[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN106026660B - 电力转换电路系统 - Google Patents

电力转换电路系统 Download PDF

Info

Publication number
CN106026660B
CN106026660B CN201610164647.7A CN201610164647A CN106026660B CN 106026660 B CN106026660 B CN 106026660B CN 201610164647 A CN201610164647 A CN 201610164647A CN 106026660 B CN106026660 B CN 106026660B
Authority
CN
China
Prior art keywords
primary side
conversion circuit
mentioned
side conversion
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610164647.7A
Other languages
English (en)
Other versions
CN106026660A (zh
Inventor
高木健
高木健一
井上俊太郎
杉山隆英
长下贤郎
长下贤一郎
新见嘉崇
冈村贤树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN106026660A publication Critical patent/CN106026660A/zh
Application granted granted Critical
Publication of CN106026660B publication Critical patent/CN106026660B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及种电力转换电路系统,尤其在轻负载时降低变压器的铁芯损耗,来提高轻负载时的转换效率。具备:电力转换电路,其由具备左臂和右臂的初级侧转换电路以及具备左臂和右臂的次级侧转换电路构成;以及控制电路,其控制初级侧转换电路以及次级侧转换电路的开关晶体管的开关。控制电路在输出电压相对小的轻负载时,变更控制初级侧转换电路和次级侧转换电路中的送电侧的时间比率,并且变更控制初级侧转换电路以及次级侧转换电路的左臂与右臂各自的相间相位差。

Description

电力转换电路系统
技术领域
本发明涉及电力转换电路系统,尤其涉及具备多个输入输出端口的电力转换电路系统。
背景技术
伴随混合动力汽车、电动汽车、燃料电池汽车等电气充裕的汽车的开发、普及,车载的电源电路也趋向复杂化、大型化。例如,在混合动力汽车中,存在行驶用电池、系统用电池、插电用的外部电源电路、用于将行驶用电池的直流电力供给至行驶用马达的DC/DC转换器、用于将行驶用电池的直流电力转换成交流电力的DC/AC转换器、用于将行驶用电池的直流电力供给至电动动力转向(EPS)的DC/DC转换器、用于将行驶用电池的直流电力供给至辅机的DC/DC转换器等,使得构成很复杂。
鉴于此,正在进行在一个电路中具备多个输入输出端口的多端口电源的开发。提出了通过多端口电源而使布线、半导体元件等共有化来将电源电路小型化的方案。
在日本特开2011-193713号公报记载有一种在具备四个端口的电力转换电路中,能够在选择出的多个端口之间进行电力转换的构成。更具体而言,记载有一种利用磁耦合电抗器以及变压器,将非绝缘型的双向斩波电路和绝缘型的双向转换器耦合的电路结构。
然而,在多端口电路中,当轻负载时变压器的铁芯损耗成为主要损耗,抑制该损耗需要混合动力汽车的进一步的燃油利用率改进。最大磁通密度的降低对于变压器的铁芯损耗的抑制是有效的,但是仅对时间比率(占空比)进行调制会产生循环电流,导致变压器以外的损耗增大。
发明内容
本发明提供一种尤其在轻负载时降低变压器的铁芯(core)损耗,由此能够提高轻负载时的转换效率的电力转换电路系统。
本发明的电力转换系统具备:初级侧转换电路,其在初级侧正极母线与初级侧负极母线之间具备左臂和右臂,上述左臂以及上述右臂分别由串联连接的两个开关晶体管构成,在上述左臂的两个开关晶体管的连接点与上述右臂的两个开关晶体管的连接点之间连接有变压器的初级侧绕组;次级侧转换电路,其在次级侧正极母线与次级侧负极母线之间具备左臂和右臂,上述左臂以及上述右臂分别由串联连接的两个开关晶体管构成,在上述左臂的两个开关晶体管的连接点与上述右臂的两个开关晶体管的连接点之间连接有上述变压器的次级侧绕组;以及控制电路,其控制上述初级侧转换电路以及上述次级侧转换电路的上述开关晶体管的开关。上述控制电路在输出电压相对较小的轻负载时,变更控制上述初级侧转换电路和上述次级侧转换电路中的送电侧的时间比率,并且变更控制上述初级侧转换电路以及上述次级侧转换电路的上述左臂与上述右臂的相间相位差。
在输出电压相对较小的轻负载时(例如输出电压为50~150W左右),变压器的铁芯损耗是损耗的主要因素,为了降低铁芯损耗,减少变压器的最大磁通量是有效的。为了减少变压器的最大磁通量,需要缩短初级侧转换电路和次级侧转换电路中的送电侧的励磁期间。然而,若为了缩短送电侧的励磁期间而仅变更控制送电侧的时间比率(占空比),则由于送电侧和受电侧的脉冲宽度产生差异,所以循环电流增大。由于该循环电流无助于电力传送,所以循环电流的增大导致传送效率的降低。
鉴于此,在本发明中,不是只变更控制送电侧的时间比率,而通过变更控制送电侧的时间比率,并且与此对应地变更控制初级侧转换电路以及次级侧转换电路的左臂与右臂的相间相位差,来控制成送电侧和受电侧的脉冲宽度相等,抑制循环电流。
在本发明的一个实施方式中,上述控制电路将上述送电侧的时间比率变更控制为相对于上述初级侧转换电路与上述次级侧转换电路的相位差φ成反比例,并且,使用上述次级侧转换电路的时间比率来变更控制上述初级侧转换电路的上述相间相位差,使用上述初级侧转换电路的时间比率来变更控制上述次级侧转换电路的上述相间相位差。
在本发明的其他实施方式中,上述控制电路将上述送电侧的时间比率δ变更控制为相对于上述初级侧转换电路与上述次级侧转换电路的相位差φ为:
δ=K/φ,其中,K是系数,
并且,使用上述次级侧转换电路的时间比率δ2来将上述初级侧转换电路的上述相间相位差γ1变更控制为:
γ1=2π-δ2
使用上述初级侧转换电路的时间比率δ1来将上述次级侧转换电路的上述相间相位差γ2变更控制为:
γ2=2π-δ1
根据本发明,尤其在轻负载时,能够抑制循环电流并且降低变压器的铁芯损耗来提高转换效率。
附图说明
图1是实施方式的电路结构图。
图2是作为实施方式的前提的基本控制框图。
图3A是仅对次级侧转换电路的时间比率进行了调制的情况下的变压器电压的波形图。
图3B是仅对次级侧转换电路的时间比率进行了调制的情况下的变压器电流的波形图。
图4是实施方式的控制框图。
图5A是以往的变压器电压的波形说明图。
图5B是以往的变压器电流的波形说明图。
图5C是以往的变压器磁通量的波形说明图。
图6A是实施方式的变压器电压的波形说明图。
图6B是实施方式的变压器电流的波形说明图。
图6C是实施方式的变压器磁通量的波形说明图。
图7是实施方式的效率说明图。
具体实施方式
以下,根据附图对本发明的实施方式进行说明。
图1是本实施方式中的电力转换电路系统的电路结构图。电力转换电路系统由控制电路10和电力转换电路12构成。电力转换电路12是能够利用磁耦合电抗器在三个直流电源之间进行双向的电力传送的三个端口的多端口电路。
多端口电路在初级侧转换电路具备端口A以及端口C,在次级侧转换电路具备端口B。
在初级侧转换电路的正极母线与初级侧转换电路的负极母线之间设置有由彼此串联连接的开关晶体管S1以及S2构成的左臂、和由彼此串联连接的开关晶体管S3以及S4构成的右臂,这些左臂和右臂彼此并联连接而构成全桥电路。端口A被配置于初级侧转换电路的正极母线与负极母线之间。将端口A的输入输出电压设为VA。端口C被配置于初级侧转换电路的负极母线与变压器之间。将端口C的输入输出电压设为VC
在构成左侧臂的开关晶体管S1以及S2的连接点与构成右侧臂的开关晶体管S3以及S4的连接点之间,连接有彼此串联连接的磁耦合电抗器,并且连接有变压器的初级侧绕组。即,磁耦合电抗器和变压器的初级侧绕组连接于两个双向斩波电路的中间点。
另一方面,在次级侧转换电路的正极母线与负极母线之间设置有由彼此串联连接的开关晶体管S5以及S6构成的左臂、和由彼此串联连接的开关晶体管S7以及S8构成的右臂,这些左臂与右臂彼此并联连接而构成全桥电路。端口B被配置于次级侧转换电路的正极母线与负极母线之间。将端口B的输入输出电压设为VB
变压器的次级侧绕组连接于构成左臂的开关晶体管S5以及S6的连接点与构成右臂的开关晶体管S7以及S8的连接点之间。
控制电路10设定控制电力转换电路12的各种参数,并进行初级侧转换电路和次级侧转换电路的开关晶体管S1~S8的开关控制。控制电路10根据来自外部的模式信号来切换在初级侧转换电路的两个端口之间进行电力转换的模式、和进行初级侧与次级侧之间的绝缘型电力传送的模式。如果以端口来说,则在端口A与端口B之间使电路作为双向绝缘型转换器动作,在端口A与端口C之间使电路作为双向非绝缘型转换器动作。此时,磁耦合电抗器在双向绝缘型转换器动作中为了相互减弱磁通量而使用漏电感分量来进行电力传送,磁耦合电抗器在双向非绝缘型转换器动作中为了相互增强磁通量而使用励磁电感分量与漏电感分量之和的分量来进行电力传送。
初级侧转换电路与次级侧转换电路之间的绝缘型电力传送以初级侧转换电路和次级侧转换电路的开关晶体管S1~S8的开关周期的相位差φ来进行控制。
在从初级侧转换电路向次级侧转换电路传送电力的情况下,以初级侧相对于次级侧相位超前的方式决定相位差φ。另外,在从次级侧转换电路向初级侧转换电路传送电力的情况下,与此相反以初级侧相对于次级侧相位滞后的方式决定相位差φ。例如,在从次级侧转换电路向初级侧转换电路传送电力的情况下,在初级侧转换电路中导通开关晶体管S1以及S4,截止S2以及S3。另外,在次级侧转换电路中导通开关晶体管S5以及S8,截止S6以及S7。在次级侧转换电路中,电流流动为S5→变压器次级侧绕组→S8。在初级侧转换电路中,电流流动为S4→变压器初级侧绕组→S1
在下个期间中,导通开关晶体管S1、S4、S8,除此以外的开关晶体管截止。与前一期间相比,开关晶体管S5从导通迁移至截止,但若次级侧转换电路的开关晶体管S5截止,则电流经由与开关晶体管S6并联连接的二极管继续流动,次级侧的两端电压下降为零。因此,决定次级侧的两端电压的成为开关晶体管S5的导通截止。
进一步在下个期间中,导通开关晶体管S1、S4、S6、S8,并将除此以外的开关晶体管截止。
进一步在下个期间中,导通开关晶体管S4、S6、S8,将除此以外的开关晶体管截止。若初级侧转换电路的开关晶体管S1从导通迁移至截止,则电流经由与开关晶体管S1并联连接的二极管继续流动,只要开关晶体管S2不导通,则初级侧的两端电压就不为零。因此,决定初级侧的两端电压的成为开关晶体管S2的导通截止。
也可以按照上下的开关晶体管不短路的方式设置数百纳秒~数微秒左右的死区时间。即,可以设置开关晶体管S1和S2、S3和S4、S5和S6、S7和S8均为截止那样的期间。
在将图1的多端口电路例如搭载于混合动力汽车等的情况下,能够在端口A连接48V辅机,在端口C连接14V辅机,在端口B连接主机电池等。
图2是作为本实施方式的前提的控制电路10的基本构成框图。在将初级侧转换电路作为受电侧,将次级侧转换电路作为送电侧,并从设置有电压值VB的电源的端口B向端口A以及端口C传送电力的情况下,如果检测端口A以及端口C各自的电压参照值VA、VC的值则能够控制。
作为功能模块,控制电路10具备相位差指令值φ*生成部以及时间比率(占空比)指令值δ*生成部。
相位差指令值φ*生成部具备差分器和PI(比例积分)控制器。差分器计算端口A的电压指令值VA*与参照值VA的差分。PI控制器对计算出的差分值进行PI控制来生成初级侧转换电路以及次级侧转换电路的相位差指令值φ*。通过以所生成的相位差指令值φ*来控制初级侧转换电路与次级转换电路的相位差φ,能够将端口A的输出电压值维持为恒定。
另外,时间比率指令值δ*生成部具备差分器、PI控制器以及加法器。差分器计算端口C的电压指令值VC*与参照值VC的差分。PI控制器对计算出的差分值进行PI控制。加法器将前馈项δFF与PI控制值相加来生成初级侧转换电路以及次级侧转换电路的时间比率(占空比)指令值δ*。在图中,δ1*是初级侧转换电路的时间比率,δ1*与次级侧转换电路的时间比率δ2*相等。通过以所生成的时间比率指令值δ*来控制时间比率,能够将端口C的输出电压值维持为恒定。其中,前馈项δFF是为了使控制稳定化而附加的项,例如由
δFF=2π(1-VC/VA)决定,但在本实施方式中不一定是必须的。
在混合动力汽车等的实际行驶中,由于最经常使用输出电压为50~150W左右的轻负载,所以为了提高燃油利用率而需要增大该轻负载中的效率。在输出电压为50~150W左右的轻负载时,由于电路中流动的负载电流较小,所以与元件损耗、绕组铜损相比,变压器的铁芯损耗为主要损耗。变压器的铁芯损耗取决于动作频率、铁芯体积以及最大磁通量,但因为频率、铁芯体积是在电路设计时决定的参数所以无法变更。鉴于此,在轻负载时实现最大磁通量Bm的降低是有效的。
变压器的最大磁通量由下式赋予。
Bm=T·VB/(2N·AT)
此处,N是匝数,AT是截面积,T是励磁期间。因为N、AT是设计值,所以无法通过控制来变更。因此,能够控制的参数仅是励磁期间T。励磁期间T是对变压器的送电侧绕组施加电压VB的期间,根据动作频率ωsw由下式赋予。
T=(∣δ2-π∣+π)/ωsw
此处,δ2是作为送电侧的次级侧转换电路的时间比率的弧度表示,且0<δ2<2π。根据该式可知,通过将作为送电侧的次级侧转换电路的时间比率δ2从π的值分开,能够缩短励磁期间T,降低最大磁通量。
然而,若仅变更次级侧转换电路的时间比率,则因为初级侧转换电路和次级侧转换电路的时间比率产生差异,所以施加于变压器绕组两侧的电压波形产生差,导致产生循环电流。
图3A以及图3B是初级侧转换电路和次级侧转换电路的时间比率不同的情况下的变压器电压和变压器电流的波形图。图3A是变压器电压的波形,表示了初级侧转换电路的电压6×V1以及次级侧转换电路的电压V2。图3B是变压器电流的波形图,是将初级侧转换电路的时间比率δ1设为0.75,将次级侧转换电路的时间比率δ2设为0.6的情况。如图3A所示,若初级侧转换电路和次级侧转换电路的时间比率不同,则脉冲宽度产生差异。因此,如图3B所示,在非传送期间中本来变压器电流必须是零,但在非传送期间中也流过变压器电流、即循环电流。循环电流例如在开关晶体管S2导通时流经S2→S4→电抗器→变压器初级侧绕组→电抗器→S2,由于无助于电力传送地在闭路中循环,所以成为使转换效率显著恶化的主要因素。
因此,在本实施方式中,为了降低变压器的最大磁通量而缩短励磁期间T,并且,为了抑制循环电流的产生而与次级侧转换电路的时间比率的变更对应地变更初级侧转换电路和次级侧转换电路各自的相间相位差γ1、γ2
相间相位差是初级侧转换电路以及次级侧转换电路各自中的左臂(U相)与右臂(V相)之间的相位差。若将初级侧转换电路的U相、V相分别设为U1相、V1相,将次级侧转换电路的U相、V相分别设为U2相、V2相,则相间相位差γ1是U1相与V1相的相位差,相间相位差γ2是U2相与V2相的相位差。相间相位差γ1、γ2基本上相同,但在本实施方式中,通过考虑δ1和δ2不同并将相间相位差γ1、γ2设为不同的值,从而使初级侧转换电路与次级侧转换电路的电压V1、V2的脉冲宽度相等。
图4是本实施方式中的控制电路10的功能框图。与图2所示的作为前提的基本功能框图对比,根据彼此相反侧的桥接电路的时间比率生成初级侧转换电路以及次级侧转换电路的相间相位差指令值γ1*、γ2*。即,根据次级侧转换电路的时间比率指令值δ2*生成初级侧转换电路的相间相位差指令值γ1*,根据初级侧转换电路的时间比率指令值δ1*生成次级侧转换电路的相间相位差指令值γ2*。
更详细而言,与图2的情况同样地根据端口A的电压指令值VA*和参照值VA生成相位差指令值φ*,与图2的情况同样地根据端口C的电压指令值VC*和参照值VC以及前馈项δFF(但是,它不是必须的)生成初级侧转换电路的时间比率指令值δ1*。
另一方面,在轻负载时,通过将次级侧转换电路的时间比率指令值δ2*如上述那样以从π的值分开的方式根据δ1*进行变更,来缩短励磁期间T,并且根据次级侧转换电路的时间比率指令值δ2*通过γ1*=2π-δ2*生成初级侧转换电路的相间相位差指令值γ1*,并且,根据初级侧转换电路的时间比率指令值δ1*通过γ2*=2π-δ1*生成次级侧转换电路的相间相位差指令值γ2*。具体而言,作为送电侧的次级侧转换电路的时间比率指令值δ2*通过δ2*=K/φ*生成。
这意味着以与相位差φ成反比例的方式变更控制次级侧转换电路的时间比率指令值δ2*。其中,K是系数,δ2*>δ1*。
在轻负载时,伴随传送电力的降低、即相位差φ的降低,次级侧转换电路的时间比率指令值δ2*增大,励磁期间变小而最大磁通量降低。
图5A、图5B、图5C是控制电路10的构成为图2的情况下的变压器电压、变压器电流、变压器磁通量的波形图。图5A是变压器电压,图5B是变压器电流,图5C是变压器磁通量。
另外,图6A、图6B、图6C是控制电路10的构成为图4的情况下的变压器电压、变压器电流、变压器磁通量的波形图。图6A是变压器电压,图6B是变压器电流,图6C是变压器磁通量。均是电路模拟结果。
若着眼于图5B、图5C和图6B、图6C的变压器电流以及变压器磁通量,则在图6C中,与图5C相比,变压器磁通量从200mT降低为160mT,并且,如图6B所示,循环电流被抑制到零附近。
图7示出针对控制电路10的构成为图2的情况和图4的情况下的输出电力的效率的电路模拟结果。在图中,符号100是图2的情况即不变更控制次级侧转换电路的时间比率、也不变更控制相间相位差γ1、γ2的情况下的效率,符号200是图4的情况即变更控制了次级侧转换电路的时间比率、以及相间相位差γ1、γ2的情况下的效率。在本实施方式中,由于能够抑制循环电流,所以效率增大相应的量,尤其在输出电力小到50~150W的情况下,其效果显著。
如上所述,在本实施方式中,当在混合动力汽车等中需要进行轻负载(50~150W)下的效率改进时,通过一起控制时间比率和相间相位差,能够在抑制循环电流的同时降低变压器的铁芯损耗,能够提高效率。
在本实施方式中,通过变更作为送电侧的次级侧转换电路的时间比率,并且变更初级侧转换电路的相间相位差γ1,来降低最大磁通量并且抑制循环电流,但除了在高负载时(150W以上)以及轻负载时(50~150W)的任意一个中均通过图4所示的本实施方式的控制模块进行控制以外,也可以在高负载时通过图2所示的基本的控制模块进行控制,在轻负载时通过图4所示的本实施方式的控制模块进行控制等,根据负载来切换控制。
另外,在本实施方式中,对从次级侧转换电路向初级侧转换电路进行电力传送的情况进行了说明,但当然也能够同样地应用于从初级侧转换电路向次级侧转换电路进行电力传送的情况。该情况下,只要以与相位差φ成反比例的方式设定作为送电侧的初级侧转换电路的时间比率δ1,并且,根据次级侧转换电路的时间比率δ2设定相间相位差γ1,根据初级侧转换电路的时间比率δ1设定γ2即可。即,若将送电侧作为初级侧转换电路,将受电侧作为次级侧转换电路,则只要通过
γ1*=2π-δ2*
γ2*=2π-δ1*
δ1*=K/φ*
生成时间比率指令值δ1*、相间相位差指令值γ1*、γ2*即可。

Claims (2)

1.一种电力转换电路系统,其特征在于,具备:
初级侧转换电路,在初级侧正极母线与初级侧负极母线之间具备左臂和右臂,上述左臂以及上述右臂分别由串联连接的两个开关晶体管构成,在上述左臂的两个开关晶体管的连接点与上述右臂的两个开关晶体管的连接点之间连接变压器的初级侧绕组;
次级侧转换电路,在次级侧正极母线与次级侧负极母线之间具备左臂和右臂,上述左臂以及上述右臂分别由串联连接的两个开关晶体管构成,在上述左臂的两个开关晶体管的连接点与上述右臂的两个开关晶体管的连接点之间连接上述变压器的次级侧绕组;以及
控制电路,控制上述初级侧转换电路以及上述次级侧转换电路的上述开关晶体管的开关,
上述控制电路在输出电压相对小的轻负载时,变更控制上述初级侧转换电路和上述次级侧转换电路中的送电侧的占空比,并且变更控制上述初级侧转换电路以及上述次级侧转换电路的上述左臂与上述右臂的相间相位差,
上述控制电路将上述送电侧的占空比变更控制为相对于上述初级侧转换电路与上述次级侧转换电路的相位差φ成反比例,并且,使用上述次级侧转换电路的占空比来变更控制上述初级侧转换电路的上述相间相位差,使用上述初级侧转换电路的占空比来变更控制上述次级侧转换电路的上述相间相位差。
2.根据权利要求1所述的电力转换电路系统,其特征在于,
上述控制电路将上述送电侧的占空比δ变更控制为相对于上述初级侧转换电路与上述次级侧转换电路的相位差φ为δ=K/φ,其中,K是系数,
并且,使用上述次级侧转换电路的占空比δ2来将上述初级侧转换电路的上述相间相位差γ1变更控制为γ1=2π-δ2
使用上述初级侧转换电路的占空比δ1来将上述次级侧转换电路的上述相间相位差γ2变更控制为γ2=2π-δ1
CN201610164647.7A 2015-03-24 2016-03-22 电力转换电路系统 Active CN106026660B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-061061 2015-03-24
JP2015061061A JP6158243B2 (ja) 2015-03-24 2015-03-24 電力変換回路システム

Publications (2)

Publication Number Publication Date
CN106026660A CN106026660A (zh) 2016-10-12
CN106026660B true CN106026660B (zh) 2018-11-02

Family

ID=55527333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610164647.7A Active CN106026660B (zh) 2015-03-24 2016-03-22 电力转换电路系统

Country Status (4)

Country Link
US (1) US9660543B2 (zh)
EP (1) EP3073626B1 (zh)
JP (1) JP6158243B2 (zh)
CN (1) CN106026660B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6102872B2 (ja) * 2014-09-25 2017-03-29 株式会社豊田中央研究所 電力変換装置
US9812971B1 (en) 2016-08-12 2017-11-07 Infineon Technologies Austria Ag Transformer flux estimation and limiting in isolated DC-DC voltage converters
US10554138B2 (en) * 2016-10-25 2020-02-04 Infineon Technologies Austria Ag Flux limited fast transient response in isolated DC-DC converters
US10439500B2 (en) 2017-02-01 2019-10-08 Infineon Technologies Austria Ag Control of isolated power converters during transient load conditions
JP6951222B2 (ja) * 2017-12-06 2021-10-20 シャープ株式会社 電力変換装置及び電力変換システム
JP6545346B1 (ja) * 2018-10-29 2019-07-17 三菱電機株式会社 電力変換装置
JP7226219B2 (ja) * 2019-09-20 2023-02-21 株式会社明電舎 絶縁型dc/dc変換器
FR3106024B1 (fr) * 2020-01-07 2022-01-14 Alstom Transp Tech Système d’alimentation électrique pour un véhicule électrique
US11251690B2 (en) * 2020-05-22 2022-02-15 Yu Ling Huang Systems, methods, and apparatus for dead-time control in resonant converters
KR20230020269A (ko) * 2021-08-03 2023-02-10 현대자동차주식회사 Llc 공진 컨버터 제어 장치 및 이의 제어 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038069A (zh) * 2013-03-08 2014-09-10 丰田自动车株式会社 电力转换系统
CN104065272A (zh) * 2013-03-21 2014-09-24 丰田自动车株式会社 电力转换系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295068B2 (en) * 2010-02-02 2012-10-23 National Taipei University Of Technology Shift full bridge power converting system and control method thereof
JP5815939B2 (ja) * 2010-02-17 2015-11-17 株式会社豊田中央研究所 電力変換回路及び電力変換回路システム
US8587975B2 (en) * 2010-04-01 2013-11-19 Arizona Board Of Regents For And On Behalf Of Arizona State University PWM control of dual active bridge converters
US9343993B2 (en) * 2011-06-08 2016-05-17 L-3 Communications Magnet-Motor Gmbh DC/AC converter and method of controlling a DC/AC converter
US20120320633A1 (en) * 2011-06-16 2012-12-20 Chang-Hsing Chen Variable frequency pwm synchronous rectifier power supply
JP6209744B2 (ja) * 2012-12-28 2017-10-11 パナソニックIpマネジメント株式会社 Dc/dcコンバータ
US9042125B1 (en) * 2013-03-15 2015-05-26 Rockwell Collins, Inc. Series resonant power converter system and method with improved efficiency
JP5807658B2 (ja) * 2013-05-21 2015-11-10 トヨタ自動車株式会社 電力変換装置及び電力変換方法
EP2827467A3 (en) * 2013-07-18 2015-04-22 Solantro Semiconductor Corp. Stabilized power generation
US9461553B2 (en) * 2013-11-21 2016-10-04 Majid Pahlevaninezhad High efficiency DC/DC converter and controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038069A (zh) * 2013-03-08 2014-09-10 丰田自动车株式会社 电力转换系统
CN104065272A (zh) * 2013-03-21 2014-09-24 丰田自动车株式会社 电力转换系统

Also Published As

Publication number Publication date
EP3073626A3 (en) 2016-10-19
EP3073626B1 (en) 2018-06-20
US9660543B2 (en) 2017-05-23
JP6158243B2 (ja) 2017-07-05
JP2016181993A (ja) 2016-10-13
EP3073626A2 (en) 2016-09-28
CN106026660A (zh) 2016-10-12
US20160285377A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
CN106026660B (zh) 电力转换电路系统
Krismer et al. Closed form solution for minimum conduction loss modulation of DAB converters
CN111641247B (zh) 一种车载充电机的充电电路、车载充电机及充电控制方法
US10833669B2 (en) Semiconductor device, inverter, and automobile
CN104868736A (zh) 电力转换电路系统
CN106427673A (zh) 无断电过分相供电装置
CN105991037B (zh) 电力转换电路系统
CN106458046B (zh) 具有两个直流电源的电源系统
JP2015204639A (ja) 電力変換装置及びその制御方法
US9537414B2 (en) Power conversion apparatus that switches electrode connection when a short-circuit is detected
CN108879895A (zh) 电动汽车能量传输系统及传输方法
CN106605357A (zh) 电力变换装置
CN104348358B (zh) 功率电源转换方法及装置
CN103929074B (zh) 单级交流/直流变换器
JP6097270B2 (ja) 電力変換回路システム
JP6489099B2 (ja) コンバータを含む電源回路及びそれを用いた電源システム
JP6427080B2 (ja) トランスリアクトル一体型磁気素子及び電力変換回路システム
EP4128509B1 (en) Dc-to-dc converter with freewheeling circuits
JP6545612B2 (ja) トランスリアクトル一体型磁気素子及び電力変換回路システム
Itoh et al. Design and modulation method of Multi-port DC/DC converter for next generation HV sub system
CN108023477A (zh) 电源系统及运输设备
KR102049840B1 (ko) 낮은 자화 전류 오프셋을 갖는 zvs 액티브 클램프 다중 출력 컨버터
JP6705324B2 (ja) 電力変換回路
KR102568218B1 (ko) 인버터 및 단상계통 기반의 완속충전 방법 및 시스템
CN217469772U (zh) 一种用于能量路由器的t型三电平双有源桥式变换器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant