。In a preferred solution, in the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst, R 1 , R 2 and R 3 are independently selected from hydrogen, C 1 -C 5 alkyl, phenyl, and C containing phenyl substituents 1 -C 5 alkyl group or C 1 -C 5 alkoxy group; R 4 is n is 0-2; R 5 is a hydrogen atom.

优选的方案,X的范围为:10~100,Y的范围为1~10。In a preferred solution, the range of X is 10-100, and the range of Y is 1-10.

优选的方案,温敏型离子液体手性Salen Ti配合物催化剂中X/Y为(5~50):1。In a preferred solution, X/Y in the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst is (5-50):1.

优选的方案,温敏型离子液体手性Salen Ti配合物催化剂中温敏单元为N-异丙基丙烯酰胺单元和/或N,N’-二甲基丙烯酰胺单元。In a preferred solution, the temperature-sensitive units in the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst are N-isopropylacrylamide units and/or N,N'-dimethylacrylamide units.

优选的方案,硫醚化合物及手性亚砜化合物中R6和R7独立地选自:In a preferred scheme, R 6 and R 7 in the thioether compound and the chiral sulfoxide compound are independently selected from:

不含取代基的C6~C12的芳基,或含卤素、C1~4烷基、C1~4烷氧基、C2~5烷氧基羰基、硝基或氰基取代基的C6~C12的芳基;C 6 -C 12 aryl without substituent, or halogen, C 1-4 alkyl, C 1-4 alkoxy, C 2-5 alkoxycarbonyl, nitro or cyano substituent Aryl of C 6 -C 12 ;

或不含取代的C1~C6的烷基,或含芳基取代基的C1~C6的烷基(其中,芳基取代基优选为不含取代基的C6~C12的芳基,或含卤素、C1~4烷基、C1~4烷氧基、C2~5烷氧基羰基、硝基或氰基取代基的C6~C12的芳基),或含卤素、硝基、羟基 或氰基取代基的C1~C6的烷基;or an unsubstituted C 1 -C 6 alkyl group, or a C 1 -C 6 alkyl group containing an aryl substituent (wherein, the aryl substituent is preferably an unsubstituted C 6 -C 12 aryl group) group, or C 6 -C 12 aryl group containing halogen, C 1-4 alkyl, C 1-4 alkoxy, C 2-5 alkoxycarbonyl, nitro or cyano substituent), or containing C 1 -C 6 alkyl group of halogen, nitro, hydroxyl or cyano substituent;

或含吡啶或含咪唑的基团。Or a pyridine- or imidazole-containing group.

较优选的方案,硫醚化合物及手性亚砜化合物中R6和R7独立地选自以下取代基中一种:In a more preferred solution, R 6 and R 7 in the thioether compound and the chiral sulfoxide compound are independently selected from one of the following substituents:

最优选的硫醚化合物为:甲基苯基硫醚(分子式C7H8S);4-溴苯基甲基硫醚(分子式C7H7BrS);4-甲氧基苯基硫醚(分子式C8H10OS);4-硝基苯基硫醚(分子式C7H7NO2S);2-甲氧基苯基硫醚(分子式C8H10OS);奥美拉唑硫醚(5-甲氧基-2-(4-甲氧基-3,5-二甲基-2-吡啶基)甲基硫代-1H-苯并咪唑(分子式C17H19N3O2S)。The most preferred sulfide compounds are: methyl phenyl sulfide (molecular formula C 7 H 8 S); 4-bromophenyl methyl sulfide (molecular formula C 7 H 7 BrS); 4-methoxyphenyl sulfide (molecular formula C 8 H 10 OS); 4-nitrophenyl sulfide (molecular formula C 7 H 7 NO 2 S); 2-methoxyphenyl sulfide (molecular formula C 8 H 10 OS); omeprazole Thioether (5-methoxy-2-(4-methoxy-3,5-dimethyl-2-pyridyl)methylthio-1H-benzimidazole (molecular formula C 17 H 19 N 3 O 2S ) .

最优选的手性亚砜化合物为:甲基苯基亚砜(分子式C7H8OS);4-溴苯基甲基亚砜(分子式C7H7BrOS);4-甲氧基苯基甲基亚砜(分子式C8H10O2S);4-硝基苯基甲基亚砜(分子式C7H7NO3S);2-甲氧基苯基甲基亚砜(分子式C8H10O2S);奥美拉唑(5-甲氧基-2-[[(4-甲氧基-3,5-二甲基-2-吡啶基)甲基]亚磺酰基]-1H-苯并咪唑,分子式C17H19N3O3S)。The most preferred chiral sulfoxide compounds are: methylphenyl sulfoxide (molecular formula C 7 H 8 OS); 4-bromophenylmethyl sulfoxide (molecular formula C 7 H 7 BrOS); 4-methoxyphenyl Methyl sulfoxide (molecular formula C 8 H 10 O 2 S); 4-nitrophenyl methyl sulfoxide (molecular formula C 7 H 7 NO 3 S); 2-methoxyphenyl methyl sulfoxide (molecular formula C 8 H 10 O 2 S); Omeprazole (5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridyl)methyl]sulfinyl] -1H-benzimidazole, molecular formula C 17 H 19 N 3 O 3 S).

优选的方案,将过氧化氢溶液缓慢滴加到含所述硫醚化合物及所述温敏型离子液体手性Salen Ti配合物催化剂的水溶液中,进行不对称氧化反应。In a preferred solution, the hydrogen peroxide solution is slowly added dropwise to the aqueous solution containing the thioether compound and the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst to carry out the asymmetric oxidation reaction.

较优选的方案,所述温敏型离子液体手性Salen Ti配合物催化剂与所述硫醚化合物的摩尔比为1:50~1:1000;进一步优选为1:100~1:300。In a more preferred solution, the molar ratio of the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst to the sulfide compound is 1:50 to 1:1000; more preferably, 1:100 to 1:300.

较优选的方案,过氧化氢溶液中过氧化氢与所述硫醚化合物的摩尔比为1:1~2:1;进一步优选为(1~1.2):1。In a more preferred solution, the molar ratio of hydrogen peroxide to the sulfide compound in the hydrogen peroxide solution is 1:1-2:1; more preferably (1-1.2):1.

较优选的方案,过氧化氢溶液浓度为15wt%~70wt%;进一步优选为25wt%~35wt%。In a more preferred solution, the concentration of the hydrogen peroxide solution is 15wt% to 70wt%; more preferably, it is 25wt% to 35wt%.

较优选的方案,不对称氧化反应在温度为-50℃~50℃条件下,反应0.1~5h。进一步优选的反应温度为-5℃~20℃。进一步优选的反应时间为1~1.5h。In a more preferred scheme, the asymmetric oxidation reaction is carried out at a temperature of -50°C to 50°C for 0.1 to 5 hours. A more preferable reaction temperature is -5°C to 20°C. A further preferred reaction time is 1 to 1.5 h.

较优选的方案,不对称氧化反应完成后,将反应体系升高温度实现温敏型离子液体手性Salen Ti配合物催化剂亲水-疏水转变,析出温敏型离子液体手性Salen Ti配合物催化剂,过滤回收。A more preferred solution is that after the asymmetric oxidation reaction is completed, the temperature of the reaction system is raised to realize the hydrophilic-hydrophobic transition of the thermosensitive ionic liquid chiral Salen Ti complex catalyst, and the thermosensitive ionic liquid chiral Salen Ti complex catalyst is precipitated. , filter recovery.

本发明的温敏型离子液体手性Salen Ti配合物催化剂的制备方法包括以下步骤:The preparation method of the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst of the present invention comprises the following steps:

1)式4结构Schiff碱化合物与式5结构咪唑化合物进行取代反应,即得式6结构离子液体功能化的手性Schiff碱化合物;1) The Schiff base compound of formula 4 and the imidazole compound of formula 5 are subjected to substitution reaction to obtain the functionalized chiral Schiff base compound of ionic liquid of formula 6;

2)所述离子液体功能化的手性Schiff碱化合物与四异丙基钛酸酯进行配位反应,即得式7结构离子液体手性Salen Ti配合物;2) The chiral Schiff base compound functionalized by the ionic liquid and tetraisopropyl titanate carry out a coordination reaction to obtain the ionic liquid chiral Salen Ti complex of formula 7;

3)采用温敏单体与式7结构离子液体手性Salen Ti配合物通过可控自由基聚合法,得到温敏型离子液体手性Salen Ti配合物催化剂;3) A temperature-sensitive ionic liquid chiral Salen Ti complex catalyst is obtained by using a temperature-sensitive monomer and an ionic liquid chiral Salen Ti complex of formula 7 through a controlled radical polymerization method;

其中,in,

R1、R2、R3独立地选自氢、烷基、芳基、芳基取代烷基或烷氧基;R 1 , R 2 , R 3 are independently selected from hydrogen, alkyl, aryl, aryl-substituted alkyl or alkoxy;

R4n为0~3; R4 is n is 0 to 3;

R5为C1~C3的烷基或氢原子。R 5 is a C 1 -C 3 alkyl group or a hydrogen atom.

优选的方案,R1、R2和R3独立地选自氢、C1~C5的烷基、苯基、含苯基取代基的C1~C5的烷基或C1~C5的烷氧基;R4n为0~2;R5为氢原子。In a preferred embodiment, R 1 , R 2 and R 3 are independently selected from hydrogen, C 1 -C 5 alkyl, phenyl, C 1 -C 5 alkyl containing phenyl substituents or C 1 -C 5 alkoxy; R 4 is n is 0-2; R 5 is a hydrogen atom.

优选的方案,温敏单体与所述离子液体手性Salen Ti配合物摩尔比为(1~100):1;较优选为(5~50):1。In a preferred solution, the molar ratio of the thermosensitive monomer to the ionic liquid chiral Salen Ti complex is (1-100):1; more preferably, (5-50):1.

相对现有技术,本发明的技术方案带来的有益技术效果:Relative to the prior art, the beneficial technical effects brought by the technical solution of the present invention:

1)本发明的技术方案采用的温敏型离子液体手性Salen Ti配合物催化剂主要包含催化剂单元和温敏材料单元,催化剂单元以Ti为催化活性中心原子,以手性Salen为配体,该催化剂单元对硫醚的不对称氧化反应表现出了较高的选择性和高催化活性,手性亚砜的产率高达85%~98%。而温敏材料单元赋予了温敏型离子液体手性Salen Ti配合物催化剂较好的水溶性,实现以水作为溶剂进行硫醚的不对称氧化反应,同时温敏材料单元具有亲水-疏水转化的功能,能通过温度控制催化剂的水溶性,有利于催化剂的回收利用。1) The temperature-sensitive ionic liquid chiral Salen Ti complex catalyst adopted by the technical solution of the present invention mainly comprises a catalyst unit and a temperature-sensitive material unit. The catalyst unit showed high selectivity and high catalytic activity for the asymmetric oxidation of sulfide, and the yield of chiral sulfoxide was as high as 85% to 98%. The temperature-sensitive material unit endows the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst with better water solubility, and realizes the asymmetric oxidation reaction of thioether using water as a solvent. At the same time, the temperature-sensitive material unit has hydrophilic-hydrophobic conversion. It can control the water solubility of the catalyst through temperature, which is beneficial to the recycling of the catalyst.

2)本发明的温敏型离子液体手性Salen Ti配合物催化剂在水相催化硫醚不 对称氧化反应中温敏材料亲水端在水中形成亲水外壳,疏水性活性中心迅速聚集,形成胶束,是理想的纳米反应器,疏水性的硫醚类反应底物加入水溶液中后,会快速进入疏水内核,以过氧化氢的水溶液为氧源时,过氧化氢会缓慢进入到疏水内核氧化硫醚生成手性亚砜,大大提高了手性氧化的选择性及反应效率。2) The temperature-sensitive ionic liquid chiral Salen Ti complex catalyst of the present invention forms a hydrophilic shell at the hydrophilic end of the temperature-sensitive material in the aqueous catalyzed asymmetric oxidation reaction of sulfide, and the hydrophobic active center rapidly aggregates to form a micelle , is an ideal nano-reactor. After the hydrophobic thioether reaction substrate is added to the aqueous solution, it will quickly enter the hydrophobic core. When the aqueous solution of hydrogen peroxide is used as the oxygen source, the hydrogen peroxide will slowly enter the hydrophobic core. The ether generates chiral sulfoxide, which greatly improves the selectivity and reaction efficiency of chiral oxidation.

3)本发明的温敏型离子液体手性Salen Ti配合物催化剂的制备方法简单,工艺条件温和,对温敏型离子液体手性Salen Ti配合物催化剂中的催化剂单元和温敏材料单元可以任意调控,可以获得一系列不同亲疏水比例的嵌段聚合物PNX(IS)y,满足不同的催化应用要求。3) The preparation method of the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst of the present invention is simple, the process conditions are mild, and the catalyst unit and the temperature-sensitive material unit in the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst can be arbitrarily selected. A series of block polymers P N X (IS) y with different hydrophilic and hydrophobic ratios can be obtained to meet different catalytic application requirements.

4)本发明基于温敏型离子液体手性Salen Ti配合物催化剂催化硫醚不对称氧化反应可以在水介质中进行,克服了现有技术需在有机溶剂中进行反应的缺陷。4) The present invention based on the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst catalyzes the asymmetric oxidation reaction of sulfide in an aqueous medium, which overcomes the defect of the prior art that the reaction needs to be carried out in an organic solvent.

5)本发明基于温敏型离子液体手性Salen Ti配合物催化剂充分利用其温敏材料单元具有的疏水-亲水转化性能,在相对较低温度下具有亲水性,在较高温度下具有疏水性,只需通过控制温度,即可实现温敏型离子液体手性Salen Ti配合物催化剂的回收。克服了现有技术中手性Salen Ti配合物催化剂难以回收的缺陷,大大降低催化剂的使用成本。5) The present invention is based on the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst, making full use of the hydrophobic-hydrophilic conversion performance of its temperature-sensitive material unit, and has hydrophilicity at relatively low temperature and high temperature at relatively high temperature. Hydrophobicity, the recovery of temperature-sensitive ionic liquid chiral Salen Ti complex catalyst can be realized only by controlling the temperature. The defect that the chiral Salen Ti complex catalyst is difficult to recover in the prior art is overcome, and the use cost of the catalyst is greatly reduced.

附图说明Description of drawings

【图1】为催化剂在水溶液中的透射电镜(TEM)图;图中b、c、e、分别为PN60(IS)2、PN68(IS)4、PN66(IS)6三种代表性催化剂水溶液在室温下的透射电镜图;从图1中可以看出,催化剂都可以在水中形成纳米球形的粒子,右上角为三种催化剂的水溶液图,三种催化剂均可以很好的溶于水,形成胶束纳米粒子。b’为图bPN60(IS)2水溶液温度升高至35℃时,催化剂聚集的照片,从右上照片可以看出,升高温度,催化剂从水相析出,这就达到了“室温高效催化,升温简捷分离”的效果,从而实现催化剂的简单回收和高效重复。[Fig. 1] is the transmission electron microscope (TEM) image of the catalyst in aqueous solution; in the figure b, c, e are three representatives of PN 60 ( IS) 2 , PN 68 (IS) 4 and PN 66 (IS) 6 respectively Figure 1 shows the transmission electron microscope image of the aqueous solution of the catalyst at room temperature; it can be seen from Figure 1 that the catalysts can form nano-spherical particles in water, and the upper right corner is the aqueous solution of the three catalysts. water, forming micellar nanoparticles. b' is the photo of the catalyst aggregation when the temperature of the bPN 60( IS) 2 aqueous solution is increased to 35 °C. It can be seen from the upper right photo that the catalyst is precipitated from the aqueous phase when the temperature is increased, which achieves "high-efficiency catalysis at room temperature, The effect of heating up and simple separation", so as to realize the simple recovery and efficient repetition of the catalyst.

【图2】为几种特征催化剂的红外表征(FT-IR)图,a为传统催化剂Salen Ti的红外图,b为催化剂PN68(IS)4的红外图,b’为催化剂PN68(IS)4重复使用后的红外图。从图中可以看出,催化剂具有传统Salen Ti的特征峰,且催化剂重复使用后,红外图并没有没有的改变,催化剂依旧具有很好的催化效果。[Fig. 2] is the infrared characterization (FT-IR) image of several characteristic catalysts, a is the infrared image of the traditional catalyst Salen Ti, b is the infrared image of the catalyst PN 68 (IS) 4 , b' is the catalyst PN 68 (IS) ) 4 Infrared images after repeated use. It can be seen from the figure that the catalyst has the characteristic peaks of traditional Salen Ti, and after repeated use of the catalyst, the infrared image does not change, and the catalyst still has a good catalytic effect.

具体实施方式Detailed ways

下面结合实例对本发明作进一步详细的说明,是示例性的描述而不是对本发明的限制。The present invention will be described in further detail below with reference to examples, which are exemplary descriptions rather than limitations of the present invention.

实施例1Example 1

温敏型手性纳米反应催化剂的制备(R1、R2、R3均为叔丁基),R4为乙烯基,选用的离子液体为乙烯基咪唑。Preparation of temperature-sensitive chiral nano-reaction catalyst (R 1 , R 2 , R 3 are all tert-butyl groups), R 4 is vinyl, and the selected ionic liquid is vinylimidazole.

室温下,将已拆分好的(R,R)-环己二胺酒石酸盐(11.2mmol)和碳酸钾(22.5mmol)溶于20mL无水乙醇和去离子水(5/l,V/V)混合溶剂中,缓慢升温至80℃,回流2h,放入冰箱。游离出来的(R,R)-环己二胺用氯仿萃取(4×5mL)后合并有机相。0℃,缓慢加入盐酸乙醚溶液(11.2mmol,2mol/L),在室温下过夜。然后将上述单个氨基被保护的(R,R)-环己二胺(8mmol)与3,5-二叔丁基水杨醛(8mmol)溶解于60mL无水甲醇和无水乙醇(1/1,V/V)的混合溶剂中,加入活性4A分子筛(1g),室温下反应4h,得到淡黄色固体。将20mL 3-叔丁基-5-氯甲基水杨醛(8mmol)与三乙胺(16mmol)的无水二氯甲烷混合溶液缓慢滴加入上述溶液中,室温下反应4h,后过滤,在无水乙醇中重结晶得粗产品。经柱层析纯化(SiO2,乙酸乙酯/正己烷=1/5,V/V),得到淡黄色粉末状固体CL(3.57g,83%)。Calc.for C33H47ClN2O2:C,73.51;H,8.79;N,5.20.Found:C,73.46;H,8.91;N,5.12%. 1H-NMR(CDCl3,400MHz):δppm14.29(s,1H),13.67(s,1H),8.44(s,1H),8.31 (s,1H),7.30(d,1H),7.26(d,1H),6.99(d,1H),6.89(d,1H),4.43(s,2H),3.55-3.32(m,2H),1.97-1.46(m,8H),1.40(s,9H),1.23(s,18H).FT-IR(KBr):3446,2954,2862,1629,1591,1479,1469,1439,1391,1361,1271,1252,1241,1201,1174,1144,1086,1040,981,934,879,828,803,772,731,711,644cm-1At room temperature, the resolved (R,R)-cyclohexanediamine tartrate (11.2mmol) and potassium carbonate (22.5mmol) were dissolved in 20mL of absolute ethanol and deionized water (5/l, V/V ) in the mixed solvent, slowly heat up to 80 °C, reflux for 2 h, and place in the refrigerator. The freed (R,R)-cyclohexanediamine was extracted with chloroform (4×5 mL), and the organic phases were combined. At 0°C, ethereal hydrochloric acid solution (11.2 mmol, 2 mol/L) was slowly added, and the mixture was kept at room temperature overnight. The above single amino-protected (R,R)-cyclohexanediamine (8 mmol) and 3,5-di-tert-butyl salicylaldehyde (8 mmol) were then dissolved in 60 mL of anhydrous methanol and anhydrous ethanol (1/1 , V/V) mixed solvent, add active 4A molecular sieve (1g), and react at room temperature for 4h to obtain a light yellow solid. A mixed solution of 20 mL of 3-tert-butyl-5-chloromethyl salicylaldehyde (8 mmol) and triethylamine (16 mmol) in anhydrous dichloromethane was slowly added dropwise to the above solution, reacted at room temperature for 4 h, filtered, and The crude product was obtained by recrystallization in absolute ethanol. Purification by column chromatography (SiO 2 , ethyl acetate/n-hexane=1/5, V/V) gave CL (3.57 g, 83%) as a pale yellow powdery solid. Calc. for C 33 H 47 ClN 2 O 2 : C, 73.51; H, 8.79; N, 5.20. Found: C, 73.46; H, 8.91; N, 5.12%. 1 H-NMR (CDCl 3 , 400 MHz): δppm14.29(s,1H),13.67(s,1H),8.44(s,1H),8.31(s,1H),7.30(d,1H),7.26(d,1H),6.99(d,1H) ,6.89(d,1H),4.43(s,2H),3.55-3.32(m,2H),1.97-1.46(m,8H),1.40(s,9H),1.23(s,18H).FT-IR ( KBr ): 3446, 2954, 2862, 1629, 1591, 1479, 1469, 1439, 1391, 1361, 1271, 1252, 1241, 1201, 1174, 1144, 1086, 1040, 981, 934, 879, 828, 803, 772, 731, 711.

在50mL干燥的甲苯中加入等物质量的上述固体CL(3.2mmol,1.725g)和乙烯基咪唑(3mmol,0.28g),N2保护下,110℃回流48h。减压蒸馏溶剂,真空干燥,于室温下,将上述产物溶于CH2Cl2中,向其中加入等摩尔量的四异丙基钛酸酯(Ti(OiPr)4,3.2mmol,0.91g),室温反应3h,得到黄色产物IL/Ti(salen)。FT-IR(KBr):γmax/cm-13437,3310,3073,2973,2933,2882,1653,1540,1458,1384,1365,1263,1172,1130,1051,986,922,881,838,626,518cm-1.1H NMR(500MHz,CD3Cl3):δ8.11~7.65(s,2H,CH=N),7.18~7.59(m,4H,ArH),6.05(m,1H,N-CH=CH2)4.15(s,1H,C=NCH),3.87(m,1H,C=NCH),3.56(m,4H,N-CH=CH2and-N-CH2-N-),2.36~2.65(m,2H,CH3-CH-CH3in iPrO-),1.46(m,8H,cyclohexyl-H),1.23~1.37(m,27H,H-in t-butyl),1.31(m,12H,CH3-CH-CH3in iPrO-)。The above solid CL (3.2 mmol, 1.725 g) and vinylimidazole (3 mmol, 0.28 g) were added to 50 mL of dry toluene, and the mixture was refluxed at 110 °C for 48 h under the protection of N 2 . The solvent was distilled under reduced pressure, dried in vacuo, the above product was dissolved in CH 2 Cl 2 at room temperature, and an equimolar amount of tetraisopropyl titanate (Ti(O i Pr) 4 , 3.2 mmol, 0.91 mol) was added thereto. g), react at room temperature for 3 h to obtain a yellow product IL/Ti (salen). FT-IR(KBr): γ max /cm -1 3437,3310,3073,2973,2933,2882,1653,1540,1458,1384,1365,1263,1172,1130,1051,986,922,881,838,626,518cm -1 .1 H NMR (500MHz, CD 3 Cl 3 ): δ8.11~7.65 (s, 2H, CH=N), 7.18~7.59 (m, 4H, ArH), 6.05 (m, 1H, N-CH=CH 2 ) 4.15 (s, 1H, C=NCH), 3.87 (m, 1H, C=NCH), 3.56 (m, 4H, N-CH=CH 2 and-N-CH 2 -N-), 2.36~2.65 (m, 2H, CH 3 -CH-CH 3 in i PrO-), 1.46 (m, 8H, cyclohexyl-H), 1.23~1.37 (m, 27H, H-in t-butyl), 1.31 (m, 12H, CH 3 -CH-CH 3 in i PrO-).

在Schlenk中,加入不同比例量的温敏材料和IL/Ti(salen),将其溶解在无水甲醇中,并向其中加入引发剂偶氮二异丁氰(AIBN,0.5mmol,0.082g)和链转移剂丙硫醇(n-Propanethiol,1mmol,0.076g),N2保护的条件下,60℃反应24h后,冷却到室温,减压蒸馏除去溶剂,然后用四氢呋喃溶解,乙醚沉淀,真空干燥得到黄色固体产物PNx(IS)y,(x代表温敏单元的聚合物,y代表离子液体功能化Salen Ti单元的聚合度)。x和y通过核磁表征得出。In Schlenk, different proportions of temperature-sensitive materials and IL/Ti(salen) were added, which were dissolved in anhydrous methanol, and the initiator azobisisobutylcyanide (AIBN, 0.5mmol, 0.082g) was added thereto. and chain transfer agent propanethiol (n-Propanethiol, 1mmol, 0.076g), under the condition of N 2 protection, react at 60°C for 24h, cool to room temperature, remove the solvent under reduced pressure, then dissolve in tetrahydrofuran, precipitate with ether, vacuum Drying yields a yellow solid product PN x (IS) y , (x represents the polymer of thermosensitive units, y represents the degree of polymerization of ionic liquid-functionalized Salen Ti units). x and y were obtained by NMR characterization.

其他催化剂按照上述方法制备。列举四例,分别为:Other catalysts were prepared as described above. Four examples are listed:

PN60(IS)2:FT-IR(KBr):γmax/cm-13436,3313,3075,2971,2942,2891,1653,1542,1457,1386,1368,1263,1170,1131,1054,985,927,880,836,806,709,624,519cm-1.1H NMR(500MHz,CDCl3):δ6.24~6.89(m,60H,HC-NH-C=O),6.08(m,2H,N-CH-CH2-of N-vinyl),4.18(m,2H,C=NCH),3.99(m,60H,-CH-CH2inNIPAAm),3.88(m,2H,C=NCH),3.67(m,8H,-CH-CH2-of N-vinyl in IL and-N-CH2-N-),3.45(m,60H,CH3-CH-CH3in NIPAAm),3.06(m,12H,-N-CH2-CH2-N-and-N-CH2-Ph-),2.84(m,2H,SH-CH2-CH2-CH3),2.64~2.73(m,4H,CH3-CH-CH3ofiPrO-in Ti(salen)),2.38(m,2H,SH-CH2-CH2-CH3),1.86~2.12 (m,120 H,-CH2-CH-in NIPAAm),1.71(s,3 H,SH-CH2-CH2-CH3),1.43(16 H,cyclohexyl-H),1.13~1.33(54H,H-in t-butyl),1.09~1.16(m,384 H,CH3-CH-CH3in iPrO-and NIPAAm);PN 60( IS) 2 : FT-IR(KBr): γ max /cm -1 3436, 3313, 3075, 2971, 2942, 2891, 1653, 1542, 1457, 1386, 1368, 1263, 1170, 1131, 1054, 985, 927, 880, 836, 806, 709, 624, 519 cm -1 . 1 H NMR (500MHz, CDCl 3 ): δ6.24~6.89 (m, 60H, HC-NH-C=O), 6.08 (m, 2H, N-CH-CH 2 -of N- vinyl), 4.18 (m, 2H, C=NCH), 3.99 (m, 60H, -CH- CH2 in NIPAAm), 3.88 (m, 2H, C=NCH), 3.67 (m, 8H, -CH- CH2 -of N-vinyl in IL and -N-CH 2 -N-), 3.45 (m, 60H, CH 3 -CH-CH 3 in NIPAAm), 3.06 (m, 12H, -N-CH 2 -CH 2 - N-and-N-CH 2 -Ph-), 2.84(m,2H,SH-CH 2 -CH 2 -CH 3 ),2.64~2.73(m,4H,CH 3 -CH-CH 3 of i PrO- in Ti(salen)), 2.38(m, 2H, SH-CH 2 -CH 2 -CH 3 ), 1.86~2.12 (m, 120 H, -CH 2 -CH-in NIPAAm), 1.71(s, 3 H , SH-CH 2 -CH 2 -CH 3 ), 1.43 (16 H, cyclohexyl-H), 1.13~1.33 (54H, H-in t-butyl), 1.09~1.16 (m, 384 H, CH 3 -CH -CH 3 in i PrO-and NIPAAm);

PN68(IS)4:FT-IR(KBr):γmax/cm-1 3436,3302,3064,2967,2923,2867,1645,1541,1454,1382,1365,1265,1175,1128,1053,965,920,882,834,809,709,635,624,509 cm-1.1HNMR(500 MHz,CD3Cl3):δ8.15~7.68(m,8 H,CH=N),7.14~7.64(m,16 H,ArH),6.24~6.89(m,68 H,HC-NH-C=O),6.05(m,4H,N-CH-CH2-of N-vinyl),4.14(m,4 H,C=NCH),3.99(m,68 H,-CH-CH2-in NIPAAm),3.85(m,4 H,C=NCH),3.58(m,16 H,-CH-CH2-of N-vinyl inIL and-N-CH2-N-),3.26(m,68 H,CH3-CH-CH3 in NIPAAm),2.90(m,24 H,-N-CH2-CH2-N-and-N-CH2-Ph-),2.78(m,2 H,SH-CH2-CH2-CH3),2.34~2.68(m,8 H,CH3-CH-CH3ofiPrO-inTi(salen)),2.10(m,2 H,SH-CH2-CH2-CH3),1.78~1.98(m,136 H,-CH-CH2in NIPAAm),1.73(s,3H,SH-CH2-CH2-CH3),1.47(m,32 H,cyclohexyl-H),1.21~1.38(m,108 H,H-int-butyl),1.06~1.15(m,456 H,CH3-CH-CH3iniPrO-and NIPAAm);PN 68 (IS) 4 : FT-IR (KBr): γ max /cm -1 965, 920, 882, 834, 809, 709, 635, 624, 509 cm -1 . 1 HNMR (500 MHz, CD 3 Cl 3 ): δ8.15~7.68 (m, 8 H, CH=N), 7.14~7.64 (m, 16 H, ArH), 6.24~6.89 (m , 68 H, HC-NH-C=O), 6.05 (m, 4H, N-CH-CH 2 -of N-vinyl), 4.14 (m, 4 H, C=NCH), 3.99 (m, 68 H , -CH-CH 2 -in NIPAAm), 3.85 (m, 4 H, C=NCH), 3.58 (m, 16 H, -CH-CH 2 -of N-vinyl inIL and-N-CH 2 -N- ), 3.26 (m, 68 H, CH 3 -CH-CH 3 in NIPAAm), 2.90 (m, 24 H, -N-CH 2 -CH 2 -N-and-N-CH 2 -Ph-), 2.78 (m, 2 H, SH-CH 2 -CH 2 -CH 3 ), 2.34~2.68 (m, 8 H, CH 3 -CH-CH 3 of i PrO-inTi(salen)), 2.10 (m, 2 H , SH-CH 2 -CH 2 -CH 3 ), 1.78~1.98(m, 136 H, -CH-CH 2 in NIPAAm), 1.73(s, 3H, SH-CH 2 -CH 2 -CH 3 ), 1.47 (m,32H,cyclohexyl-H),1.21~1.38(m,108H,H-int-butyl),1.06~1.15(m,456H,CH 3 -CH-CH 3 in i PrO-and NIPAAm) ;

PN66(IS)6:FT-IR(KBr):γmax/cm-13441,3309,3061,2974,2927,2864,1651,1530,1453,1382,1363,1266,1176,1123,1051,963,920,883,836,805,708,625,504cm-1.1H NMR(500 MHz,CD3Cl3):δ8.13~7.72(m,12 H,CH=N),7.18~7.69(m,24 H,ArH),6.21~6.92(m,66 H,HC-NH-C=O),6.16(m,6 H,N-CH-CH2-of N-vinyl),4.04(m,6H,C=NCH),3.97(m,66 H,-CH-CH2-in NIPAAm),3.81(m,6 H,C=NCH),3.56(m,24 H,-CH-CH2-of N-vinyl inIL and-N-CH2-N-),3.23(m,66 H,CH3-CH-CH3in NIPAAm),3.09(m,36 H,-N-CH2-CH2-N-and-N-CH2-Ph-),2.75(m,2 H,SH-CH2-CH2-CH3),2.41~2.61(m,12 H,CH3-CH-CH3ofiPrO-in Ti(salen)),2.23(m,2 H,SH-CH2-CH2-CH3),1.76~1.82(m,132 H,-CH-CH2in NIPAAm),1.75(s,3 H,SH-CH2-CH2-CH3),1.41(m,48 H,cyclohexyl-H),1.22~1.31(m,162 H,H-in t-butyl),1.01~1.12(m,469 H,CH3-CH-CH3iniPrO-and NIPAAm);PN 66 (IS) 6 : FT-IR (KBr): γ max /cm -1 963, 920, 883, 836, 805, 708, 625, 504 cm -1 . 1 H NMR (500 MHz, CD 3 Cl 3 ): δ8.13~7.72 (m, 12 H, CH=N), 7.18~7.69 (m, 24 H, ArH), 6.21~6.92 ( m, 66 H, HC-NH-C=O), 6.16 (m, 6 H, N-CH-CH 2 -of N-vinyl), 4.04 (m, 6H, C=NCH), 3.97 (m, 66 H, -CH-CH 2 -in NIPAAm), 3.81 (m, 6 H, C=NCH), 3.56 (m, 24 H, -CH-CH 2 -of N-vinyl inIL and -N-CH 2 -N -), 3.23 (m, 66 H, CH 3 -CH-CH 3 in NIPAAm), 3.09 (m, 36 H, -N-CH 2 -CH 2 -N-and-N-CH 2 -Ph-), 2.75(m, 2 H, SH-CH 2 -CH 2 -CH 3 ), 2.41~2.61(m, 12 H, CH 3 -CH-CH 3 of i PrO-in Ti(salen)), 2.23(m, 2 H,SH-CH 2 -CH 2 -CH 3 ),1.76~1.82(m,132 H,-CH-CH 2 in NIPAAm),1.75(s,3 H,SH-CH 2 -CH 2 -CH 3 ), 1.41(m, 48 H, cyclohexyl-H), 1.22~1.31(m, 162 H, H-in t-butyl), 1.01~1.12(m, 469 H, CH 3 -CH-CH 3 in i PrO -and NIPAAm);

PN64(IS)8:FT-IR(KBr):γmax/cm-13435,3302,3066,2974,2924,2860,1655,1535,1455,1380,1365,1264,1174,1125,1054,967,924,882,839,806,709,634,625,507cm-1.1HNMR(500 MHz,CD3Cl3):δ8.11~7.62(m,16 H,CH=N),7.13~7.67(m,32 H,ArH),6.24~6.87(m,64 H,HC-NH-C=O),6.22(m,8 H, N-CH-CH2-of N-vinyl),4.46(m,8H,C=NCH),4.05(m,64H,-CH-CH2-in NIPAAm),3.78(m,8H,C=NCH),3.58(m,32H,-CH-CH2-of N-vinylin IL and-N-CH2-N-),3.18(m,64H,CH3-CH-CH3in NIPAAm),2.86(m,48H,-N-CH2-CH2-N-and-N-CH2-Ph-),2.75(m,2H,SH-CH2-CH2-CH3),2.45~2.63(m,16H,CH3-CH-CH3ofiPrO-inTi(salen)),2.12(m,2H,SH-CH2-CH2-CH3),1.75~1.87(m,128H,-CH-CH2-in NIPAAm),1.73(s,3H,SH-CH2-CH2-CH3),1.41(m,64H,cyclohexyl-H),1.22~1.31(m,216H,H-in t-butyl),1.01~1.12(m,480H,CH3-CH-CH3iniPrO-and NIPAAm)。PN 64 (IS) 8 : FT-IR (KBr): γ max /cm -1 967,924,882,839,806,709,634,625,507cm -1 . 1 HNMR (500 MHz, CD 3 Cl 3 ): δ8.11~7.62(m,16H,CH=N),7.13~7.67(m,32H,ArH),6.24~6.87(m , 64 H, HC-NH-C=O), 6.22 (m, 8 H, N-CH-CH 2 -of N-vinyl), 4.46 (m, 8H, C=NCH), 4.05 (m, 64H, -CH-CH 2 -in NIPAAm), 3.78 (m, 8H, C=NCH), 3.58 (m, 32H, -CH-CH 2 -of N-vinylin IL and-N-CH 2 -N-), 3.18 (m, 64H, CH 3 -CH-CH 3 in NIPAAm), 2.86 (m, 48H, -N-CH 2 -CH 2 -N-and-N-CH 2 -Ph-), 2.75 (m, 2H, SH-CH 2 -CH 2 -CH 3 ), 2.45~2.63(m,16H,CH 3 -CH-CH 3 of i PrO-inTi(salen)),2.12(m,2H,SH-CH 2 -CH 2 -CH 3 ), 1.75~1.87(m, 128H, -CH-CH 2 -in NIPAAm), 1.73(s, 3H, SH-CH 2 -CH 2 -CH 3 ), 1.41(m, 64H, cyclohexyl-H ), 1.22~1.31 (m, 216H, H-in t-butyl), 1.01~1.12 (m, 480H, CH 3 -CH-CH 3 in i PrO-and NIPAAm).

按照上述方法,用不同的温敏材料制备出一系列的催化剂。According to the above method, a series of catalysts were prepared with different temperature-sensitive materials.

实施例2Example 2

以甲基苯基硫醚为模型底物对反应条件进行优化,结果如下。The reaction conditions were optimized using methyl phenyl sulfide as a model substrate, and the results were as follows.

反应路线:Reaction route:

在10mL反应瓶中加入1mmol的底物(甲基苯基硫醚),0.5mmol%的催化剂PN68(IS)4,1mL H2O作溶剂,25℃的条件下,于15min内缓慢滴加1.2mmol 30%的H2O2,继续反应45min。反应结束后,催化剂自动析出,分出水相,催化剂用正己烷洗涤后干燥并重复使用,水相用二氯甲烷萃取后得到产物,并将产物进行气相色谱分析检测转化率和选择性,液相色谱分析得到ee值,柱层析等到产物,计算得到产率,核磁表征确定产物结构。Add 1 mmol of substrate (methyl phenyl sulfide), 0.5 mmol% of catalyst PN 68 (IS) 4, 1 mL of H 2 O as solvent to a 10 mL reaction flask, and slowly dropwise add it within 15 min under the condition of 25° C. 1.2 mmol of 30 % H2O2 and the reaction continued for 45 min. After the reaction is completed, the catalyst is automatically precipitated, the water phase is separated, the catalyst is washed with n-hexane, dried and reused, the water phase is extracted with dichloromethane to obtain a product, and the product is subjected to gas chromatography analysis to detect the conversion rate and selectivity, liquid phase. The ee value was obtained by chromatographic analysis, the product was obtained by column chromatography, the yield was calculated, and the structure of the product was determined by NMR characterization.

将四种对比催化剂和传统Salen Ti催化剂用于催化甲基苯基硫醚氧化成亚砜的反应,其结果如下表所示:Four comparative catalysts and conventional Salen Ti catalysts were used to catalyze the oxidation of methylphenyl sulfide to sulfoxide, and the results are shown in the following table:

[a]Yield of the isolated product.[b]Determined by HPLC.[a]Yield of the isolated product.[b]Determined by HPLC.

由表可见,亲疏水取代基的比例会影响催化效果,呈现规律性的变化。PN68(IS)4是最适中的亲疏水比例,当亲水基过长时(PN60(IS)2),活性中心就会大大降低,催化效率低于PN68(IS)4(收率只有75%)。当亲疏水比例<17时,催化活性也会降低,(PN66(IS)6为89%,PN64(IS)8为86%),且ee值也呈现规律性变化。It can be seen from the table that the ratio of hydrophilic and hydrophobic substituents will affect the catalytic effect, showing regular changes. PN 68 (IS) 4 is the most moderate hydrophilic-hydrophobic ratio. When the hydrophilic group is too long (PN 60 (IS) 2 ), the active center will be greatly reduced, and the catalytic efficiency is lower than that of PN 68 (IS) 4 (yield). only 75%). When the hydrophilic-hydrophobic ratio is less than 17, the catalytic activity also decreases (89% for PN 66 (IS) 6 , 86% for PN 64 (IS) 8 ), and the ee value also changes regularly.

甲基苯基亚砜,白色固体,硅胶柱层析分离(甲醇:二氯甲烷=20:80(体积比))(93%收率,98%ee)。1H NMR(CDCl3,500MHz):δ(ppm):2.56(s,3H,Me),7.37-7.52(m,5H,ArH).13C NMR(CDCl3,125MHz):δ(ppm):43.8(SCH3),123.4,129.3,131.0,145.5;转化率和选择性由气相色谱测得(Agilent Co,HP19091G-B213,柱温180℃,流速:1.6mL/min),Methylphenyl sulfoxide, white solid, separated by silica gel column chromatography (methanol:dichloromethane=20:80 (volume ratio)) (93% yield, 98% ee). 1 H NMR (CDCl 3 , 500MHz): δ (ppm): 2.56 (s, 3H, Me), 7.37-7.52 (m, 5H, ArH). 13 C NMR (CDCl 3 , 125 MHz): δ (ppm): 43.8 (SCH 3 ), 123.4, 129.3, 131.0, 145.5; conversion and selectivity were measured by gas chromatography (Agilent Co, HP19091G-B213, column temperature 180°C, flow rate: 1.6mL/min),

ee值由手性高效液相色谱测得(色谱柱:Daicel chiralpak AD,流动相:异丙醇/正己烷=10:90(体积比),流速:1.0mL/min,波长:254nm,温度25℃)。The ee value was measured by chiral high performance liquid chromatography (chromatographic column: Daicel chiralpak AD, mobile phase: isopropanol/n-hexane=10:90 (volume ratio), flow rate: 1.0 mL/min, wavelength: 254 nm, temperature 25 °C).

实施例3Example 3

选取PN68(IS)4进行不同底物的考查。PN 68 (IS) 4 was selected for the examination of different substrates.

反应路线:Reaction route:

反应步骤和处理方式如上实施例2Reaction steps and processing mode are as above embodiment 2

将催化剂PN68(IS)4和传统Salen Ti催化剂用于催化其他四种硫醚氧化成亚砜的反应,其结果如下表所示:Catalyst PN 68 (IS) 4 and conventional Salen Ti catalysts were used to catalyze the oxidation of four other thioethers to sulfoxides, and the results are shown in the table below:

由表可以看出,催化剂PN68(IS)4的催化效果明显优于传统催化剂的效果,在产率和ee值上都有巨大的优势。It can be seen from the table that the catalytic effect of the catalyst PN 68 (IS) 4 is obviously better than that of the traditional catalyst, and it has huge advantages in yield and ee value.

部分产物的表征数据如下:The characterization data of some products are as follows:

4-溴苯基甲基亚砜,黄色固体,硅胶柱层析分离(甲醇:二氯甲烷=20:80(体积比))(产率82%,ee值>99%)。1H NMR(CDCl3,500MHz):δ(ppm):3.07(s,3H,SCH3),7.84(d,2H,ArH),7.74(d,2H,ArH).13C NMR(CDCl3,125MHz):δ(ppm):44.5(SCH3),129.0,132.7,139.5;ee值由手性高效液相色谱测得(色谱柱:Daicelchiralpak AD,流动相:异丙醇/正己烷=50:50(体积比),流速:1.0mL/min,波长:254nm,温度25℃)4-Bromophenylmethyl sulfoxide, yellow solid, separated by silica gel column chromatography (methanol:dichloromethane=20:80 (volume ratio)) (yield 82%, ee value>99%). 1 H NMR (CDCl 3 , 500MHz): δ (ppm): 3.07 (s, 3H, SCH 3 ), 7.84 (d, 2H, ArH), 7.74 (d, 2H, ArH). 13 C NMR (CDCl 3 , 125MHz): δ (ppm): 44.5 (SCH 3 ), 129.0, 132.7, 139.5; ee value was measured by chiral high performance liquid chromatography (chromatographic column: Daicelchiralpak AD, mobile phase: isopropanol/n-hexane=50: 50 (volume ratio), flow rate: 1.0mL/min, wavelength: 254nm, temperature 25℃)

4-甲氧基苯基甲基亚砜,无色液体,硅胶柱层析分离(甲醇:二氯甲烷=20:80(体积比))(产率90%,ee值94%)。1H NMR(CDCl3,500MHz):δ(ppm):3.01(s,3H,SCH3),3.91(s,3H,OCH3),7.04(d,2H,ArH),7.89(d,2H,ArH).13C NMR(CDCl3,125MHz):δ(ppm):44.9(SCH3),55.7(OCH3),114.5,129.6,132.3,163.7;ee值由手性高效液相色谱测得(色谱柱:Daicelchiralpak AD,流动相:异丙醇/正己烷=20:80(体积比),流速:1.0mL/min,波长:254nm,温度25℃)4-Methoxyphenylmethyl sulfoxide, colorless liquid, separated by silica gel column chromatography (methanol:dichloromethane=20:80 (volume ratio)) (yield 90%, ee value 94%). 1 H NMR (CDCl 3 , 500MHz): δ (ppm): 3.01 (s, 3H, SCH 3 ), 3.91 (s, 3H, OCH 3 ), 7.04 (d, 2H, ArH), 7.89 (d, 2H, ArH). 13 C NMR (CDCl 3 , 125MHz): δ (ppm): 44.9 (SCH 3 ), 55.7 (OCH 3 ), 114.5, 129.6, 132.3, 163.7; ee values were measured by chiral high performance liquid chromatography ( Chromatographic column: Daicelchiralpak AD, mobile phase: isopropanol/n-hexane=20:80 (volume ratio), flow rate: 1.0mL/min, wavelength: 254nm, temperature 25°C)

4-硝基苯基甲基亚砜,黄色固体,硅胶柱层析分离(甲醇:二氯甲烷=20:80(体积比))(产率97%,ee值88%)。1H NMR(CDCl3,500MHz):δ(ppm):2.57(s,3H,SCH3),7.30(d,2H,ArH),8.16(d,2H,ArH).13C NMR(CDCl3,125MHz):δ (ppm):43.9(SCH3),113.9,125.0,144.7,148.9;ee值由手性高效液相色谱测得(色谱柱:Daicel chiralpak AD,流动相:异丙醇/正己烷=30:70(体积比),流速:1.0mL/min,波长:254nm,温度25℃)4-Nitrophenylmethyl sulfoxide, yellow solid, separated by silica gel column chromatography (methanol:dichloromethane=20:80 (volume ratio)) (yield 97%, ee value 88%). 1 H NMR(CDCl 3 , 500MHz): δ(ppm): 2.57(s, 3H, SCH 3 ), 7.30(d, 2H, ArH), 8.16(d, 2H, ArH). 13 C NMR(CDCl 3 , 125MHz): δ (ppm): 43.9 (SCH 3 ), 113.9, 125.0, 144.7, 148.9; ee value was measured by chiral high performance liquid chromatography (chromatographic column: Daicel chiralpak AD, mobile phase: isopropanol/n-hexane =30:70 (volume ratio), flow rate: 1.0mL/min, wavelength: 254nm, temperature 25℃)

2-甲氧基苯基甲基亚砜,无色液体,硅胶柱层析分离(甲醇:二氯甲烷=20:80(体积比))(产率88%,ee值99%)。1H NMR(CDCl3,500MHz):δ(ppm):2.67(s,3H,SCH3),3.78(s,3H,OCH3),6.84-7.37(m,4H,ArH).13C NMR(CDCl3,125MHz):δ(ppm):13C NMR(CDCl3,125MHz):δ(ppm):41.1(SCH3),55.7(OCH3),118.6,121.5,124.3,132.0,154.7;ee值由手性高效液相色谱测得(色谱柱:Daicel chiralpak AD,流动相:异丙醇/正己烷=20:80(体积比),流速:1.0mL/min,波长:254nm,温度25℃)2-Methoxyphenylmethyl sulfoxide, colorless liquid, separated by silica gel column chromatography (methanol:dichloromethane=20:80 (volume ratio)) (yield 88%, ee value 99%). 1 H NMR (CDCl 3 , 500MHz): δ (ppm): 2.67 (s, 3H, SCH 3 ), 3.78 (s, 3H, OCH 3 ), 6.84-7.37 (m, 4H, ArH). 13 C NMR ( CDCl 3 , 125MHz): δ (ppm): 13 C NMR (CDCl 3 , 125MHz): δ (ppm): 41.1 (SCH 3 ), 55.7 (OCH 3 ), 118.6, 121.5, 124.3, 132.0, 154.7; ee values Measured by chiral high performance liquid chromatography (chromatographic column: Daicel chiralpak AD, mobile phase: isopropanol/n-hexane = 20:80 (volume ratio), flow rate: 1.0 mL/min, wavelength: 254 nm, temperature 25 °C)

奥美拉唑,白色粉末,硅胶柱层析分离(甲醇:二氯甲烷=20:80(体积比))(产率80%,ee值87%)。1H NMR(DMSO,500MHz):δ(ppm):2.15(s,6H),3.65(s,3H),3.78(s,3H),4.66and 4.75(AB-system,2H),6.90(dd,1H),7.08(s,1H),7.53(d,1H),8.15(s,1H);ee值由手性高效液相色谱测得(色谱柱:Daicel chiralpak AD,流动相:异丙醇/正己烷=20:80(体积比),流速:1.0mL/min,波长:254nm,温度25℃)Omeprazole, white powder, was separated by silica gel column chromatography (methanol:dichloromethane=20:80 (volume ratio)) (yield 80%, ee value 87%). 1 H NMR (DMSO, 500MHz): δ (ppm): 2.15 (s, 6H), 3.65 (s, 3H), 3.78 (s, 3H), 4.66 and 4.75 (AB-system, 2H), 6.90 (dd, 1H), 7.08(s, 1H), 7.53(d, 1H), 8.15(s, 1H); ee values were measured by chiral high performance liquid chromatography (chromatographic column: Daicel chiralpak AD, mobile phase: isopropanol/ n-hexane=20:80 (volume ratio), flow rate: 1.0mL/min, wavelength: 254nm, temperature 25℃)

该催化剂的温敏性体现在,反应结束后,催化剂从反应体系析出,升高温度时,催化剂完全析出而分离,在室温的条件下,催化剂溶于水,温度升高时,催化剂就从水相析出聚集。具体图形,可由透射电镜看出。The temperature sensitivity of the catalyst is reflected in that after the reaction is completed, the catalyst is precipitated from the reaction system. When the temperature is raised, the catalyst is completely precipitated and separated. Under the condition of room temperature, the catalyst is soluble in water. When the temperature is raised, the catalyst is released from water. Phase precipitation aggregates. The specific pattern can be seen by transmission electron microscope.

实施例4Example 4

催化剂重复使用性能的考查Examination of the reusability of catalysts

将上述反应后的溶液通过升温,催化剂就可从反应体系中析出,再经过过滤、洗涤、烘干等步骤,将催化剂用于下一个催化反应体系,其重复使用效果如下表所示:By heating the solution after the above reaction, the catalyst can be separated out from the reaction system, and then through the steps of filtration, washing, drying and the like, the catalyst is used in the next catalytic reaction system, and its repeated use effect is shown in the following table:

[a]Yield of the isolated product.[b]Determined by HPLC.[a]Yield of the isolated product.[b]Determined by HPLC.

由上述数据可以看出,催化剂的重复使用性较好。该反应体系都是以水为反应的溶剂,绿色环保,为企业大量生产手性亚砜类亚砜提供了方法。It can be seen from the above data that the catalyst has good reusability. The reaction system uses water as the solvent for the reaction, which is green and environmentally friendly, and provides a method for enterprises to mass-produce chiral sulfoxides.

Claims (8)

1.一种基于温敏型离子液体手性Salen Ti配合物催化剂水相催化硫醚不对称氧化反应的方法,其特征在于:在水介质中,式2结构硫醚化合物和过氧化氢在式1结构温敏型离子液体手性Salen Ti配合物催化剂的催化作用下进行不对称氧化反应,即得式3结构手性亚砜化合物:1. a method based on temperature-sensitive ionic liquid chiral Salen Ti complex catalyst aqueous catalysis sulfide asymmetric oxidation reaction, it is characterized in that: in aqueous medium, formula 2 structure sulfide compound and hydrogen peroxide are in formula The asymmetric oxidation reaction is carried out under the catalysis of the thermosensitive ionic liquid chiral Salen Ti complex catalyst of structure 1, and the chiral sulfoxide compound of formula 3 is obtained: 其中,in, 为N-异丙基丙烯酰胺聚合物单元和/或N,N’-二甲基丙烯酰胺聚合物单元; is N-isopropylacrylamide polymer unit and/or N,N'-dimethylacrylamide polymer unit; X/Y为(1~100):1;X/Y is (1~100):1; R1、R2和R3独立地选自氢、C1~C5的烷基、苯基、含苯基取代基的C1~C5的烷基或C1~C5的烷氧基;R 1 , R 2 and R 3 are independently selected from hydrogen, C 1 -C 5 alkyl, phenyl, C 1 -C 5 alkyl containing a phenyl substituent, or C 1 -C 5 alkoxy ; R4n为0~3; R4 is n is 0 to 3; R5为C1~C3的烷基或氢原子;R 5 is a C 1 -C 3 alkyl group or a hydrogen atom; R6和R7独立地选自:不含取代基的C6~C12的芳基,或含卤素、C1~4烷基、C1~4烷氧基、C2~5烷氧基羰基、硝基或氰基取代基的C6~C12的芳基;R 6 and R 7 are independently selected from: unsubstituted C 6 -C 12 aryl, or halogen-containing, C 1-4 alkyl, C 1-4 alkoxy, C 2-5 alkoxy C 6 -C 12 aryl groups of carbonyl, nitro or cyano substituents; 或不含取代的C1~C6的烷基,或含芳基取代基的C1~C6的烷基,或含卤素、硝基、羟基或氰基取代基的C1~C6的烷基;或所述含芳基取代基的C1~C6的烷基中芳基取代基为不含取代基的C6~C12的芳基,或含卤素、C1~4烷基、C1~4烷氧基、C2~5烷氧基羰基、硝基或氰基取代基的C6~C12的芳基。Or unsubstituted C 1 -C 6 alkyl group, or C 1 -C 6 alkyl group containing aryl substituent, or C 1 -C 6 alkyl group containing halogen, nitro, hydroxyl or cyano substituent alkyl; or The aryl substituent in the C 1 -C 6 alkyl group containing an aryl substituent is a C 6 -C 12 aryl group without a substituent, or a halogen-containing, C 1-4 alkyl, C 1- 4 alkoxy, C 2-5 alkoxycarbonyl, nitro or cyano substituent C 6 -C 12 aryl group. 2.根据权利要求1所述的基于温敏型离子液体手性Salen Ti配合物催化剂水相催化硫醚不对称氧化反应的方法,其特征在于:R4n为0~2;R5为氢原子。2. the method based on the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst water-phase catalyzed sulfide asymmetric oxidation reaction according to claim 1, is characterized in that: R 4 is n is 0-2; R 5 is a hydrogen atom. 3.根据权利要求1所述的基于温敏型离子液体手性Salen Ti配合物催化剂水相催化硫醚不对称氧化反应的方法,其特征在于:X/Y为(5~50):1。3 . The method for water-phase catalyzed sulfide asymmetric oxidation reaction based on a temperature-sensitive ionic liquid chiral Salen Ti complex catalyst according to claim 1 , wherein: X/Y is (5~50):1. 4 . 4.根据权利要求1所述的基于温敏型离子液体手性Salen Ti配合物催化剂水相催化硫醚不对称氧化反应的方法,其特征在于:R6和R7独立地选自以下取代基中一种:4. the method based on the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst water-phase catalyzed thioether asymmetric oxidation reaction according to claim 1, is characterized in that: R 6 and R 7 are independently selected from the following substituents One of: 5.根据权利要求1~4任一项所述的基于温敏型离子液体手性Salen Ti配合物催化剂水相催化硫醚不对称氧化反应的方法,其特征在于:将过氧化氢溶液缓慢滴加到含所述硫醚化合物及所述温敏型离子液体手性Salen Ti配合物催化剂的水溶液中,进行不对称氧化反应。5. The method for water-phase catalyzed asymmetric oxidation reaction of thioether based on a temperature-sensitive ionic liquid chiral Salen Ti complex catalyst according to any one of claims 1 to 4, wherein the hydrogen peroxide solution is slowly dripped Adding the sulfide compound and the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst to an aqueous solution to carry out asymmetric oxidation reaction. 6.根据权利要求5所述的基于温敏型离子液体手性Salen Ti配合物催化剂水相催化硫醚不对称氧化反应的方法,其特征在于:所述温敏型离子液体手性Salen Ti配合物催化剂与所述硫醚化合物的摩尔比为1:50~1:1000;6. the method based on temperature-sensitive ionic liquid chiral Salen Ti complex catalyst water-phase catalyzed sulfide asymmetric oxidation reaction according to claim 5, it is characterized in that: described temperature-sensitive ionic liquid chiral Salen Ti is coordinated The molar ratio of the physical catalyst to the sulfide compound is 1:50~1:1000; 所述的过氧化氢溶液中过氧化氢与所述硫醚化合物的摩尔比为1:1~2:1;The molar ratio of hydrogen peroxide to the sulfide compound in the hydrogen peroxide solution is 1:1 to 2:1; 所述的过氧化氢溶液浓度为15wt%~70wt%。The concentration of the hydrogen peroxide solution is 15wt%-70wt%. 7.根据权利要求1~4任一项所述的基于温敏型离子液体手性Salen Ti配合物催化剂水相催化硫醚不对称氧化反应的方法,其特征在于:所述的不对称氧化反应在温度为-50℃~50℃条件下,反应0.1~5h。7. The method for water-phase catalyzed sulfide asymmetric oxidation reaction based on temperature-sensitive ionic liquid chiral Salen Ti complex catalyst according to any one of claims 1 to 4, characterized in that: the asymmetric oxidation reaction Under the condition that the temperature is -50℃~50℃, the reaction is carried out for 0.1~5h. 8.根据权利要求7所述的基于温敏型离子液体手性Salen Ti配合物催化剂水相催化硫醚不对称氧化反应的方法,其特征在于:不对称氧化反应完成后,将反应体系升高温度实现温敏型离子液体手性Salen Ti配合物催化剂亲水-疏水转变,析出温敏型离子液体手性Salen Ti配合物催化剂,过滤回收后可重复使用。8. the method based on the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst water-phase catalyzed sulfide asymmetric oxidation reaction according to claim 7, is characterized in that: after the asymmetric oxidation reaction is completed, the reaction system is raised The temperature realizes the hydrophilic-hydrophobic transition of the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst, and the temperature-sensitive ionic liquid chiral Salen Ti complex catalyst is precipitated, which can be reused after filtration and recovery.
CN201610390141.8A 2016-06-03 2016-06-03 A method of based on temperature sensitive type ionic liquid chirality Salen Ti composition catalyst aqueous catalysis thioether asymmetric oxidation reaction Expired - Fee Related CN106045804B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610390141.8A CN106045804B (en) 2016-06-03 2016-06-03 A method of based on temperature sensitive type ionic liquid chirality Salen Ti composition catalyst aqueous catalysis thioether asymmetric oxidation reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610390141.8A CN106045804B (en) 2016-06-03 2016-06-03 A method of based on temperature sensitive type ionic liquid chirality Salen Ti composition catalyst aqueous catalysis thioether asymmetric oxidation reaction

Publications (2)

Publication Number Publication Date
CN106045804A CN106045804A (en) 2016-10-26
CN106045804B true CN106045804B (en) 2019-01-11

Family

ID=57170135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610390141.8A Expired - Fee Related CN106045804B (en) 2016-06-03 2016-06-03 A method of based on temperature sensitive type ionic liquid chirality Salen Ti composition catalyst aqueous catalysis thioether asymmetric oxidation reaction

Country Status (1)

Country Link
CN (1) CN106045804B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109675626B (en) * 2019-01-11 2021-12-28 南阳师范学院 Temperature-sensitive polyoxometallate composite catalyst and synthesis method thereof
CN111574497A (en) * 2020-04-27 2020-08-25 湖北工程学院 Method for preparing chiral sulfoxide drugs in water phase

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120077913A (en) * 2010-12-31 2012-07-10 제일모직주식회사 Method for preparing aromatic carbonate from dialkyl carbonate
CN104117392A (en) * 2013-04-27 2014-10-29 浙江海翔药业股份有限公司 Supported catalyst and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119065B2 (en) * 2003-10-29 2006-10-10 Nagoya Industrial Science Research Institute Metal complex-protein composite and oxidation catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120077913A (en) * 2010-12-31 2012-07-10 제일모직주식회사 Method for preparing aromatic carbonate from dialkyl carbonate
CN104117392A (en) * 2013-04-27 2014-10-29 浙江海翔药业股份有限公司 Supported catalyst and preparation method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Asymmetric epoxidation of unfunctionalized olefins accelerated by thermoresponsive self-assemblies in aqueous systems;Yaoyao Zhang et al;《Catalysis Science & Technology》;20150818;第6卷(第2期);488-496
Cooperative chiral salen TiIV catalysts with built-in phase-transfer capability accelerate asymmetric sulfoxidation in water;Guangwu Zhao et al;《RSC Advances》;20160229;第6卷(第29期);24704-24711
New chiral catalytic membrane reactor created by immobilizing salen-Mn(III) onto APTES modified ceramic membrane and its performances in epoxidation of styrene;Min Liu et al;《Catalysis Communications》;20150128;第64卷;70-74
钛催化的不对称硫醚氧化研究进展;唐红艳等;《化工科技》;20091215;第17卷(第6期);58-63

Also Published As

Publication number Publication date
CN106045804A (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP4834545B2 (en) Method for producing optically active epoxy compound, complex used in the method, and method for producing the same
CN105879914B (en) A kind of temperature sensitive type ionic liquid chirality Salen Ti composition catalysts and preparation method thereof
CN105498839B (en) A kind of heterogeneous catalysis and preparation method thereof of catalysis asymmetric Aldol reaction
Tan et al. Easily recyclable polymeric ionic liquid-functionalized chiral salen Mn (III) complex for enantioselective epoxidation of styrene
CN111285769B (en) Method for aqueous phase catalysis Henry asymmetric addition reaction based on polyion liquid type chiral copper amino acid catalyst
CN106045804B (en) A method of based on temperature sensitive type ionic liquid chirality Salen Ti composition catalyst aqueous catalysis thioether asymmetric oxidation reaction
CN112592361A (en) Fluoroboropyrrole functionalized metal organic framework material and preparation method and application thereof
CN104744394A (en) Method for asymmetrically synthesizing chiral quaternary carbon compound containing trifluoromethyl
CN103351270A (en) Method for catalyzing Knoevenagel condensation reaction by using function ion liquid
CN113549062B (en) Chiral quaternary ammonium salt phase transfer catalyst with high steric hindrance derived from cinchona alkaloid and synthesis method thereof
CN104447440B (en) A kind of method of catalysis asymmetric oxidation thioether
CN113713856B (en) Photosensitive COFs catalyst and method for catalytically synthesizing phosphorothioate derivatives
CN111574497A (en) Method for preparing chiral sulfoxide drugs in water phase
CN109499609B (en) A kind of SBA-15 immobilized 2-azaadamantane nitroxide radical catalyst and its preparation and application
CN108568316B (en) High-stability zirconium-based chiral catalyst, preparation method and application thereof
CN114591284B (en) Zn-MOF-based catalyst in CO 2 Process for synthesizing cyclic carbonates
CN108057459B (en) Silica gel supported coordination palladium catalyst for vinyl exchange reaction and its preparation method and application
CN106831508A (en) A kind of method for being catalyzed asymmetric oxidation thioether
CN116239573B (en) Preparation method and application of a metal-organic four-membered cyclic compound
CN113200954A (en) Preparation method of cyclic carbonate
CN113929610A (en) Method for catalyzing nitrogen heterocycle aerobic dehydrogenation based on ionic liquid porous carbon material
JP5580613B2 (en) Production of asymmetric esters using polymer-supported gold cluster catalysts
CN113754604A (en) A Class of Nitrogen-Containing Chiral Ligands and Their Applications in Asymmetric Oxidation of Thioethers
CN114478242B (en) Salen-Ti complex catalyst and method for catalyzing asymmetric hydrogen atom transfer reaction by using same
CN106831658A (en) A kind of asymmetric Epoxidation method of alkene

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190111

Termination date: 20190603