[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN105985104A - Smooth and wear-resistant ceramic lining for hydraulic steel pipes - Google Patents

Smooth and wear-resistant ceramic lining for hydraulic steel pipes Download PDF

Info

Publication number
CN105985104A
CN105985104A CN201511012900.9A CN201511012900A CN105985104A CN 105985104 A CN105985104 A CN 105985104A CN 201511012900 A CN201511012900 A CN 201511012900A CN 105985104 A CN105985104 A CN 105985104A
Authority
CN
China
Prior art keywords
parts
powder
mixed
wear
nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201511012900.9A
Other languages
Chinese (zh)
Inventor
高恒东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhu Chuangyuan New Materials Co Ltd
Original Assignee
Wuhu Chuangyuan New Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhu Chuangyuan New Materials Co Ltd filed Critical Wuhu Chuangyuan New Materials Co Ltd
Priority to CN201511012900.9A priority Critical patent/CN105985104A/en
Publication of CN105985104A publication Critical patent/CN105985104A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • C04B35/651Thermite type sintering, e.g. combustion sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L57/00Protection of pipes or objects of similar shape against external or internal damage or wear
    • F16L57/06Protection of pipes or objects of similar shape against external or internal damage or wear against wear
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Lubricants (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The invention discloses a smooth and wear-resistant ceramic lining for hydraulic steel pipes. The smooth and wear-resistant ceramic lining is prepared from, by weight, 54-56 parts of pure aluminite powder, 159-162 parts of iron oxide red, 18-19 parts of cobalt nitrate, 18-19 parts of nickel chloride, 37-38 parts of tetraethoxysilane, 74-76 parts of absolute ethyl alcohol, 10-11.5 parts of nanometer Y-ZrO2 powder, 8.5-9.5 parts of sodium tetraborate, 2-3 parts of molybdenum disulfide, 1.5-2 parts of niobium pentoxide, 8-9 parts of nano-titanium nitride, 0.8-1 part of sodium carbonate, 0.5-0.6 part of sodium stearate, 2-3 parts of calcium oxide and the balance being deionized water. Based on scientifically reasonable composition proportion with adding of components such as nano-titanium nitride and molybdenum disulfide, the ceramic lining material which has grain refinement, good wear resistance and high binding strength with walls of base materials is prepared by particular technology. The hydraulic steel pipes produced by the material have the advantages of high wear resistance, polished and smooth inner walls and low resistance of hydraulic oil.

Description

A kind of lubricating and wear-resisting for hydraulic steel pipe ceramic-lined
Technical field
The present invention relates to ceramic technology field, particularly relate to the ceramic-lined of a kind of lubricating and wear-resisting for hydraulic steel pipe.
Background technology
The pipeline kind used in hydraulic system is a lot, according to operating pressure and the difference of installation site of hydraulic system, selection have steel pipe, copper tube, rubber tube, nylon tube and plastic tube etc..These pipelines once damage leakage of oil, the most then pollute environment, affect the normal performance of systemic-function, heavy then jeopardize safety, and the present invention selects hydraulic steel pipe as object of study.When hydraulic work system, fluid pressure line to bear higher pressure, add alternate stress that pressure transient produces, vibration equipment and produce vibration stress, the common effect of erection stress etc., make hard tube at fault in material, hot spot or injury region produce stress concentration phenomenon, pipeline generation fatigue rupture fracture and leakage of oil;Due also to hydraulic system is easily contaminated, the hydraulic oil containing solid pollutant is similar to the grinding agent that abrasive metal machined surface is used, and adds the friction of fluid and pipeline inner wall.And the hardness of the usual hardness ratio pipe inner wall material of solid pollution composition granule is much higher, thus accelerate the abrasion of pipe inner wall, even scratch inwall, particularly high when the flow velocity of liquid and unstable time, the material of pipe inner wall will be made to be impacted and peel off.These reasons easily cause potential safety hazard.
Centrifugal SHS technology has concentrated the Common advantages of centrifugal casting and SHS technology, and it has manufacturing process and manufacture equipment is simple and production efficiency is high, production cost is low and saves the advantages such as the energy.Utilizing centrifugal self-propagating synthesis technology to prepare ceramic lining material inside tradition stainless steel tube can make hydraulic oil oil pipe have more preferable corrosion resistance, abrasion resistance properties and good mechanical property and shock resistance.Thus, the preparation that this kind of technology is applied to hydraulic oil oil tube inner lining material will have wide market prospect and huge economic and social benefits.With micron aluminium powder and micron iron sesquioxide as primary raw material in " preparation of hydraulic oil oil pipe ceramic lining material and performance study " literary composition, with micron silica and micron Y-ZrO2 as additive, using centrifugal SHS technology to be prepared for hydraulic oil oil pipe ceramic lining material, prepared hydraulic oil oil pipe ceramic lining material has the performances such as good toughness, fracture strength, impact resistance.But owing to self-propagating reaction is the fiercest, in course of reaction, thermal losses is big, the finite thickness that steel pipe inner wall is melted, cause the bond strength of metallurgical binding part limited and there is certain hole, so the tools such as the thermostability of ceramic layer, corrosion resistance, wearability are had a certain impact, under the operating mode of some HI high impacts, there will be the phenomenon that ceramic coating comes off, thus affect service life and the safety coefficient of oil pipe, need to improve on the basis of original text.
Summary of the invention
The object of the invention is contemplated to make up the defect of prior art, it is provided that a kind of lubricating and wear-resisting for hydraulic steel pipe ceramic-lined.
The present invention is achieved by the following technical solutions:
A kind of lubricating and wear-resisting for hydraulic steel pipe ceramic-lined, is prepared by the raw materials in: pure aluminium powder 54-56, iron oxide red 159-162, cobalt nitrate 18-19, Nickel dichloride. 18-19, tetraethyl orthosilicate 37-38, dehydrated alcohol 74-76, nanometer Y-ZrO2 powder 10-11.5, sodium tetraborate 8.5-9.5, molybdenum bisuphide 2-3, niobium pentaoxide 1.5-2, Nano titanium nitride 8-9, sodium carbonate 0.8-1, sodium stearate 0.5-0.6, calcium oxide 2-3, deionized water.
Ceramic-lined according to the lubricating and wear-resisting for hydraulic steel pipe a kind of described in claims 1, is made up of step in detail below:
(1) cobalt nitrate is mixed with Nickel dichloride., add in dehydrated alcohol, stirring also fully dissolves formation mixed solution, it is subsequently placed in 60 DEG C of waters bath with thermostatic control, tetraethyl orthosilicate is added drop-wise in mixed solution lentamente, heating in water bath is to 80-90 DEG C, stir 40-50 minute and increase to reactant viscosity, form vitreosol, it is statically placed in gel under room temperature condition, again xerogel is placed in drying baker and is dried 10-12 hour with the temperature of 80-90 DEG C, then under conditions of 750-850 DEG C, xerogel is carried out presintering, it is incubated 1.5-2 hour, take out after being cooled to room temperature and grind, obtain composite granule, i.e. magnetic silica powder body;
(2) montmorillonite being broken into fritter, be then placed in vibrator, ball milling adds flyash, ammonium chloride after 30-40 minute, continues ball milling 2-3 hour, completes the activation of powder body, obtain mixed-powder;
(3) mixed-powder that step (2) obtains is mixed with nanometer Y-ZrO2 powder, add the deionized water of total amount 3-4 times amount, it is stirring evenly and then adding into remaining residual components in addition to pure aluminium powder, iron oxide red, continue stirring 30-40 minute, form slurry, finally slurry is spray-dried, forms mixed nanometer mixed powder;
(4) the mixed nanometer mixed powder that the magnetic silica powder body that aluminium powder, iron oxide red obtained with step (1), step (3) obtain is mixed homogeneously, put in ball mill, mixing and ball milling 2-3 hour, it is loaded into after taking-up in tubing, and be fixed on centrifuge, supply igniting, igniting is passed through oxygen simultaneously, oxygen supply continues 4-5 minute, uses centrifugal SHS technology to be formed ceramic-lined at pipe material inner wall.
The invention have the advantage that the present invention utilizes the composition such as cobalt nitrate, Nickel dichloride. to react with tetraethyl orthosilicate, generate cladding cobalt, the earth silicon material of nickel, as additive add to based on aluminium powder, iron oxide red reaction in, silicon dioxide is made to have magnetic, easily it is combined with tubing, is improved the bond strength with tube wall by reaction further;Adding sodium tetraborate, improve inner surface fineness, porosity significantly reduces simultaneously;Adding appropriate nanometer Y-ZrO2 powder, in course of reaction, meeting disperse is in product aluminium sesquioxide, is possible not only to improve Fracture Toughness and the shock resistance of ceramic lining material, ceramic-lined anti-wear performance can be greatly improved simultaneously.
The present invention, by scientific and reasonable composition proportion, adds the composition such as Nano titanium nitride, molybdenum bisuphide, makes, by certain technique, the ceramic lining material that crystal grain refines, wearability is the best with base material tube wall bond strength;The hydraulic steel pipe made has good wear-resisting intensity, the bright and clean lubrication of inwall, and hydraulic oil flow dynamic resistance is little.
Detailed description of the invention
A kind of lubricating and wear-resisting for hydraulic steel pipe ceramic-lined, is made up of the raw material of following weight portion (kilogram): pure aluminium powder 54, iron oxide red 159, cobalt nitrate 18, Nickel dichloride. 18, tetraethyl orthosilicate 37, dehydrated alcohol 74, nanometer YZrO2 powder 10, sodium tetraborate 8.5, molybdenum bisuphide 2, niobium pentaoxide 1.5, Nano titanium nitride 8, sodium carbonate 0.8, sodium stearate 0.5, calcium oxide 2, deionized water.
Ceramic-lined according to the lubricating and wear-resisting for hydraulic steel pipe a kind of described in claims 1, is made up of step in detail below:
(1) cobalt nitrate is mixed with Nickel dichloride., add in dehydrated alcohol, stirring also fully dissolves formation mixed solution, it is subsequently placed in 60 DEG C of waters bath with thermostatic control, tetraethyl orthosilicate is added drop-wise in mixed solution lentamente, heating in water bath is to 80 DEG C, stir 40 minutes and increase to reactant viscosity, form vitreosol, it is statically placed in gel under room temperature condition, again xerogel is placed in drying baker and is dried 10 hours with the temperature of 80 DEG C, then under conditions of 750 DEG C, xerogel is carried out presintering, it is incubated 1.5 hours, take out after being cooled to room temperature and grind, obtain composite granule, i.e. magnetic silica powder body;
(2) montmorillonite being broken into fritter, be then placed in vibrator, ball milling adds flyash, ammonium chloride after 30 minutes, continues ball milling 2 hours, completes the activation of powder body, obtain mixed-powder;
(3) mixed-powder that step (2) obtains is mixed with nanometer YZrO2 powder, add the deionized water of total amount 3 times amount, it is stirring evenly and then adding into remaining residual components in addition to pure aluminium powder, iron oxide red, continue stirring 30 minutes, form slurry, finally slurry is spray-dried, forms mixed nanometer mixed powder;
(4) the mixed nanometer mixed powder that the magnetic silica powder body that aluminium powder, iron oxide red obtained with step (1), step (3) obtain is mixed homogeneously, put in ball mill, mixing and ball milling 2 hours, it is loaded into after taking-up in tubing, and be fixed on centrifuge, supply igniting, igniting is passed through oxygen simultaneously, oxygen supply continues 4 minutes, uses centrifugal SHS technology to be formed ceramic-lined at pipe material inner wall.
Material of the present invention is through test, and hardness number is 1301HV, and porosity is 3.72%, and Fracture Toughness is 5.49 MPa m1/2

Claims (2)

1. the lubricating and wear-resisting for hydraulic steel pipe is ceramic-lined, it is characterized in that, be prepared by the raw materials in: pure aluminium powder 54-56, iron oxide red 159-162, cobalt nitrate 18-19, Nickel dichloride. 18-19, tetraethyl orthosilicate 37-38, dehydrated alcohol 74-76, nanometer Y-ZrO2 powder 10-11.5, sodium tetraborate 8.5-9.5, molybdenum bisuphide 2-3, niobium pentaoxide 1.5-2, Nano titanium nitride 8-9, sodium carbonate 0.8-1, sodium stearate 0.5-0.6, calcium oxide 2-3, deionized water.
2. ceramic-lined according to the lubricating and wear-resisting for hydraulic steel pipe a kind of described in claims 1, it is characterised in that be made up of step in detail below:
(1) cobalt nitrate is mixed with Nickel dichloride., add in dehydrated alcohol, stirring also fully dissolves formation mixed solution, it is subsequently placed in 60 DEG C of waters bath with thermostatic control, tetraethyl orthosilicate is added drop-wise in mixed solution lentamente, heating in water bath is to 80-90 DEG C, stir 40-50 minute and increase to reactant viscosity, form vitreosol, it is statically placed in gel under room temperature condition, again xerogel is placed in drying baker and is dried 10-12 hour with the temperature of 80-90 DEG C, then under conditions of 750-850 DEG C, xerogel is carried out presintering, it is incubated 1.5-2 hour, take out after being cooled to room temperature and grind, obtain composite granule, i.e. magnetic silica powder body;
(2) montmorillonite being broken into fritter, be then placed in vibrator, ball milling adds flyash, ammonium chloride after 30-40 minute, continues ball milling 2-3 hour, completes the activation of powder body, obtain mixed-powder;
(3) mixed-powder that step (2) obtains is mixed with nanometer Y-ZrO2 powder, add the deionized water of total amount 3-4 times amount, it is stirring evenly and then adding into remaining residual components in addition to pure aluminium powder, iron oxide red, continue stirring 30-40 minute, form slurry, finally slurry is spray-dried, forms mixed nanometer mixed powder;
(4) the mixed nanometer mixed powder that the magnetic silica powder body that aluminium powder, iron oxide red obtained with step (1), step (3) obtain is mixed homogeneously, put in ball mill, mixing and ball milling 2-3 hour, it is loaded into after taking-up in tubing, and be fixed on centrifuge, supply igniting, igniting is passed through oxygen simultaneously, oxygen supply continues 4-5 minute, uses centrifugal SHS technology to be formed ceramic-lined at pipe material inner wall.
CN201511012900.9A 2015-12-31 2015-12-31 Smooth and wear-resistant ceramic lining for hydraulic steel pipes Withdrawn CN105985104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511012900.9A CN105985104A (en) 2015-12-31 2015-12-31 Smooth and wear-resistant ceramic lining for hydraulic steel pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511012900.9A CN105985104A (en) 2015-12-31 2015-12-31 Smooth and wear-resistant ceramic lining for hydraulic steel pipes

Publications (1)

Publication Number Publication Date
CN105985104A true CN105985104A (en) 2016-10-05

Family

ID=57040516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511012900.9A Withdrawn CN105985104A (en) 2015-12-31 2015-12-31 Smooth and wear-resistant ceramic lining for hydraulic steel pipes

Country Status (1)

Country Link
CN (1) CN105985104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106631077A (en) * 2016-12-07 2017-05-10 苏州洛特兰新材料科技有限公司 Nitride-based composite ceramic material for hydraulic steel pipe lining and preparation method of nitride-based composite ceramic material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090095439A1 (en) * 2005-09-02 2009-04-16 Ashland-Sudchemie-Kernfest Gmbh Borosilicate glass-containing molding material mixtures
CN102815950A (en) * 2012-09-06 2012-12-12 南通大学 Nano-additive-added reaction material for preparing ceramic lining composite steel tube
CN104404434A (en) * 2014-11-05 2015-03-11 昆明理工大学 Ceramic coating of metal material surface and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090095439A1 (en) * 2005-09-02 2009-04-16 Ashland-Sudchemie-Kernfest Gmbh Borosilicate glass-containing molding material mixtures
CN102815950A (en) * 2012-09-06 2012-12-12 南通大学 Nano-additive-added reaction material for preparing ceramic lining composite steel tube
CN104404434A (en) * 2014-11-05 2015-03-11 昆明理工大学 Ceramic coating of metal material surface and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106631077A (en) * 2016-12-07 2017-05-10 苏州洛特兰新材料科技有限公司 Nitride-based composite ceramic material for hydraulic steel pipe lining and preparation method of nitride-based composite ceramic material

Similar Documents

Publication Publication Date Title
CN103090118A (en) Wear-resisting and corrosion-resisting alloy coating long and thin composite tube and production method thereof
CN103277629A (en) Abrasion resistant cast tube with high temperature oxidation resistant anticorrosive coating
CN103305773A (en) Preparation method of anti-corrosion high-temperature-resistant wear-resistant casting pipe
CN106285502A (en) Composite coating heat-insulating anticorrosion oil pipe
CN104550913A (en) Corrosion-resistant iron-based powder metallurgy valve and preparation method thereof
CN103276282A (en) Fabrication method of anti-corrosive and wear-resistant pipeline for delivering minerals
CN101187295B (en) Super high intensity anti-corrosion pumping rod production method
CN105983689A (en) Graphene-enhanced ceramic lining material for hydraulic steel tube
CN103290336A (en) Preparation method of wear-resistant cast pipe with high-temperature oxidation resistant corrosion-resistant layer
CN101571034B (en) Sucker rod spray welding coupling
CN105985105A (en) Ceramic lining material for improving heat shock properties of hydraulic steel pipes
CN104550931A (en) Scattering particle reinforced iron-based powder metallurgical valve and preparation method thereof
CN105985106A (en) Self-propagating synthesis ceramic lining material for hydraulic steel pipes
CN105985104A (en) Smooth and wear-resistant ceramic lining for hydraulic steel pipes
CN105562697A (en) Hydraulic steel pipe inner wall ceramic material good in comprehensive performance
CN104500870B (en) A kind of Rotating fields wear-resisting resistance to erosion pipeline and preparation method thereof
CN100390415C (en) Oil pump plunger
CN105985126A (en) Ceramic lining material capable of improving antioxidation performance
CN105985110A (en) Zirconium silicate added ceramic lining material for hydraulic steel pipe
CN105987255A (en) Ceramic lining material added with cerium oxide and metallic nickel powder for hydraulic steel tube
CN105985107A (en) Hydraulic steel pipe ceramic lining material excellent in wear resistance and corrosion resistance
CN105985108A (en) Ceramic lining material added with nano ingredients and used forr hydraulic oil pipe
CN105985109A (en) Modified ceramic lining material with chromic oxide
CN100395451C (en) Method for producing oil pump plunger
CN105987254A (en) Ceramic lining material resistant to impact and not liable to fall off for hydraulic steel tube

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20161005