CN106022541B - An Arrival Time Prediction Method - Google Patents
An Arrival Time Prediction Method Download PDFInfo
- Publication number
- CN106022541B CN106022541B CN201610472352.6A CN201610472352A CN106022541B CN 106022541 B CN106022541 B CN 106022541B CN 201610472352 A CN201610472352 A CN 201610472352A CN 106022541 B CN106022541 B CN 106022541B
- Authority
- CN
- China
- Prior art keywords
- neural network
- station
- time
- data
- models
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000013528 artificial neural network Methods 0.000 claims abstract description 45
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 20
- 238000003062 neural network model Methods 0.000 claims description 94
- 238000012549 training Methods 0.000 claims description 53
- 230000001537 neural effect Effects 0.000 claims description 31
- 238000012360 testing method Methods 0.000 claims description 31
- 210000002569 neuron Anatomy 0.000 claims description 25
- 238000001914 filtration Methods 0.000 claims description 7
- 238000012795 verification Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 9
- 230000001413 cellular effect Effects 0.000 description 8
- 238000004590 computer program Methods 0.000 description 7
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000007418 data mining Methods 0.000 description 2
- 238000007477 logistic regression Methods 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 238000013530 stochastic neural network Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/123—Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/40—Business processes related to the transportation industry
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/123—Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
- G08G1/127—Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Theoretical Computer Science (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Development Economics (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Traffic Control Systems (AREA)
- Train Traffic Observation, Control, And Security (AREA)
- Navigation (AREA)
Abstract
一种基于随机类神经网络群的到站时间预测系统与方法,车载行动设备周期性地获取定位信息(经纬度坐标),并与车载行动设备中的站点信息(为一多边形或圆形区域)进行比较判断是否到站(或离站),再回报到站(或离站)信息和时间点给云端服务器。云端服务器负责收集由车载行动设备所回报的到站(或离站)信息并分析各个站点间的旅行时间,将此数据储存到云端数据库服务器中,再将旅行时间数据集合用来训练随机类神经网络群算法的参数值。
A system and method for predicting arrival time based on a random neural network group. The vehicle-mounted mobile device periodically obtains positioning information (latitude and longitude coordinates) and compares it with the site information (a polygon or circular area) in the vehicle-mounted mobile device. Compare and determine whether it has arrived at the site (or left the site), and then reports the arrival (or departure) information and time point to the cloud server. The cloud server is responsible for collecting the arrival (or departure) information reported by the vehicle-mounted mobile devices and analyzing the travel time between each site, storing this data in the cloud database server, and then using the travel time data set to train random neural networks Parameter values of the network swarm algorithm.
Description
本发明申请是申请日为2015年3月3日、申请号为201510094269.5、发明名称为"一种到站时间预测系统与方法"的发明申请的分案申请。The application of the present invention is a divisional application of the invention application whose filing date is March 3, 2015, the application number is 201510094269.5, and the invention name is "A system and method for predicting arrival time".
技术领域technical field
本发明涉及无线通信技术领域,特别涉及一种到站时间预测方法。The present invention relates to the technical field of wireless communication, in particular to a method for predicting arrival time.
背景技术Background technique
目前,公共交通工具到站时间预测的现有技术为:采用历史数据来进行统计和平均,取得各个站到站之间的平均车速和旅行时间,或者是应用当下车辆实时的瞬时车速信息,以此来估计到站时间。然而,这些方法无法反应站点间实时的路况变化情况,因而造成较大的到站时间信息误差。At present, the existing technology of public transport arrival time prediction is: using historical data for statistics and averaging, obtaining the average speed and travel time between each station This is to estimate the arrival time. However, these methods cannot reflect the real-time changes in road conditions between stations, thus causing a large error in arrival time information.
公开号为TW201137803的台湾专利,主要提出收集过去公交车所回报的到站信息来估计站到站之间的平均车速和旅行时间,并可以按照不同的星期和时段来进行统计,当使用者查询时可以获得历史平均车速和旅行时间。虽然此方法可以快速地提供预估到站时间,然而主要是采用历史数据平均值,因而无法根据实时路况来进行到站时间的预测,故有可能在到站时间预测上造成较大的误差。The Taiwan patent with publication number TW201137803 mainly proposes to collect the arrival information reported by the bus in the past to estimate the average speed and travel time between stations and stations, and to make statistics according to different weeks and time periods. The historical average speed and travel time can be obtained. Although this method can quickly provide the estimated arrival time, it mainly uses the average value of historical data, so it is impossible to predict the arrival time based on real-time road conditions, so it may cause a large error in the arrival time prediction.
公开号为TW201344647的台湾专利,在预测到站时间后,根据公交车实时的位置信息,给驾驶人提供车速调整建议,以此来提高到站准点率。虽然此方法可以预估到站时间,也可以提供到站准点控制,但是该方法主要采用的是历史数据的平均值,而无法根据实时路况来进行到站时间的预测,故有可能造成到站时间预测上较大的误差。The Taiwan patent with the publication number TW201344647, after predicting the arrival time, provides the driver with speed adjustment suggestions based on the real-time location information of the bus, so as to improve the punctuality rate of the station. Although this method can estimate the arrival time and provide punctuality control, this method mainly uses the average value of historical data, and cannot predict the arrival time according to real-time road conditions, so it may cause arrival at the station. Larger error in time prediction.
台湾专利公开号为TW201405497的台湾专利,主要提出当车载行动设备经过各个路段时,通过车载行动设备将各个路段的旅行时间实时回报给后端的监控中心,再由监控中心将每个路段的最短旅行时间和最长旅行时间发布给所有车载行动设备。若车载行动设备的旅行时间介于最短旅行时间和最长旅行时间之间,则不再回报。此方法虽然可以有效掌握各个路段的旅行时间和减少传输数量,但并未提出公交车到站时间的预测方法,故无法预测公交车到站信息。The Taiwan Patent Publication No. TW201405497 mainly proposes that when the vehicle-mounted mobile device passes through each road segment, the travel time of each road segment is reported to the back-end monitoring center in real time through the vehicle-mounted mobile device, and then the monitoring center reports the shortest travel time of each road segment. Times and maximum travel times are published to all in-vehicle mobile devices. If the travel time of the in-vehicle mobile device is between the shortest travel time and the longest travel time, it will not be returned. Although this method can effectively grasp the travel time of each road section and reduce the number of transmissions, it does not propose a method for predicting the bus arrival time, so the bus arrival information cannot be predicted.
公开号为TW201117146的台湾专利,主要提供查询公交车旅行时间的方法,可让使用者查询到其欲搭乘的公交车的实时位置和旅行时间。虽然此方法可以让使用者查询到公交车实时的位置和旅行时间,但并未提出公交车到站时间的预测方法,故无法预测公交车到站信息。The Taiwan patent with publication number TW201117146 mainly provides a method for inquiring about the travel time of a bus, allowing users to inquire about the real-time location and travel time of the bus they want to take. Although this method allows users to query the real-time location and travel time of buses, it does not propose a method for predicting bus arrival time, so it is impossible to predict bus arrival information.
公开号为TW200828190的台湾专利,主要提出利用使用者的行动设备来接收到站信息,当使用者抵达站点时,会发出通知来提醒使用者。虽然此方法可以在到达站点时提醒使用者,可以提供实时的到站信息,然而却无法提供预测信息。The Taiwan patent with publication number TW200828190 mainly proposes to use the user's mobile device to receive station information, and when the user arrives at the station, a notification will be issued to remind the user. Although this method can alert the user when arriving at the station and can provide real-time arrival information, it cannot provide predictive information.
公告号为TWI252441的台湾专利,主要提出通过公交车接收卫星定位信号,并实时的将位置信息回传至监控中心,再由监控中心的预测模块根据公交车实时位置进行到站时间预测。虽然此方法可以提供到站时间预测,但专利中仅提到参考经验值,而未来明确提到公交车到站时间的预测方法。The Taiwan patent with the announcement number TWI252441 mainly proposes to receive satellite positioning signals through the bus, and transmit the position information back to the monitoring center in real time, and then the prediction module of the monitoring center will predict the arrival time according to the real-time position of the bus. Although this method can provide the arrival time prediction, the patent only mentions the reference empirical value, and the future explicitly mentions the prediction method of the bus arrival time.
公告号为TWI341998的台湾专利,主要提出根据公交车的实时车速和公交车到各个站点的距离,来预测旅行时间;以及根据使用者的步行速度和使用者到各个站点的距离,来计算步行时间。最后再根据旅行时间和步行时间来估计适合的站点。虽然此方法可以提供公交车旅行时间的预测方法,但此方法主要考虑的是公交车当下的实时车速和到站距离,然而车辆和站点间的交通信息并未被考虑,故有可能造成到站时间预测上较大的误差。The Taiwan patent with the announcement number TWI341998 mainly proposes to predict the travel time according to the real-time speed of the bus and the distance from the bus to each station; and calculate the walking time according to the user's walking speed and the distance from the user to each station . Finally, based on travel time and walking time to estimate suitable stops. Although this method can provide a prediction method for bus travel time, this method mainly considers the current real-time speed of the bus and the distance to the station. However, the traffic information between the vehicle and the station is not considered, so it may cause the arrival of the station. Larger error in time prediction.
公开号为TW201232489的台湾专利,提出运用希尔伯特-黄转换(HHT)的经验模态分解法结合灰模式来预测行车速度,再根据预估的车速换算为旅行时间和到站时间。虽然此方法可以有效运用数学和统计模型进行车速预测,但是因为此方法运用所有的数据进行分析,故无法避免极端值的影响,将有可能造成到站时间预测上较大的误差。The Taiwan patent with the publication number TW201232489 proposes to use the Hilbert-Huang Transform (HHT) empirical mode decomposition method combined with the gray model to predict the driving speed, and then convert the travel time and arrival time according to the estimated speed. Although this method can effectively use mathematical and statistical models for speed prediction, because this method uses all data for analysis, it cannot avoid the influence of extreme values, which may cause a large error in the arrival time prediction.
发明内容SUMMARY OF THE INVENTION
鉴于上述现有技术的问题,本发明的目的是在提供一种到站时间预测方法,通过收集各个路段和时段的站到站之间的旅行时间,并提出新颖的随机类神经网络群来分析上述的旅行时间数据集合,建立多个类神经网络模型来避免极端值的影响,以及综合考虑多个类神经网络模型的预测结果来提升预测的准确度,以此来预测使用者欲搭乘的公交车的到站时间,将预测结果提供给使用者作为参考。In view of the above-mentioned problems of the prior art, the purpose of the present invention is to provide a method for predicting the arrival time, by collecting the travel time between stations and stations of each road segment and time period, and propose a novel random neural network group to analyze For the above travel time data set, multiple neural network models are established to avoid the influence of extreme values, and the prediction results of multiple neural network models are comprehensively considered to improve the accuracy of the prediction, so as to predict the bus that the user wants to take. The arrival time of the car is provided to the user as a reference.
本发明的到站时间预测系统包括多个车站站牌、多个车载终端设备、多个细胞网络基地台、云端运算服务器、云端历史数据库以及多个到站时间预测系统客户端设备。其中,各车站站牌具有一个经纬度坐标信息。当每个所述车载终端设备接近所述多个车站站牌时,每个所述车载终端设备感测到所述多个经纬度坐标信息,进而产生到站信息。到站信息通过所述多个细胞网络基地台进行传送,而云端运算服务器接收来自细胞网络基地台的到站信息后,计算出旅行时间,再根据旅行时间以及查询站点预测剩余旅行时间,并转换为到站时间,再将到站时间通过细胞网络基地台进行传送。云端历史数据库储存有经纬度坐标信息以及车站站牌之间的旅行时间。到站时间预测系统客户端设备发送查询站点,并接收通过细胞网络基地台传送的到站时间,再显示到站时间。The arrival time prediction system of the present invention includes multiple station signs, multiple vehicle terminal devices, multiple cellular network base stations, cloud computing servers, cloud historical databases and multiple arrival time prediction system client devices. Wherein, each station sign has a latitude and longitude coordinate information. When each of the in-vehicle terminal devices approaches the plurality of station signs, each of the in-vehicle terminal devices senses the plurality of longitude and latitude coordinate information, thereby generating arrival information. The arrival information is transmitted through the plurality of cell network base stations, and the cloud computing server calculates the travel time after receiving the arrival information from the cell network base stations, and then predicts the remaining travel time according to the travel time and the query site, and converts it. For the arrival time, the arrival time is then transmitted through the cellular network base station. The cloud history database stores latitude and longitude coordinate information and travel time between station signs. The client device of the arrival time prediction system sends the query site, and receives the arrival time transmitted through the cellular network base station, and then displays the arrival time.
本发明的到站时间预测方法包括下列步骤:设定随机类神经网络群算法参数值;读取历史数据库中的站到站之间的旅行时间;随机产生m个类神经网络模型;过滤掉正确率低于门限值的类神经网络模型后,剩余k个类神经网络模型;取得实时的站到站之间的旅行时间或测试阶段中的测试数据;将旅行时或测试数据输入到过滤后的k个类神经网络模型中,并预测站到站的旅行时间;以及在取得预测的站到站的旅行时间后,换算为目标站点的到达时间。The arrival time prediction method of the present invention includes the following steps: setting random neural network group algorithm parameter values; reading the travel time between stations in the historical database; randomly generating m neural network models; filtering out correct After the neural network model whose rate is lower than the threshold value, there are k neural network models remaining; obtain real-time station-to-station travel time or test data in the test phase; input travel time or test data into the filtered and predict the travel time from station to station; and after obtaining the predicted travel time from station to station, convert it to the arrival time of the target station.
综上所述,本发明的到站时间预测系统及方法,具有下述中的一个或多个优点:To sum up, the arrival time prediction system and method of the present invention has one or more of the following advantages:
1.本发明收集实时的各个路段和时段的站到站之间的旅行时间来估计目前车辆位置到达目标站点的旅行时间。1. The present invention collects the real-time travel time between stations of each road segment and time period to estimate the travel time of the current vehicle position to the target station.
2.本发明提出新颖的随机类神经网络群来分析上述旅行时间数据集合,建立多个类神经网络模型,再综合考虑多个类神经网络模型的预测结果来提升预测准确度,以此来预测使用者欲搭乘的公交车的到站时间,将预测结果提供给使用者作为参考。2. The present invention proposes a novel random neural network group to analyze the above-mentioned travel time data set, establish a plurality of neural network models, and then comprehensively consider the prediction results of the multiple neural network models to improve the prediction accuracy, so as to predict The arrival time of the bus that the user wants to take is provided to the user as a reference.
3.本发明在随机类神经网络群算法的学习阶段中,为每个类神经网络模型分别从数据集合中随机取出多笔数据作为训练数据,并将剩余的资料作为在训练阶段中的测试数据,再将训练数据输入到各个类神经网络模型中进行学习,因而可避免极端值的影响。3. In the learning stage of the random neural network group algorithm, the present invention randomly takes out multiple pieces of data from the data set for each neural network model as training data, and uses the remaining data as the test data in the training stage. , and then input the training data into each neural network model for learning, thus avoiding the influence of extreme values.
4.本发明在随机类神经网络群算法的测试阶段和实行阶段中,运用各个类神经网络模型所预测的旅行时间与训练阶段所学习得到的权重进行加权平均,最后将加权平均后的旅行时间作为此随机类神经网络群算法的旅行时间预测值,并将旅行时间换算为到站时间,以此进行到站时间预测。4. In the testing stage and the implementation stage of the random neural network group algorithm, the present invention uses the travel time predicted by each neural network model and the weight learned in the training stage to perform a weighted average, and finally the travel time after the weighted average is calculated. As the travel time prediction value of this random neural network swarm algorithm, the travel time is converted into the arrival time, so as to predict the arrival time.
附图说明Description of drawings
图1为本发明实施例一到站时间预测系统的结构示意图;1 is a schematic structural diagram of an arrival time prediction system according to Embodiment 1 of the present invention;
图2为本发明实施例二到站时间预测方法的流程示意图;2 is a schematic flowchart of a method for predicting arrival time according to
图3为本发明实施例三到站时间预测方法的流程示意图;3 is a schematic flowchart of a method for predicting arrival time according to
图4为本发明实施例四类神经网络模型的示意图;4 is a schematic diagram of four types of neural network models according to an embodiment of the present invention;
图5为本发明实施例五预测旅行时间的示意图。FIG. 5 is a schematic diagram of predicting travel time according to
具体实施方式Detailed ways
参考图1,本发明是关于一种基于随机类神经网络群的到站时间预测的系统。该系统主要可以预测车辆的到站时间,适用于客运业者、物流业者、或其它有到站时间预测需求的相关业者,并将预测的到站时间提供给客户端设备,让客户或使用者可以实时掌握车辆信息和到站信息,节省等候时间,其中主要包含下列六个模块:(1)多个车站站牌100:此站牌设备主要包含有一组经纬度坐标信息,并且此信息可预先储存在车载终端设备和云端运算服务器中,当车载终端设备接近车站站牌时,车载终端设备可以感知到站信息。此外,此站牌设备也可以嵌入RFID(Radio Frequency IDentification,无线射频辨识)标签,当车辆临近时可以感知站牌,并可以此来判断到站。(2)多个车载终端设备101:此设备主要包含有GPS(Global Positioning System,全球定位系统)模块、细胞网络模块、以及数据库模块(并未在图1中画出),可以收集车辆当前位置(包含经纬度坐标),以及判断目前位置是否临近车站站牌100,若在车站站牌100附近的范围内则判断到站,并将到站信息和时间点通过细胞网络基地台102回传至云端运算服务器端103。此外,在到站判断的部分,车载终端设备101也可以嵌入RFID读取器,当车辆临近时可以感知站牌,可以接收来自站牌设备的RFID卷标信号,来判断是否到站。(3)多个细胞网络基地台102:每个细胞网络基地台102提供数据的传送功能和数据的接收功能,负责车载终端设备101、云端运算服务器103、以及到站时间预测系统客户端设备106之间的数据传输。(4)云端运算服务器103:此服务器主要可以收集和分析来自车载终端设备101的到站信息、到站时间点,根据每个到站时间点计算出每个站到站之间的旅行时间,再将使用者查询的目标站点的行驶路线上的前多个站到站之间的旅行时间的数据集合,输入到本发明所提出的随机类神经网络群到站时间预测方法所训练完成的类神经网络群,进行分析和运算以此来获取到达目标站点的剩余旅行时间预测,再换算为到达目标站点的到站时间。(5)云端历史数据库105:此数据库主要可以储存历史的每个站到站之间的旅行时间,可以用来作为随机类神经网络群的训练数据集合,用来训练每个类神经网络模型。(6)多个到站时间预测系统客户端设备106:此设备可以为一个行动式设备,具有人机互动接口和网络传输模块,可让使用者通过此设备查询和展示其欲取得的目标站点的到站时间预测。并可由使用者预先设定好其欲搭乘的站点和时间,再由此设备主动更新和判断,当车辆即将到达时主动给使用者发出提醒信息和声音。Referring to FIG. 1, the present invention relates to a system for arrival time prediction based on stochastic neural network swarms. The system can mainly predict the arrival time of vehicles, and is suitable for passenger transport operators, logistics operators, or other related operators who have the demand for arrival time prediction, and provides the predicted arrival time to the client device, so that customers or users can Real-time grasp of vehicle information and arrival information to save waiting time, which mainly includes the following six modules: (1) Multiple station signs 100: This station sign equipment mainly contains a set of latitude and longitude coordinate information, and this information can be stored in advance in In the on-board terminal device and the cloud computing server, when the on-board terminal device approaches the station sign, the on-board terminal device can perceive the station information. In addition, this stop sign device can also be embedded with an RFID (Radio Frequency IDentification, radio frequency identification) tag, which can sense the stop sign when the vehicle is approaching, and can use this to determine the arrival of the stop. (2) Multiple in-vehicle terminal devices 101: This device mainly includes a GPS (Global Positioning System, global positioning system) module, a cellular network module, and a database module (not shown in FIG. 1 ), which can collect the current position of the vehicle (including latitude and longitude coordinates), and determine whether the current position is close to the
参考图2和图3,本发明更提供一种基于随机类神经网络群的到站时间预测的方法。此方法主要将包括2个阶段:(a)训练阶段和(b)实行和测试阶段。其中,训练阶段主要包括4个步骤,分别为:Referring to FIG. 2 and FIG. 3 , the present invention further provides a method for predicting arrival time based on random neural network groups. This method will mainly consist of 2 phases: (a) training phase and (b) implementation and testing phase. Among them, the training phase mainly includes 4 steps, namely:
步骤S201:设定随机类神经网络群算法参数值;Step S201: setting the parameter values of the random-like neural network group algorithm;
步骤S202:读取历史数据库中的每个站到站之间的旅行时间;Step S202: read the travel time between each station in the historical database;
步骤S203:随机产生m个类神经网络模型;Step S203: randomly generating m neural network models;
步骤S208:过滤掉正确率低于门限值的类神经网络模型后,剩余k个类神经网络模型。Step S208 : after filtering out the neural network-like models whose accuracy rate is lower than the threshold value, k neural network-like models remain.
实行和测试阶段主要包括3个步骤,分别为:The implementation and testing phase mainly consists of 3 steps, namely:
步骤S301:取得实时的每个站到站之间的旅行时间或测试阶段中的测试数据;Step S301: Obtain real-time travel time between each station or station or test data in the test phase;
步骤S302:将数据输入到过滤后的k个类神经网络模型中,并预测站到站之间的旅行时间;Step S302: Input the data into the filtered k neural network models, and predict the travel time between stations;
步骤S306:取得预测的站到站旅行时间后,换算为目标站点的到达时间。Step S306: After obtaining the predicted station-to-station travel time, convert it into the arrival time of the target station.
在步骤S201中,首先由到站时间预测系统开发人员设定随机类神经网络群算法的相关参数值,相关参数值包括类神经网络模型数量(后续将以m个为例进行说明)、类神经网络模型中隐藏层最大数量(后续将以hmax个为例进行说明)、类神经网络模型中每个隐藏层最大神经元数量(后续将以cmax个为例进行说明)、训练类神经网络模型的训练数据数占总训练阶段数据数的比例(后续将以r%为例进行说明)、以及正确率门限值(后续将以wthreshold个为例进行说明)。In step S201, the developer of the arrival time prediction system first sets the relevant parameter values of the random neural network group algorithm. The maximum number of hidden layers in the network model (hmax will be used as an example to be explained later), the maximum number of neurons in each hidden layer in the neural network model (cmax will be used as an example to be explained later), and the number of training neural network models. The ratio of the number of training data to the total number of data in the training phase (the r% will be used as an example for description in the following), and the threshold value of the correct rate (the wthreshold will be used as an example for description in the following).
在步骤S202中,从云端历史数据库103中取得车辆到达每一个站点的时间,并换算为站到站之间的旅行时间,例如:车站1的到站时间为时间点t1,并且车站2的到站时间为时间点t2,则车站1到车站2的旅行时间为|t2-t1|。再将此旅行时间集合作为类神经网络模型的输入和输出数据进行后续的学习。以图1为例,欲在车辆行驶到车站n-2时预测到达车站n的时间(即目标输出的旅行时间为|tn-tn-2|),输入旅行时间数据集合可以包括{|t2-t1|,|t3-t2|,...,|tn-2-tn-3|}。In step S202, the time when the vehicle arrives at each station is obtained from the cloud
在步骤S202中,根据到站时间预测系统开发人员设定的随机类神经网络群算法参数值,随机产生m个类神经网络模型,并且每一个类神经网络模型都将各自随机取得的总训练数据数的r%的数据作为训练和学习使用,以及将剩余的数据(即100%-r%的数据量)作为每个类神经网络模型的验证使用,每个类神经网络模型都将取得的不同的数据进行训练和验证。此外,每一个类神经网络模型都将根据参数设定值,产生0~hmax个隐藏层,以及为每一个隐藏层产生0~cmax个神经元,其中每个类神经网络模型的隐藏层和神经元的组合都将会不同。再将前述的r%的数据输入到类神经网络模型中进行训练和学习,达到收敛后,再把100%-r%的数据(即训练阶段中的测试数据)输入到训练后的类神经网络模型,并取得预测的旅行时间,并与正确的旅行时间进行比较,以此来取得每一个类神经网络模型的正确率,并将此正确率作为实行和测试阶段时的权重值。In step S202, according to the parameter values of the random neural network group algorithm set by the developer of the arrival time prediction system, m neural network models are randomly generated, and each neural network model uses the total training data obtained randomly. r% of the data is used for training and learning, and the remaining data (i.e. 100%-r% of the data) is used as the validation of each class of neural network model, each class of neural network model will achieve different data for training and validation. In addition, each neural network-like model will generate 0-hmax hidden layers according to the parameter setting value, and generate 0-cmax neurons for each hidden layer, wherein the hidden layer and neural network of each neural network-like model The combination of elements will all be different. Then input the aforementioned r% data into the neural network-like model for training and learning. After reaching convergence, input the 100%-r% data (that is, the test data in the training phase) into the trained neural network. model, and obtain the predicted travel time, and compare it with the correct travel time to obtain the correct rate of each neural network model, and use the correct rate as the weight value in the implementation and testing phases.
在步骤S208中,过滤掉正确率低于门限值的类神经网络模型后,剩余k个类神经网络模型:将随机产生的m个类神经网络模型的正确率与正确率门限值wthreshold进行比较,将低于此门限值的类神经网络模型(即正确率太低的)排除后,剩下k个类神经网络模型;若没有任何类神经网络模型的正确率高于门限值,将返回步骤S201,由到站时间预测系统开发人员重新设定门限值,并重新训练随机类神经网络群。In step S208, after filtering out the neural network-like models whose accuracy rate is lower than the threshold value, the remaining k neural network-like models: compare the accuracy of the randomly generated m neural network-like models with the accuracy rate threshold wthreshold For comparison, after excluding the neural network models below this threshold (that is, the accuracy rate is too low), k neural network models are left; if there is no neural network model whose accuracy is higher than the threshold, Returning to step S201, the developer of the arrival time prediction system resets the threshold value and retrains the random neural network group.
在步骤S301中,在实行和测试阶段中,首先将先取得的实时的车辆的站到站之间的旅行时间,例如:当车辆移动到图1中的车站n-2时,使用者想查询车站n的到站时间预测(即目标输出的旅行时间为|tn-tn-2|)。此时,可将计算车辆在这一趟路程中的旅行时间数据集合{|t2-t1|,|t3-t2|,...,|tn-2-tn-3|},作为类神经网络模型的输入数据。In step S301, in the implementation and test phases, firstly obtain the real-time travel time between stations of the vehicle, for example: when the vehicle moves to station n-2 in Fig. 1, the user wants to query Arrival time prediction for station n (i.e. the travel time of the target output is |t n -t n-2 |). At this point, the travel time data set {|t 2 -t 1 |,|t 3 -t 2 |,...,|t n-2 -t n-3 | }, as the input data of the neural network-like model.
在步骤S302中,取得的实时的旅行时间数据集合{|t2-t1|,|t3-t2|,...,|tn-2-tn-3|}后输入到过滤后的k个类神经网络模型,每一个类神经网络模型都将预测出一个|tn-tn-2|的预测旅行时间,再将其分别乘上由训练阶段所取得的各个类神经网络模型的权重值(即训练阶段时各个类神经网络模型的正确率),并将加权后的值的总和除以权重值的总和(即进行加权平均)。In step S302, the acquired real-time travel time data set {|t 2 -t 1 |, |t 3 -t 2 |,...,|t n-2 -t n-3 |} is input to the filter After k neural network models, each neural network model will predict a predicted travel time of |t n -t n-2 |, and then multiply it by the neural network of each class obtained by training The weight value of the model (that is, the correct rate of each class of neural network models during the training phase), and the sum of the weighted values is divided by the sum of the weight values (that is, weighted average).
在步骤S301中,在取得综合考虑k个类神经网络模型所得到的预测旅行时间|tn-tn-2|后,再将车辆实时的时间点tn-2加上预测旅行时间|tn-tn-2|得到达车站n的到站时间预测,并将此预测结果提供给使用者。In step S301, after obtaining the predicted travel time |t n -t n-2 | obtained by comprehensively considering k neural network models, add the predicted travel time |t to the real-time time point t n-2 of the vehicle n -t n-2 | Get the arrival time prediction at station n, and provide the prediction result to the user.
本发明收集和分析来自车载终端设备101回传的到(离)站信息(包含站点信息和时间点等),将此数据集合转换为站到站之间的旅行时间后,储存在云端历史数据库105中,并在云端运算服务器103中设计与实作一个基于随机类神经网络群算法的到站信息预测方法模块,可存取云端历史数据库105中的旅行时间集合,并将其输入到基于随机类神经网络群算法的到站信息预测方法模块中,进行类神经网络模型训练以此预测旅行时间。当到站信息预测系统客户端进行站点到站时间预测时,可将当前车载终端设备101在该路线回报的前多个站点信息输入到已训练完成的类神经网络群中进行到达目标站点的旅行时间预测,再转换和提供到达目标站点的到达时间给到站时间预测系统客户端设备106。本发明的技术特点主要在于提出和设计一个随机类神经网络群算法,并应用于到站信息预测方法中,以下将以实施例的方式进行说明。The present invention collects and analyzes the arrival (departure) station information (including station information and time point, etc.) returned from the
本发明提供一种基于随机类神经网络群的到站时间预测的系统,其系统架构如图1所示。此系统包括多个车站站牌100、多个车载终端设备101、多个细胞网络基地台102、一个云端运算服务器103、一个云端历史数据库105、以及多个到站时间预测系统客户端设备106。在本实施例中以同一路线的车站站牌100为例,此路线中有n个车站,每个车站都有具有位置信息(包含经度和纬度)。如表一所示,在路线1总共包含有12个车站(即图1中的n为12),其对应的经纬度可储存于车载终端设备中;当车辆编号1由车站1往车站2行驶时,在2014/4/1 14:53时车载终端设备的GPS模块侦测到车辆所在经度为120.97839、纬度为24.808658,评估车辆临近车站2(例如:直线距离30公尺内),则判断为到站,并将此到站信息(包含车站编号和时间点)通过细胞网络基地台102回传到云端运算服务器103。The present invention provides a system for predicting arrival time based on a random neural network group, the system architecture of which is shown in FIG. 1 . The system includes
此外,车站站牌100也可以具备RFID标签,而车载终端设备101可具备RFID读取器,当车载终端设备101临近车站站牌100时可侦测到该车站站牌100的RFID标签,并以此判断为到站,再将此到站信息(包含车站编号和时间点)通过细胞网络基地台102回传到云端运算服务器103。车辆到站信息回报数据集合如表二所示,主要可以纪录路线编号、车辆编号、车站编号、以及时间点等,而云端运算服务器103可将车辆到站信息转换为站到站旅行时间信息(如表三所示),并将信息储存于云端历史数据库105中。例如,车辆编号1由车站1发车时的时间为2014/4/1 14:46:28,并在2014/4/1 14:53:31抵达车站2,因此车站1到车站2的旅行时间为423秒;而车辆编号2由车站1发车时的时间为2014/4/1 19:32:22,并在2014/4/1 19:40:13抵达车站2,因此车站1到车站2的旅行时间为471秒。In addition, the
当编号10001的车辆行驶到车站6时(即云端服务器103已知其车站1~车站6间的站到站之间的旅行时间),而有一个到站时间预测系统客户端设备向云端运算服务器103查询路线编号1车站12的到站时间(即预测车站6到车站12的旅行时间,并转换为车站12的到达时间)。此时,云端运算服务器103可运用云端历史数据库105中的数据(即路程编号1和2的站到站旅行时间信息,如表四所示)作为随机类神经网络群算法于训练阶段的数据,来建立随机类神经网络群,并运用此算法进行到站时间预测。When the vehicle with number 10001 travels to station 6 (that is, the
表一车站位置信息Table 1 Station location information
表二车辆到站信息Table 2 Vehicle Arrival Information
表三站到站旅行时间信息Table three station arrival travel time information
表四随机类神经网络群算法的训练阶段数据Table 4. Data of training phase of random class neural network swarm algorithm
本发明的基于随机类神经网络群的到站时间预测的方法,其方法流程如图2和图3所示。此方法主要包含2个阶段:(a)训练阶段和(b)实行和测试阶段。The method for predicting the arrival time based on the random neural network group of the present invention has a method flow as shown in FIG. 2 and FIG. 3 . This method mainly consists of 2 phases: (a) training phase and (b) implementation and testing phase.
训练阶段主要包含4个步骤,分别为步骤S201:设定随机类神经网络群算法参数值;S202:读取历史数据库中的每个站到站之间的旅行时间;S203:随机产生m个类神经网络模型;以及S208:过滤掉正确率低于门限值的类神经网络模型后,剩余k个类神经网络模型。The training phase mainly includes 4 steps, namely step S201: setting the parameter value of the random class neural network group algorithm; S202: reading the travel time between each station in the historical database; S203: randomly generating m classes A neural network model; and S208 : after filtering out the neural network-like models whose accuracy rate is lower than the threshold value, remaining k neural network-like models.
实行和测试阶段主要包含3个步骤,分别为S301:取得实时的每个站到站之间的旅行时间或测试阶段中的测试数据;S302:将数据输入到过滤后的k个类神经网络模型中,并预测站到站之间的旅行时间;以及S306:取得预测的站到站旅行时间后,换算为目标站点的到达时间。The implementation and testing phases mainly include three steps, namely S301: obtaining the real-time travel time between each station or station or the test data in the testing phase; S302: inputting the data into the filtered k-class neural network models , and predict the travel time from station to station; and S306 : after obtaining the predicted travel time from station to station, convert it into the arrival time of the target station.
在训练阶段中,首先将由到站时间预测系统开发人员设定随机类神经网络群算法的相关参数值(步骤S201)。例如,设定共有10个类神经网络模型(即m为10)、类神经网络模型中隐藏层最大数量为5(即hmax为5)、类神经网络模型中每个隐藏层最大神经元数量为7(即cmax为7)、训练类神经网络模型的训练数据数占总训练阶段数据数的比例为60%(即r%为60%)、以及正确率门限值为0.945(即wthreshold为0.945=94.5%),后续将根据此参数值产生10个类神经网络模型来进行到站时间预测。In the training phase, the relevant parameter values of the random neural network swarm algorithm will be set by the developer of the arrival time prediction system (step S201 ). For example, set a total of 10 neural network models (that is, m is 10), the maximum number of hidden layers in the neural network model is 5 (that is, hmax is 5), and the maximum number of neurons in each hidden layer in the neural network model is 7 (that is, cmax is 7), the ratio of the training data of the training neural network model to the total number of training data is 60% (that is, r% is 60%), and the correct rate threshold is 0.945 (that is, wthreshold is 0.945 = 94.5%), and then 10 neural network models will be generated according to this parameter value to predict the arrival time.
在此S202步骤中,将向云端历史数据库取得历史的车辆到达每一个站点的时间,并换算为站到站之间的旅行时间,如表四所示。由于在本实施例中,待预测的车辆行驶至车站6,并欲预测车站12的到达时间,且已知车站1~车站6之间的到站时间数据集合{t1,t2, t3,t4,t5,t6 }、换算成站到站之间的旅行时间数据集合{|t2-t1 |,|t3-t2 |,|t4-t3 |,|t5-t4 |,|t6-t5 |},并用以预测车站6到车站12的旅行时间(即目标输出之旅行时间为|t12-t6 |)。在本实施例中将旅行时间数据集合{|t2-t1 |,|t3-t2 |,|t4-t3 |,|t5-t4 |,|t6-t5 |}分别命名为参数名称{x1,x2,x3,x4,x5},而目标输出之旅行时间|t12-t6 |命名为参数名称y。In this step S202, the time when the vehicle arrives at each station in the history obtained from the cloud history database is converted into the travel time between stations, as shown in Table 4. In this embodiment, the vehicle to be predicted travels to
步骤S203随机产生m个类神经网络模型中,更包含步骤S204:产生训练数据和验证数据。具体为,本发明依据到站时间预测系统开发人员设定的随机类神经网络群算法参数值,随机产生10个类神经网络模型,且设定类神经网络模型中隐藏层最大数量为5、类神经网络模型中每个隐藏层最大神经元数量为7,即每个类神经网络模型的隐藏层数量将介于0~5层,每个隐藏层的神经元数量将介于0~7个,产生结果的实施例如表五所示(步骤S205)。类神经网络模型1的隐藏层为1层,该层隐藏层的神经元数为2个(如图4所示);类神经网络模型2的隐藏层为2层,第1层隐藏层的神经元数为3个、第2层隐藏层的神经元数为4个;以此类推可得10个类神经网络模型。并且,由于训练类神经网络模型的训练数据数占训练阶段数据总笔数的60%,以表四为例,训练阶段数据数的总笔数为10000笔,所以每个类神经网络模型将随机取出6000笔作为训练类神经网络模型学习使用,且剩余的4000笔TDTRS(Testing Data in TRaining Stage,训练阶段中的测试资料)将分别作为训练阶段时每个类神经网络模型验证使用。在此步骤中,每个类神经网络模型所取得的6000笔数据的集合皆各自随机产生,每一个类神经网络模型都将取得不同的数据集合进行训练和学习。In step S203, m random neural network models are generated, and step S204 is further included: generating training data and verification data. Specifically, the present invention randomly generates 10 neural network models according to the parameter values of the random neural network group algorithm set by the developer of the arrival time prediction system, and sets the maximum number of hidden layers in the neural network model to 5, The maximum number of neurons in each hidden layer in the neural network model is 7, that is, the number of hidden layers in each neural network model will be between 0 and 5, and the number of neurons in each hidden layer will be between 0 and 7. Examples of resulting results are shown in Table 5 (step S205). The hidden layer of the neural network-like model 1 is 1 layer, and the number of neurons in the hidden layer of this layer is 2 (as shown in Figure 4); the hidden layer of the neural network-
表五随机类神经网络群Table 5 Random class neural network group
步骤S206:类神经网络模型训练与学习。在本实施例中,10个类神经网络模型将分别输入6000笔数据进行训练和学习,以下利用类神经网络模型1(如图4所示)为例进行说明,其中在类神经网络模型1的6000笔数据为一包含路程编号1且不包含路程编号10000的数据组合,并以类神经网络模型1之训练与学习说明如后。Step S206: training and learning of the neural network-like model. In this embodiment, 6000 pieces of data are input to 10 neural network models respectively for training and learning. The following uses neural network model 1 (as shown in FIG. 4 ) as an example for description. The 6000 pieces of data are a data combination that includes the route number 1 and does not include the route number 10000, and the training and learning of the neural network model 1 is described as follows.
步骤i:随机产生各个神经元的权重,以及隐藏层与输出层神经元的常数项,如表六所示。Step i: Randomly generate the weights of each neuron and the constant terms of the neurons in the hidden layer and the output layer, as shown in Table 6.
表六类神经网络模型1的各个神经元的权重,以及隐藏层与输出层神经元的常数项The weights of each neuron in the six types of neural network model 1, and the constant terms of the neurons in the hidden layer and the output layer
步骤ii:将6000笔数据逐一输入至类神经网络模型1中,以下以路程编号1为例。首先将数据正规化为介于0~1之间的数值,因此实施例中的数据皆小于5000,故同除以5000进行正规化,结果如表七所示。再根据输入信号,计算各隐藏层神经元的输出信号,其中本实施例采用Logistic分配(即)的方式计算输出信号,计算方式如下所示。Step ii: Input the 6000 pieces of data into the neural network-like model 1 one by one. The following takes the route number 1 as an example. First, the data is normalized to a value between 0 and 1. Therefore, the data in the embodiments are all less than 5000, so the normalization is performed by dividing by 5000. The results are shown in Table 7. Then, according to the input signal, the output signal of each hidden layer neuron is calculated, wherein in this embodiment, Logistic distribution (ie, ) to calculate the output signal, and the calculation method is as follows.
表七正规化后的路程编号1数值Table 7 Normalized route number 1 value
神经元6:Neuron 6:
总输入信号:Total input signal:
转换输出信号: Convert the output signal:
神经元7:总输入信号:Neuron 7: Total input signal:
转换输出信号: Convert the output signal:
步骤iii:根据隐藏层输出信号,计算输出层神经元的输出信号。Step iii: Calculate the output signal of the neurons in the output layer according to the output signal of the hidden layer.
神经元8:Neuron 8:
总输入信号: Total input signal:
转换输出信号: Convert the output signal:
步骤iv:比较输出值(即0.759554)与真值(即0.7796)的误差项。Step iv: Compare the error term of the output value (ie 0.759554) with the true value (ie 0.7796).
神经元8误差项:
步骤v:将误差项回馈至隐藏层,分别计算出隐藏层神经元的误差项。Step v: Feed the error term back to the hidden layer, and calculate the error term of the neurons in the hidden layer respectively.
神经元6误差项:
神经元7误差项:
步骤vi:根据神经元误差项,更新各个神经元权重和常数项,在本实施例中设定学习速率σ为0.8。Step vi: According to the neuron error term, update the weight and constant term of each neuron, and set the learning rate σ to 0.8 in this embodiment.
步骤vii:重复步骤ii~步骤vi,将每一笔数据输入至类神经网络模型中进行学习,直到此回合的输出信号与上一回合的输出信号的差异低于门限值othreshold(在本例中othreshold设为0.01),则达到收敛并完成学习,确定此类神经网络模型的各个神经元权重和常数项。Step vii: Repeat steps ii to vi, and input each data into the neural network-like model for learning, until the difference between the output signal of this round and the output signal of the previous round is lower than the threshold value othreshold (in this example). othreshold is set to 0.01), then convergence is achieved and learning is completed, and each neuron weight and constant term of this type of neural network model are determined.
上述为类神经网络模型1的训练和学习过程,依此同时训练其它的类神经网络模型(即类神经网络模型2~类神经网络模型10),可支持平行运算。完成训练后,后续在预测车站6到车站12间之旅行时间时可重复步骤ii~步骤iii,将测试数据或实时数据作为输入信号,而输出信号为旅行时预测值。其中,由类神经网络模型产出的旅行时间预测值,需再进行正规化的还原,方可以取得旅行时间秒数,例如:输出信号为0.759554,需乘上5000,取得旅行时间为3797.769233秒。The above is the training and learning process of the neural network-like model 1, and other neural-like network models (ie, the neural network-
步骤S207:类神经网络模型验证与权重。当完成所有类神经网络模型的训练和学习后,可以运用剩余的4000笔数据来进行每个类神经网络模型的验证,并计算平均正确率作为每个类神经网络模型的权重。以类神经网络模型1为例,将训练阶段中的测试数据全部输入到训练后的类神经网络模型1中重复步骤ii~步骤iii,可算出正确率。例如,路程编号10000为输入信号时,其正规化后数值如表八所示,得到预测值为0.75986369,再将预测值乘上5000为3799.318449,可得正确率为为1-(|真值-预测值|/真值)=1-(|3939-3799.318449|/3939)=96.45%;以此类推,可算出4000笔训练阶段中的测试数据(TDTRS)的平均正确率,在此例为93.23%。在本实施例中,10个类神经网络模型所对应的平均正确率分别为93.23%、94.90%、94.03%、93.57%、94.61%、93.52%、94.93%、95.21%、94.48%、94.45%,如表九所示。Step S207: Verification and weight of the neural network-like model. After the training and learning of all neural network models are completed, the remaining 4000 pieces of data can be used to verify each neural network model, and the average correct rate is calculated as the weight of each neural network model. Taking the neural network-like model 1 as an example, all the test data in the training phase are input into the trained neural network-like model 1 and repeat steps ii to iii to calculate the correct rate. For example, when the route number 10000 is the input signal, the normalized value is shown in Table 8, the predicted value is 0.75986369, and then the predicted value is multiplied by 5000 to be 3799.318449, and the correct rate is 1-(|true value- predicted value|/true value)=1-(|3939-3799.318449|/3939)=96.45%; and so on, the average correct rate of test data (TDTRS) in 4000 training stages can be calculated, in this case 93.23 %. In this embodiment, the average correct rates corresponding to 10 neural network models are 93.23%, 94.90%, 94.03%, 93.57%, 94.61%, 93.52%, 94.93%, 95.21%, 94.48%, 94.45%, respectively. As shown in Table 9.
表八正规化后的路程编号10000数值Table 8 Normalized route number 10000 value
表九每个类神经网络模型的平均正确率Table 9 Average correct rate of each class of neural network model
步骤S208:过滤掉正确率低于门限值的类神经网络模型后,剩余k个类神经网络模型。此步骤将分析每个类神经网络模型的平均正确率,并将低于正确率门限值wthreshold(即本实施例所设定的94.5%)过滤掉,其中类神经网络模型1、类神经网络模型3、类神经网络模型4、类神经网络模型6、类神经网络模型9、类神经网络模型10等6个将被过滤掉,剩下4个类神经网络模型及其权重值供实行和测试阶段使用。Step S208 : after filtering out the neural network-like models whose accuracy rate is lower than the threshold value, k neural network-like models remain. In this step, the average correct rate of each neural network model will be analyzed, and the threshold value wthreshold (that is, 94.5% set in this embodiment) that is lower than the correct rate will be filtered out. The neural network model 1, the
表十、过滤后的类神经网络模型及其权重值Table 10. Filtered neural network-like models and their weights
于步骤S301中,在实行和测试阶段时,取实时的车辆到站信息输入到训练完成的随机类神经网络群,进行到站时间预测。例如,到站时间预测系统客户端设备在2014/5/311:59:00时欲查询抵达车站12的到达时间,将取车站1~车站6的到站时间和站到站之间的旅行时间(如表十一所示),作为随机类神经网络群的输入数据(如表十二所示),得到目标预测值车站6到车站12的旅行时间。In step S301, in the implementation and testing stages, the real-time vehicle arrival information is taken and input into the trained random neural network group to predict the arrival time. For example, if the client device of the arrival time prediction system wants to query the arrival time of station 12 at 2014/5/311:59:00, it will take the arrival time of station 1 to
表十一车辆到站信息Table 11 Vehicle Arrival Information
表十二站到站旅行时间信息Table 12 Station-to-station travel time information
此外,到站时间预测系统开发人员在此阶段也可以收集历史数据作为测试阶段中的测试资料(TDTES),取得每个路程编号的各个站到站之间的旅行时间作为随机类神经网络群输入值,以分析和最佳化随机类神经网络群。In addition, the developers of the arrival time prediction system can also collect historical data at this stage as the test data (TDTES) in the test phase, and obtain the travel time between each station of each route number as the input of the random neural network group value to analyze and optimize swarms of random neural network-like networks.
步骤S302中,将数据输入到过滤后的k个类神经网络模型,并预测站到站之间的旅行时间。如图5所示,在取得输入数据后可将数据分别作为每个过滤后的类神经网络模型(即类神经网络模型2、类神经网络模型5、类神经网络模型7、类神经网络模型8,如表十所示)的输入信号,并分别由类神经网络模型2、类神经网络模型5、类神经网络模型7、类神经网络模型8预测旅行时间为3766.607秒、3857.98秒、3661.828秒、3724.095秒(步骤S303),如表十三所示。最后,再依每个类神经网络模型的权重进行加权平均(步骤S304~S305)得到旅行时间预测值3752.516552秒(即[94.90%*3766.607+94.61%*3857.98+94.93%*3661.828+95.21%*3724.095]/[94.90%+94.61%+94.93%+95.21%]=3752.516552)。In step S302, data is input into the filtered k-class neural network models, and travel time between stations is predicted. As shown in Figure 5, after the input data is obtained, the data can be used as each filtered neural network model (ie
表十三过滤后的类神经网络模型及其权重值Table 13 Filtered neural network models and their weights
步骤S306中,取得预测的站到站旅行时间后,换算为目标站点的到达时间。在取得站到站旅行时间预测值后,可根据目前的到站信息,并结合站到站旅行时间预测值转换为到达目标站点的到达时间。本实施例的路程编号10001到达车站6的时间点为2014/5/3 11:58:46,而车站6到车站12的旅行时间预测值为3752.516552秒,故车站12预测到站时间为2014/5/3 13:01:19,再将此信息回传给到站时间预测系统客户端设备。In step S306, after obtaining the predicted station-to-station travel time, it is converted into the arrival time of the target station. After obtaining the predicted value of travel time from station to station, it can be converted into the arrival time to the target site according to the current arrival information and combined with the predicted value of travel time from station to station. In this embodiment, the time point when the route number 10001 arrives at
实际运用于客运业者的例子来看,以客运业者A的数据进行实证,总共收集2014年3月整个月份的资料,其中共包含2956趟,实验环境中共涵盖40条道路路段,并且分别采用不同的数据探勘算法来测试其正确率,包含有罗吉斯回归(Logistic Regression,LR)、传统的倒传递类神经网络(Back-Propagation Neural Network,BPNN)、以及本发明所提出的随机类神经网络群(Random Neural Networks,RNN),证实此方法确实较为优越,实验结果表十四所示。From the example of the actual application in the passenger transport industry, the data of the passenger transport operator A is used as an empirical test. The data of the whole month of March 2014 are collected, including a total of 2956 trips. The experimental environment covers a total of 40 road sections, and different road sections are used respectively. Data mining algorithm to test its accuracy, including Logistic Regression (LR), traditional Back-Propagation Neural Network (BPNN), and random neural network group proposed by the present invention (Random Neural Networks, RNN), confirming that this method is indeed superior, and the experimental results are shown in Table 14.
表十四本发明与其它数据探勘方法效能比较Table 14 Comparison of performance between the present invention and other data mining methods
综上所述,本发明的基于随机类神经网络群的到站时间预测系统与方法,透过收集各个路段和时段的站到站之间的旅行时间,并提出新颖的随机类神经网络群来分析上述的旅行时间数据集合,建立多个类神经网络模型来避免极端值的影响,以及综合考虑多个类神经网络模型的预测结果来提升预测准确度,以此来预测使用者欲搭乘的公交车的到站时间,提供给使用者作为参考。To sum up, the system and method for predicting arrival time based on random neural network group of the present invention collects the travel time between stations and stops for each road segment and time period, and proposes a novel random neural network group to predict the arrival time. Analyze the above travel time data set, establish multiple neural network models to avoid the influence of extreme values, and comprehensively consider the prediction results of multiple neural network models to improve the prediction accuracy, so as to predict the bus that the user wants to take The arrival time of the train is provided to the user as a reference.
以上所述仅为举例性,而非为限制性者。任何未脱离本发明之精神与范畴,而对其进行之等效修改或变更,均应包含于后附之申请专利范围中。The above description is exemplary only, not limiting. Any equivalent modifications or changes that do not depart from the spirit and scope of the present invention shall be included in the appended patent application scope.
【符号说明】【Symbol Description】
100:车站站牌100: Station sign
101:车载终端设备101: Vehicle terminal equipment
102:细胞网络基地台102: Cell Network Base Station
103:云端运算服务器103: Cloud computing server
104:云端运算机房104: Cloud computing room
105:云端历史数据库105: Cloud History Database
106:到站时间预测系统客户端设备106: Arrival time prediction system client device
S201~207、S301~S306:步骤S201~207, S301~S306: Steps
1~8:类神经网络模型1 to 8: class neural network model
基于同一发明构思,本发明实施例中还提供了一种移动终端,由于图3的移动终端对应的方法为本发明实施例一种移动终端启动的方法,因此本发明实施例方法的实施可以参见系统的实施,重复之处不再赘述。Based on the same inventive concept, an embodiment of the present invention also provides a mobile terminal. Since the method corresponding to the mobile terminal in FIG. 3 is a method for starting a mobile terminal in an embodiment of the present invention, the implementation of the method in the embodiment of the present invention can refer to The implementation of the system will not be repeated here.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by one skilled in the art, embodiments of the present invention may be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。Although the preferred embodiments of the present invention have been described, additional changes and modifications to these embodiments may occur to those skilled in the art once the basic inventive concepts are known. Therefore, the appended claims are intended to be construed to include the preferred embodiment and all changes and modifications that fall within the scope of the present invention.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. Thus, provided that these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.
Claims (3)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103134687 | 2014-10-06 | ||
TW103134687A TWI522974B (en) | 2014-10-06 | 2014-10-06 | Arrival time prediction system and method |
CN201510094269.5A CN104715630B (en) | 2014-10-06 | 2015-03-03 | Arrival time prediction system and method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510094269.5A Division CN104715630B (en) | 2014-10-06 | 2015-03-03 | Arrival time prediction system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106022541A CN106022541A (en) | 2016-10-12 |
CN106022541B true CN106022541B (en) | 2020-12-01 |
Family
ID=53414915
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610472352.6A Expired - Fee Related CN106022541B (en) | 2014-10-06 | 2015-03-03 | An Arrival Time Prediction Method |
CN201510094269.5A Expired - Fee Related CN104715630B (en) | 2014-10-06 | 2015-03-03 | Arrival time prediction system and method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510094269.5A Expired - Fee Related CN104715630B (en) | 2014-10-06 | 2015-03-03 | Arrival time prediction system and method |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN106022541B (en) |
TW (1) | TWI522974B (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI591991B (en) * | 2016-01-29 | 2017-07-11 | Chunghwa Telecom Co Ltd | System and method for pre-signing vouchers for forecasting requests for traffic |
CN105679021B (en) * | 2016-02-02 | 2018-11-06 | 招商局重庆交通科研设计院有限公司 | Journey time fusion forecasting and querying method based on traffic big data |
CN105513362B (en) * | 2016-02-03 | 2017-11-03 | 东南大学 | A kind of bus platform adjacent area bus running state evaluation verification method |
CN105489051A (en) * | 2016-02-15 | 2016-04-13 | 青岛海信电器股份有限公司 | Bus station arrival prompting method, mobile terminal and cloud server |
CN112036645B (en) * | 2017-04-27 | 2024-04-26 | 北京嘀嘀无限科技发展有限公司 | System and method for determining estimated time of arrival |
EP3586285A1 (en) * | 2017-06-13 | 2020-01-01 | Beijing Didi Infinity Technology And Development Co., Ltd. | Systems and methods for recommending an estimated time of arrival |
CN109791731B (en) | 2017-06-22 | 2021-12-07 | 北京嘀嘀无限科技发展有限公司 | Method and system for estimating arrival time |
WO2019028763A1 (en) | 2017-08-10 | 2019-02-14 | Beijing Didi Infinity Technology And Development Co., Ltd. | System and method for estimating travel time and distance |
CA3028278A1 (en) * | 2017-11-23 | 2019-05-23 | Beijing Didi Infinity Technology And Development Co., Ltd. | System and method for estimating arrival time |
CN110361019B (en) * | 2018-04-11 | 2022-01-11 | 北京搜狗科技发展有限公司 | Method, device, electronic equipment and readable medium for predicting navigation time |
CN109002722B (en) * | 2018-07-19 | 2021-06-29 | 郑州云海信息技术有限公司 | Method and system for estimating vulnerability scanning remaining time |
CN109410580A (en) * | 2018-11-15 | 2019-03-01 | 山东管理学院 | A kind of real-time arrival time prediction technique of public transport and system |
CN109920248B (en) * | 2019-03-05 | 2021-09-17 | 南通大学 | Bus arrival time prediction method based on GRU neural network |
CN110459056A (en) * | 2019-08-26 | 2019-11-15 | 南通大学 | A Bus Arrival Time Prediction Method Based on LSTM Neural Network |
CN111667689B (en) * | 2020-05-06 | 2022-06-03 | 浙江师范大学 | Method, device and computer device for vehicle travel time prediction |
US20220051115A1 (en) * | 2020-08-12 | 2022-02-17 | Allstate Insurance Company | Control Platform Using Machine Learning for Remote Mobile Device Wake Up |
CN113706874B (en) * | 2021-10-28 | 2022-01-28 | 华清科盛(北京)信息技术有限公司 | Method and device for predicting arrival time of logistics vehicles in factory in real time and electronic equipment |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090062537A (en) * | 2007-12-13 | 2009-06-17 | (주)아이이지컨설팅 | Vehicle control system |
CN101630376B (en) * | 2009-08-12 | 2012-06-20 | 江苏大学 | Soft-sensing modeling method and soft meter of multi-model neural network in biological fermentation process |
CN102081859B (en) * | 2009-11-26 | 2014-10-01 | 上海遥薇(集团)有限公司 | Control method of bus arrival time prediction model |
CN102110365B (en) * | 2009-12-28 | 2013-11-06 | 日电(中国)有限公司 | Road condition prediction method and road condition prediction system based on space-time relationship |
CN101794520B (en) * | 2010-03-15 | 2012-07-04 | 任兆玉 | Intelligent transportation system based on telecommunication technology and communication method thereof |
CN102708701B (en) * | 2012-05-18 | 2015-01-28 | 中国科学院信息工程研究所 | System and method for predicting arrival time of buses in real time |
CN103578267B (en) * | 2012-07-18 | 2015-12-16 | 北京掌行通信息技术有限公司 | Public transport based on public transport gps data is arrived at a station Forecasting Methodology and system |
CN102854296B (en) * | 2012-08-30 | 2015-03-11 | 北京工业大学 | Sewage-disposal soft measurement method on basis of integrated neural network |
CN102968670B (en) * | 2012-10-23 | 2016-08-17 | 北京京东世纪贸易有限公司 | The method and apparatus of prediction data |
CN103885996A (en) * | 2012-12-24 | 2014-06-25 | 北京掌城科技有限公司 | Method of querying real-time bus arrival information |
CN103236184B (en) * | 2013-04-03 | 2015-02-04 | 广州亿连达电子科技有限公司 | Method and device for automatic bus station report |
TWM477647U (en) * | 2013-06-20 | 2014-05-01 | Trans Tech Integrate Company Ltd | RFID technique applied to bus stop for display of bus time estimation |
CN103605725A (en) * | 2013-11-15 | 2014-02-26 | 中国联合网络通信集团有限公司 | Bus arrival time inquiring method, NFC terminal and server |
-
2014
- 2014-10-06 TW TW103134687A patent/TWI522974B/en not_active IP Right Cessation
-
2015
- 2015-03-03 CN CN201610472352.6A patent/CN106022541B/en not_active Expired - Fee Related
- 2015-03-03 CN CN201510094269.5A patent/CN104715630B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN106022541A (en) | 2016-10-12 |
CN104715630B (en) | 2017-05-10 |
TW201614607A (en) | 2016-04-16 |
TWI522974B (en) | 2016-02-21 |
CN104715630A (en) | 2015-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106022541B (en) | An Arrival Time Prediction Method | |
Gurumurthy et al. | Analyzing the dynamic ride-sharing potential for shared autonomous vehicle fleets using cellphone data from Orlando, Florida | |
CN102708701B (en) | System and method for predicting arrival time of buses in real time | |
CN104464291B (en) | Traffic flow predicting method and system | |
US20180129999A1 (en) | System and method for managing supply of service | |
Shi et al. | ParkCrowd: Reliable crowdsensing for aggregation and dissemination of parking space information | |
Wei et al. | Look-ahead insertion policy for a shared-taxi system based on reinforcement learning | |
US20200118444A1 (en) | Roadside assistance program | |
CN111612122A (en) | Method and device for predicting real-time demand and electronic equipment | |
CN110570656B (en) | Method and device for customizing public transport line | |
CN105243868B (en) | A kind of public transit vehicle arrival time Forecasting Methodology and device | |
Boufaied | A diagnostic approach for advanced tracking of commercial vehicles with time window constraints | |
Habtie et al. | Artificial neural network based real-time urban road traffic state estimation framework | |
CN110431544A (en) | Running time and apart from Prediction System and method | |
CN113763695A (en) | Dispatching method and system for automatic driving vehicle | |
CN110222892B (en) | Passenger getting-off station prediction method and device | |
CN114662730A (en) | Transport operator collaboration for enhanced user experience and operational efficiency | |
CN112801376A (en) | Method, apparatus and storage medium for determining estimated time of arrival of a vessel | |
Kumar et al. | Integration of exponential smoothing with state space formulation for bus travel time and arrival time prediction | |
TWI635447B (en) | Method and System of Predicting Passengers' Demand | |
Gao et al. | Learning-based open driver guidance and rebalancing for reducing riders’ wait time in ride-hailing platforms | |
Gracious et al. | Performance Evaluation of Passenger Information Systems | |
CN111461379A (en) | Position prediction method and device | |
CN111489171B (en) | Riding travel matching method and device based on two-dimensional code, electronic equipment and medium | |
US20230314147A1 (en) | Path generation apparatus, path planning apparatus, path generation method, path planning method, and non-transitory computer readable medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201201 |