[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN105975651B - Guided missile Parameters design based on Genetic Particle Swarm algorithms for multidisciplinary design optimization - Google Patents

Guided missile Parameters design based on Genetic Particle Swarm algorithms for multidisciplinary design optimization Download PDF

Info

Publication number
CN105975651B
CN105975651B CN201610224896.0A CN201610224896A CN105975651B CN 105975651 B CN105975651 B CN 105975651B CN 201610224896 A CN201610224896 A CN 201610224896A CN 105975651 B CN105975651 B CN 105975651B
Authority
CN
China
Prior art keywords
missile
design
genetic
engine
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610224896.0A
Other languages
Chinese (zh)
Other versions
CN105975651A (en
Inventor
郭继峰
关英姿
荣思远
赵毓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Shenzhen
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Shenzhen filed Critical Harbin Institute of Technology Shenzhen
Priority to CN201610224896.0A priority Critical patent/CN105975651B/en
Publication of CN105975651A publication Critical patent/CN105975651A/en
Application granted granted Critical
Publication of CN105975651B publication Critical patent/CN105975651B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • Genetics & Genomics (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Physiology (AREA)
  • Computer Hardware Design (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Guided missile Parameters design based on Genetic Particle Swarm algorithms for multidisciplinary design optimization, is related to guided missile Parameters design.The present invention is not suitable for the case where multidisciplinary lower design parameter is more and there are Coupled Variable phenomenons to solve the existing guided missile Parameters design based on intelligent optimization algorithm.The present invention chooses engine larynx diameter, engine combustion face area, motor charge meat thickness, guided missile outer diameter, engine/motor specific impulse, engine quality, fuel mass, missile wing root chord length, empennage root tip length, empennage tip chord length as design parameter:Then utilize genetic algorithm to three control parameters w, c in standard particle group's algorithm1、c2It carries out preferably, genetic idea being introduced population position updating process when optimizing for particle cluster algorithm during preferred with design parameter.The present invention is suitable for guided missile parameter designing field.

Description

基于遗传粒子群多学科设计优化算法的导弹参数设计方法Missile parameter design method based on genetic particle swarm multidisciplinary design optimization algorithm

技术领域technical field

本发明涉及导弹参数设计方法。The invention relates to a missile parameter design method.

背景技术Background technique

飞行器设计中涉及到许多学科,从整体系统的角度来说,各个子系统间必然存在一定程度的相互作用和耦合效应。由于子系统均有各自独立的分析和设计工具,传统次序型设计往往无法综合考虑,从而没能充分考虑到各系统间的耦合因素。应用多学科设计优化解决上述整体系统的设计问题,既提高了设计效率,还改善了产品的性能。Many disciplines are involved in the design of aircraft. From the perspective of the overall system, there must be a certain degree of interaction and coupling effect among the various subsystems. Since the subsystems have their own independent analysis and design tools, the traditional sequential design often cannot be considered comprehensively, thus failing to fully consider the coupling factors between the various systems. Applying multidisciplinary design optimization to solve the design problems of the above-mentioned overall system not only improves the design efficiency, but also improves the performance of the product.

导弹武器设计需要用到气动、弹道、动力等多学科的综合知识。随着设计水平的发展,此类复杂系统的设计过程有必要进行多学科综合设计,在考虑各个学科相互作用的基础上寻找全局最优的设计方案。而现有的一些导弹设计方法是在某个学科(如弹道学科)限定条件下针对另一学科下的导弹参数进行设计,这种设计方法存在设计出导弹的整体性能较差;也有一些导弹设计方法是结合的多学科参数进行设计,但是这种设计方法不适用于不同学科下设计参数较多且存在多变量耦合现象的情况。Missile weapon design requires comprehensive knowledge of multiple disciplines such as aerodynamics, ballistics, and power. With the development of the design level, it is necessary to carry out multidisciplinary comprehensive design in the design process of such complex systems, and to find the global optimal design scheme on the basis of considering the interaction of various disciplines. However, some existing missile design methods are based on the design of missile parameters in another discipline under the limited conditions of a certain discipline (such as ballistic discipline). This design method has poor overall performance of the designed missile; The method is to combine multidisciplinary parameters to design, but this design method is not suitable for the situation where there are many design parameters in different disciplines and there are multivariate coupling phenomena.

如今,智能优化算法已经给很多领域带来的诸多便利,也有一些学者将智能优化算法引入导弹设计领域,但是一般的基于智能优化算法的导弹参数设计适用于参数较少的情况,面对多学科下多参数的设计方法,一般的智能优化算法不能收敛,不能取得较好的设计效果。Nowadays, intelligent optimization algorithms have brought many conveniences to many fields, and some scholars have introduced intelligent optimization algorithms into the field of missile design, but the general missile parameter design based on intelligent optimization algorithms is suitable for situations with fewer parameters. Under the multi-parameter design method, the general intelligent optimization algorithm cannot converge and can not achieve better design results.

发明内容Contents of the invention

本发明为了解决现有的基于智能优化算法的导弹参数设计方法不适用于多学科下设计参数较多且存在变量耦合现象的情况。The invention aims to solve the problem that the existing missile parameter design method based on the intelligent optimization algorithm is not applicable to the situation that there are many design parameters and variable coupling phenomenon under multidisciplinary conditions.

基于遗传粒子群多学科设计优化算法的导弹参数设计方法,包括如下步骤:The missile parameter design method based on the genetic particle swarm multidisciplinary design optimization algorithm includes the following steps:

步骤1、选取以下设计变量作为设计参数:Step 1. Select the following design variables as design parameters:

发动机喉径x1,发动机燃烧面面积x2,发动机装药肉厚x3,导弹外径x4,发动机比冲x5,发动机质量x6,燃料质量x7,弹翼根弦长x8,尾翼根梢长x9,尾翼梢弦长x10Engine throat diameter x 1 , engine combustion surface area x 2 , engine charge flesh thickness x 3 , missile outer diameter x 4 , engine specific impulse x 5 , engine mass x 6 , fuel mass x 7 , root chord length of the projectile wing x 8 , root tip length of empennage x 9 , chord length of empennage tip x 10 ;

结合气动学科、动力学科和弹道学科,根据燃料重量x7限制,对导弹在水平面内的运动方程进行积分,得到导弹弹道总航程,即为目标函数F(Xi);Combining the subjects of aerodynamics, dynamics and ballistics, according to the limit of fuel weight x 7 , the motion equation of the missile in the horizontal plane is integrated to obtain the total range of the missile trajectory, which is the objective function F(X i );

存在如下设计约束:The following design constraints exist:

(1)选取导弹飞行末速度Ma=1.4做为终止条件,同时降低此时过载需求,设可用过载大于等于8g;(1) Select the missile end-of-flight speed Ma=1.4 as the termination condition, reduce the overload requirement at this time, and set the available overload to be greater than or equal to 8g;

(2)喷管口出口压强与外界压强之比满足:pe/pa>0.3;(2) The ratio of the outlet pressure of the nozzle nozzle to the external pressure satisfies: p e /p a >0.3;

(3)燃烧室工作压强大于燃料燃烧临界压强,且满足上限值约束:2MP<pc<30MP;(3) The working pressure of the combustion chamber is higher than the critical pressure of fuel combustion, and meets the upper limit constraint: 2MP<p c <30MP;

(4)发动机装药体积装填系数满足:ηv<0.95;(4) The volume filling factor of the engine charge satisfies: η v <0.95;

步骤2、利用遗传算法对标准粒子群算法中的三个控制参数w、c1、c2和设计参数进行优选:Step 2. Using the genetic algorithm to optimize the three control parameters w, c 1 , c 2 and the design parameters in the standard particle swarm optimization algorithm:

步骤2.1、选定遗传种群规模np,交叉率pc和变异率pm,给定问题最大进化代数T;Step 2.1. Select the genetic population size n p , the crossover rate p c and the mutation rate p m , and the maximum evolution algebra T for a given problem;

步骤2.2:随机生成遗传算法的初始化种群;Step 2.2: Randomly generate the initialization population of the genetic algorithm;

步骤2.3:计算遗传算法个体适应值,具体过程如下:Step 2.3: Calculate the individual fitness value of genetic algorithm, the specific process is as follows:

步骤2.3.1:选定粒子群算法种群规模m,确定最大迭代次数;Step 2.3.1: Select the population size m of the particle swarm optimization algorithm, and determine the maximum number of iterations;

步骤2.3.2:随机初始化粒子群速度和位置v0和x0Step 2.3.2: Initialize particle swarm velocity and position v 0 and x 0 randomly;

步骤2.3.3:对每个粒子计算其适应值F(Xi);Step 2.3.3: Calculate the fitness value F(X i ) of each particle;

步骤2.3.4:比较各个粒子的适应值,记录其自身最优值pi和群体最优粒子标号g;Step 2.3.4: Compare the fitness value of each particle, record its own optimal value p i and group optimal particle label g;

步骤2.3.5:应用下述公式更新粒子的速度和位置;Step 2.3.5: Apply the following formula to update the velocity and position of the particle;

其中各参数意义为:在一个n=10维的搜索空间中,由m个粒子组成的种群X={x1,...,xi,...,xm},其中第i个粒子的位置为xi={xi1,xi2,...,xin}T,即xi={xi1,xi2,...,xi10}T,其速度为vi={vi1,vi2,...,vin}T;第i个粒子的个体极值为pi={pi1,pi2,...,pi10}T,种群的全局极值为pg={pg1,pg2,...,pg10}T;d=1,2,..,n,i=1,2,...,m,t为当前进化代数,r1和r2为分布于[0,1]之间的随机数,c1和c2为加速度常数;The meaning of each parameter is: in an n=10-dimensional search space, a population X={x 1 ,..., xi ,...,x m } composed of m particles, where the i-th particle The position of x i ={x i1 ,x i2 ,...,x in } T , that is, x i ={x i1 ,x i2 ,...,x i10 } T , and its velocity is v i ={v i1 ,v i2 ,...,v in } T ; the individual extremum value of the i-th particle is p i ={p i1 ,p i2 ,...,p i10 } T , and the global extremum value of the population is p g ={p g1 ,p g2 ,...,p g10 } T ; d=1,2,...,n, i=1,2,...,m, t is the current evolution algebra, r 1 and r 2 is a random number distributed between [0, 1], c 1 and c 2 are acceleration constants;

步骤2.3.6:将遗传思想引入粒子群位置更新过程,Step 2.3.6: Introduce the genetic idea into the particle swarm position update process,

将粒子群中任意两个粒子的位置进行遗传更新,新位置由下式来计算:The positions of any two particles in the particle swarm are genetically updated, and the new positions are calculated by the following formula:

x1′(t)=rand()*x1(t)+(1-rand())*x2(t)x 1 ′(t)=rand()*x 1 (t)+(1-rand())*x 2 (t)

x2′(t)=rand()*x2(t)+(1-rand())*x1(t)x 2 ′(t)=rand()*x 2 (t)+(1-rand())*x 1 (t)

其中,x1′(t)、x2′(t)分别表示更新后的位置;rand()表示随机选取某一位置进行交叉操作;Among them, x 1 ′(t) and x 2 ′(t) represent the updated positions respectively; rand() represents randomly selecting a certain position for cross operation;

步骤2.3.7:检查是否满足算法终止条件,若否,则转至步骤2.3.3;若是,则求出最优值;Step 2.3.7: Check whether the termination condition of the algorithm is satisfied, if not, go to step 2.3.3; if so, find the optimal value;

步骤2.3.8:粒子群算法所找到的最优值即为遗传算法个体的适应值;Step 2.3.8: The optimal value found by the particle swarm optimization algorithm is the fitness value of the genetic algorithm individual;

步骤2.4:根据遗传算法个体适应值计算每个个体的选择概率,通常按线性排名计算;Step 2.4: Calculate the selection probability of each individual according to the individual fitness value of the genetic algorithm, usually calculated by linear ranking;

步骤2.5:执行选择、交叉和变异算子,生成新一代种群;Step 2.5: Execute selection, crossover and mutation operators to generate a new generation of population;

步骤2.6:检查是否满足遗传算法终止条件,若否,转至步骤2.3;若是,则求出最优解,此解即为设计参数的值。Step 2.6: Check whether the termination condition of the genetic algorithm is satisfied, if not, go to step 2.3; if yes, find the optimal solution, which is the value of the design parameters.

本发明具有以下效果:The present invention has the following effects:

本发明针对气动学科、动力学科和弹道学科下的发动机喉径、发动机燃烧面面积、发动机装药肉厚、导弹外径、发动机比冲、发动机质量、燃料质量、弹翼根弦长、尾翼根梢长、尾翼梢弦长进行基于智能算法的多学科优化设计,不但设计能够收敛,而且在粒子群算法进行优化环节时将遗传思想引入粒子群位置更新过程,避免了在寻优过程中陷入局部最优的情况。利用本发明进行设计能够取得较好的设计效果,相比MDF设计方法,本发明设计的导弹在航程上可以提高2.41‰以上。The present invention is aimed at engine throat diameter, engine combustion surface area, engine charge meat thickness, missile outer diameter, engine specific impulse, engine mass, fuel mass, wing root chord length, empennage root under the subject of aerodynamics, dynamics and ballistics. The multidisciplinary optimization design based on the intelligent algorithm based on the tip length and tail tip chord length can not only converge the design, but also introduce genetic ideas into the particle swarm position update process during the optimization process of the particle swarm optimization algorithm, avoiding being trapped in the local optimization process. best case. Using the invention for design can achieve better design effect. Compared with the MDF design method, the range of the missile designed by the invention can be increased by more than 2.41‰.

而且利用本发明可以解决传统设计方法中的子系统耦合问题;从导弹武器总体设计过程中减少反复设计的环节,进而提高设计效率;减少了导弹武器系统的总设计时间,进而降低了开发成本。同时,本发明还能够提高导弹武器设计精度、缩短整体系统的研制时间。Moreover, the invention can solve the subsystem coupling problem in the traditional design method; reduce repeated design links in the overall design process of the missile weapon, thereby improving design efficiency; reduce the total design time of the missile weapon system, and further reduce the development cost. At the same time, the invention can also improve the design precision of the missile weapon and shorten the development time of the overall system.

附图说明Description of drawings

图1为各学科间信息交流如下图;Figure 1 shows the information exchange between various disciplines as follows;

图2为实施例中划分后的数据流向示意图;Fig. 2 is the schematic diagram of data flow after dividing in the embodiment;

图3为本发明的目标函数适应度曲线图。Fig. 3 is a graph of the fitness degree of the objective function of the present invention.

具体实施方式Detailed ways

具体实施方式一:Specific implementation mode one:

基于遗传粒子群多学科设计优化算法的导弹参数设计方法,包括如下步骤:The missile parameter design method based on the genetic particle swarm multidisciplinary design optimization algorithm includes the following steps:

步骤1、选取以下设计变量作为设计参数:Step 1. Select the following design variables as design parameters:

发动机喉径x1,发动机燃烧面面积x2,发动机装药肉厚x3,导弹外径x4,发动机比冲x5,发动机质量x6,燃料质量x7,弹翼根弦长x8,尾翼根梢长x9,尾翼梢弦长x10Engine throat diameter x 1 , engine combustion surface area x 2 , engine charge meat thickness x 3 , missile outer diameter x 4 , engine specific impulse x 5 , engine mass x 6 , fuel mass x 7 , root chord length of the projectile wing x 8 , root tip length of empennage x 9 , chord length of empennage tip x 10 ;

结合气动学科、动力学科和弹道学科,根据燃料重量x7限制,对导弹在水平面内的运动方程进行积分,得到导弹弹道总航程,即为目标函数F(Xi);Combining the subjects of aerodynamics, dynamics and ballistics, according to the limit of fuel weight x 7 , the motion equation of the missile in the horizontal plane is integrated to obtain the total range of the missile trajectory, which is the objective function F(X i );

存在如下设计约束:The following design constraints exist:

(1)选取导弹飞行末速度Ma=1.4做为终止条件,同时降低此时过载需求,设可用过载大于等于8g;(1) Select the missile end-of-flight speed Ma=1.4 as the termination condition, reduce the overload requirement at this time, and set the available overload to be greater than or equal to 8g;

(2)喷管口出口压强与外界压强之比满足:pe/pa>0.3;(2) The ratio of the outlet pressure of the nozzle nozzle to the external pressure satisfies: p e /p a >0.3;

(3)燃烧室工作压强大于燃料燃烧临界压强,且满足上限值约束:2MP<pc<30MP;(3) The working pressure of the combustion chamber is higher than the critical pressure of fuel combustion, and meets the upper limit constraint: 2MP<p c <30MP;

(4)发动机装药体积装填系数满足:ηv<0.95;(4) The volume filling factor of the engine charge satisfies: η v <0.95;

步骤2、利用遗传算法对标准粒子群算法中的三个控制参数w、c1、c2和设计参数进行优选:Step 2. Using the genetic algorithm to optimize the three control parameters w, c 1 , c 2 and the design parameters in the standard particle swarm optimization algorithm:

步骤2.1、选定遗传种群规模np,交叉率pc和变异率pm,给定问题最大进化代数T;Step 2.1. Select the genetic population size n p , the crossover rate p c and the mutation rate p m , and the maximum evolution algebra T for a given problem;

步骤2.2:随机生成遗传算法的初始化种群;Step 2.2: Randomly generate the initialization population of the genetic algorithm;

步骤2.3:计算遗传算法个体适应值,具体过程如下:Step 2.3: Calculate the individual fitness value of genetic algorithm, the specific process is as follows:

步骤2.3.1:选定粒子群算法种群规模m,确定最大迭代次数;Step 2.3.1: Select the population size m of the particle swarm optimization algorithm, and determine the maximum number of iterations;

步骤2.3.2:随机初始化粒子群速度和位置v0和x0Step 2.3.2: Initialize particle swarm velocity and position v 0 and x 0 randomly;

步骤2.3.3:对每个粒子计算其适应值F(Xi);Step 2.3.3: Calculate the fitness value F(X i ) of each particle;

步骤2.3.4:比较各个粒子的适应值,记录其自身最优值pi和群体最优粒子标号g;Step 2.3.4: Compare the fitness value of each particle, record its own optimal value p i and group optimal particle label g;

步骤2.3.5:应用下述公式更新粒子的速度和位置;Step 2.3.5: Apply the following formula to update the velocity and position of the particle;

其中各参数意义为:在一个n=10维的搜索空间中,由m个粒子组成的种群X={x1,...,xi,...,xm},其中第i个粒子的位置为xi={xi1,xi2,...,xin}T,即xi={xi1,xi2,...,xi10}T,其速度为vi={vi1,vi2,...,vin}T;第i个粒子的个体极值为pi={pi1,pi2,...,pi10}T,种群的全局极值为pg={pg1,pg2,...,pg10}T;d=1,2,..,n,i=1,2,...,m,t为当前进化代数,r1和r2为分布于[0,1]之间的随机数,c1和c2为加速度常数;The meaning of each parameter is: in an n=10-dimensional search space, a population X={x 1 ,..., xi ,...,x m } composed of m particles, where the i-th particle The position of x i ={x i1 ,x i2 ,...,x in } T , that is, x i ={x i1 ,x i2 ,...,x i10 } T , and its velocity is v i ={v i1 ,v i2 ,...,v in } T ; the individual extremum value of the i-th particle is p i ={p i1 ,p i2 ,...,p i10 } T , and the global extremum value of the population is p g ={p g1 ,p g2 ,...,p g10 } T ; d=1,2,...,n, i=1,2,...,m, t is the current evolution algebra, r 1 and r 2 is a random number distributed between [0, 1], c 1 and c 2 are acceleration constants;

步骤2.3.6:将遗传思想引入粒子群位置更新过程,Step 2.3.6: Introduce the genetic idea into the particle swarm position update process,

将粒子群中任意两个粒子的位置进行遗传更新,新位置由下式来计算:The positions of any two particles in the particle swarm are genetically updated, and the new positions are calculated by the following formula:

x1′(t)=rand()*x1(t)+(1-rand())*x2(t)x 1 ′(t)=rand()*x 1 (t)+(1-rand())*x 2 (t)

x2′(t)=rand()*x2(t)+(1-rand())*x1(t)x 2 ′(t)=rand()*x 2 (t)+(1-rand())*x 1 (t)

其中,x1′(t)、x2′(t)分别表示更新后的位置;rand()表示随机选取某一位置进行交叉操作;Among them, x 1 ′(t) and x 2 ′(t) represent the updated positions respectively; rand() represents randomly selecting a certain position for cross operation;

步骤2.3.7:检查是否满足算法终止条件,若否,则转至步骤2.3.3;若是,则求出最优值;Step 2.3.7: Check whether the termination condition of the algorithm is satisfied, if not, go to step 2.3.3; if so, find the optimal value;

步骤2.3.8:粒子群算法所找到的最优值即为遗传算法个体的适应值;Step 2.3.8: The optimal value found by the particle swarm optimization algorithm is the fitness value of the genetic algorithm individual;

步骤2.4:根据遗传算法个体适应值计算每个个体的选择概率,通常按线性排名计算;Step 2.4: Calculate the selection probability of each individual according to the individual fitness value of the genetic algorithm, usually calculated by linear ranking;

步骤2.5:执行选择、交叉和变异算子,生成新一代种群;Step 2.5: Execute selection, crossover and mutation operators to generate a new generation of population;

步骤2.6:检查是否满足遗传算法终止条件,若否,转至步骤2.3;若是,则求出最优解,此解即为设计参数的值。Step 2.6: Check whether the termination condition of the genetic algorithm is satisfied, if not, go to step 2.3; if yes, find the optimal solution, which is the value of the design parameters.

具体实施方式二:Specific implementation mode two:

本实施方式步骤1所述的根据燃料重量x7限制对导弹在水平面内的运动方程进行积分得到导弹弹道总航程的具体过程如下:The specific process of integrating the equation of motion of the missile in the horizontal plane to obtain the total range of the missile trajectory according to the fuel weight x 7 limit described in step 1 of the present embodiment is as follows:

步骤1.1、气动计算:Step 1.1, pneumatic calculation:

弹体总的升力系数为:The total lift coefficient of the projectile is:

Cy=CyW+CyT+CyB C y =C yW +C yT +C yB

式中,CyW为弹翼的升力系数;CyT为弹体作用在尾翼上的升力系数;CyB为弹体的升力系数;In the formula, C yW is the lift coefficient of the missile wing; C yT is the lift coefficient of the missile body acting on the empennage; C yB is the lift coefficient of the missile body;

步骤1.2、动力计算:Step 1.2, power calculation:

用于内弹道计算的固体火箭发动机零维内弹道微分方程为:The zero-dimensional internal ballistic differential equation of solid rocket motor used for internal ballistic calculation is:

其中,ρc为燃烧室燃气平均密度;t′表示时间,表示对时间求导;Vc为燃烧室自由容积;ρp为推进剂密度;S为燃烧面面积,即为x2;r为推进剂燃烧速度;Γ为比冲的函数,即为x5;pc为燃烧室工作压强;At为喷管喉部面积,即为Tc为平均温度;R为气体常数;Among them, ρ c is the average density of combustion chamber gas; t' represents time, V c is the free volume of the combustion chamber; ρ p is the propellant density; S is the burning surface area, that is, x 2 ; r is the propellant burning velocity; Γ is the function of specific impulse, that is, x 5 ; p c is the working pressure of the combustion chamber; A t is the throat area of the nozzle, which is Tc is the average temperature; R is the gas constant;

根据有限元分析方法可得装药肉厚E和燃烧面面积,装药肉厚E即为x3According to the finite element analysis method, the thickness E of the charge and the area of the burning surface can be obtained, and the thickness E of the charge is x3 ;

燃烧面面积的关系为:The relationship between the burning surface area is:

其中,Ve为燃尽装药体积,ΔVj为有限体积元内装药体积,下脚标e,e-Δe分别代表燃烧时刻及上一时刻的固体燃料状态;n′表示有限元个数;Among them, V e is the charge volume after burnt out, ΔV j is the charge volume in the finite volume element, subscripts e, e-Δe respectively represent the state of solid fuel at the combustion moment and the previous moment; n′ represents the number of finite elements;

对动力计算中上述各式做出相应简化和计算可得发动机平稳工作段推力P为:Corresponding simplifications and calculations are made to the above formulas in the power calculation, and the thrust P in the steady working section of the engine can be obtained as:

上式中,为喷管的质量流量,pe为喷管口出口压强,pa为外界压强,εA为喷管扩张比,εp为喷管膨胀比,k为燃气比热比;In the above formula, is the mass flow rate of the nozzle, pe is the outlet pressure of the nozzle mouth, pa is the external pressure, ε A is the expansion ratio of the nozzle, ε p is the expansion ratio of the nozzle, and k is the specific heat ratio of the gas;

步骤1.3、弹道计算:Step 1.3, ballistic calculation:

主要考虑导弹在水平面的运动,下面给出导弹在水平面内的运动方程为:The movement of the missile in the horizontal plane is mainly considered, and the equation of motion of the missile in the horizontal plane is given below:

mg=Pα+Ymg=Pα+Y

上式中,V是导弹瞬时飞行速度,x,z分别为水平面内弹体轴向和弹体垂直方向坐标分量;g为重力加速度,m为导弹质量,x6为m的主要影响因素;P为发动机推力;Y,Z分别为升力和侧滑力;V为飞行速度;α为导弹飞行攻角;φv为航迹偏角;β为侧滑角;mc为发动机燃料秒耗量,mc受到x7限制;In the above formula, V is the instantaneous flight speed of the missile, x and z are the coordinate components of the axial direction and the vertical direction of the projectile in the horizontal plane respectively; g is the acceleration of gravity, m is the mass of the missile, and x6 is the main influencing factor of m; P Y, Z are lift force and sideslip force respectively; V is flight speed; α is missile flight angle of attack; φ v is track deflection angle; β is sideslip angle; m c is limited by x 7 ;

根据燃料重量x7限制,对上述运动方程积分,可以得到导弹弹道总航程,即为目标函数F(Xi)。According to the limitation of fuel weight x 7 , the total range of the missile trajectory can be obtained by integrating the above motion equation, which is the objective function F(X i ).

其它步骤及参数与具体实施方式一相同。Other steps and parameters are the same as those in Embodiment 1.

具体实施方式三:Specific implementation mode three:

本实施方式步骤1.1所述的CyW、CyT、CyB的计算过程如下:The calculation process of C yW , C yT , and C yB described in step 1.1 of this embodiment is as follows:

其中,KW,KT,KB分别为弹翼、尾翼和弹体的干扰因子,由经验公式可获得相关值;SW,ST,SB分别为弹翼、尾翼和弹体的参考面积。Among them, K W , K T , and K B are the interference factors of the wing, empennage, and body, respectively, and the relevant values can be obtained from empirical formulas; S W , S T , and S B are the references of the wing, tail, and body, respectively. area.

其它步骤及参数与具体实施方式二相同。Other steps and parameters are the same as in the second embodiment.

具体实施方式四:Specific implementation mode four:

本实施方式步骤1.1所述的SW,ST,SB的计算过程如下:The calculation process of S W , S T , and S B described in step 1.1 of this embodiment is as follows:

SW=x8·lW S W =x 8 ·l W

ST=(x9+x10)·lT/2S T =(x 9 +x 10 )·l T /2

SB=SW+ST+π(x4/2)2·lB S B =S W +S T +π(x 4 /2) 2 l B

其中,lW、lT、lB分别表示弹翼、尾翼和弹体的长度。Among them, l W , l T , and l B represent the lengths of the wing, empennage, and body, respectively.

其它结构及参数与具体实施方式三相同。Other structures and parameters are the same as those in the third embodiment.

实施例Example

本发明的设计过程中,各学科间信息交流如图1所示,根据如图1所示所述的学科间的信息交流图,结合遗传粒子群算法,将多学科环境下的导弹设计问题的设计变量进行划分,下图为划分后的数据流向示意图如图2所示;In the design process of the present invention, information exchange between each subject is as shown in Figure 1, according to the information exchange figure between the subject as shown in Figure 1, in conjunction with genetic particle swarm algorithm, the missile design problem under the multidisciplinary environment The design variables are divided, and the following figure is a schematic diagram of the data flow after division, as shown in Figure 2;

根据具体实施方式四进行仿真实验,本发明的优化结果如下见表1;同时,为验证本发明采用多学科可行方法(MDF)方法对进行对比。优化结果见下表1,本发明的目标函数适应度曲线图如图3所示。The simulation experiment was carried out according to Embodiment 4, and the optimization results of the present invention are shown in Table 1 as follows; at the same time, in order to verify the present invention, a multidisciplinary method (MDF) method was used for comparison. The optimization results are shown in Table 1 below, and the fitness curve of the objective function of the present invention is shown in FIG. 3 .

表1Table 1

Claims (4)

1.基于遗传粒子群多学科设计优化算法的导弹参数设计方法,其特征在于包括如下步骤:1. The missile parameter design method based on genetic particle swarm multidisciplinary design optimization algorithm is characterized in that comprising the steps: 步骤1、选取以下设计变量作为设计参数:Step 1. Select the following design variables as design parameters: 发动机喉径x1,发动机燃烧面面积x2,发动机装药肉厚x3,导弹外径x4,发动机比冲x5,发动机质量x6,燃料质量x7,弹翼根弦长x8,尾翼根梢长x9,尾翼梢弦长x10Engine throat diameter x 1 , engine combustion surface area x 2 , engine charge flesh thickness x 3 , missile outer diameter x 4 , engine specific impulse x 5 , engine mass x 6 , fuel mass x 7 , root chord length of the projectile wing x 8 , root tip length of empennage x 9 , chord length of empennage tip x 10 ; 根据燃料重量x7限制,对导弹在水平面内的运动方程进行积分,得到导弹弹道总航程,即为目标函数F(Xi);According to the limitation of fuel weight x 7 , the motion equation of the missile in the horizontal plane is integrated to obtain the total range of the missile trajectory, which is the objective function F(X i ); 存在如下设计约束:The following design constraints exist: (1)选取导弹飞行末速度Ma=1.4做为终止条件,设可用过载大于等于8g;(1) Select the missile end-of-flight speed Ma=1.4 as the termination condition, and set the available overload to be greater than or equal to 8g; (2)喷管口出口压强与外界压强之比满足:pe/pa>0.3;(2) The ratio of the outlet pressure of the nozzle nozzle to the external pressure satisfies: p e /p a >0.3; (3)燃烧室工作压强大于燃料燃烧临界压强,且满足上限值约束:2MP<pc<30MP;(3) The working pressure of the combustion chamber is higher than the critical pressure of fuel combustion, and meets the upper limit constraint: 2MP<p c <30MP; (4)发动机装药体积装填系数满足:ηv<0.95;(4) The volume filling factor of the engine charge satisfies: η v <0.95; 步骤2、利用遗传算法对标准粒子群算法中的三个控制参数w、c1、c2和设计参数进行优选:Step 2. Using the genetic algorithm to optimize the three control parameters w, c 1 , c 2 and the design parameters in the standard particle swarm optimization algorithm: 步骤2.1、选定遗传种群规模np,交叉率pc和变异率pm,给定问题最大进化代数T;Step 2.1. Select the genetic population size n p , the crossover rate p c and the mutation rate p m , and the maximum evolution algebra T for a given problem; 步骤2.2:随机生成遗传算法的初始化种群;Step 2.2: Randomly generate the initialization population of the genetic algorithm; 步骤2.3:计算遗传算法个体适应值,具体过程如下:Step 2.3: Calculate the individual fitness value of genetic algorithm, the specific process is as follows: 步骤2.3.1:选定粒子群算法种群规模m,确定最大迭代次数;Step 2.3.1: Select the population size m of the particle swarm optimization algorithm, and determine the maximum number of iterations; 步骤2.3.2:随机初始化粒子群速度和位置v0和x0Step 2.3.2: Initialize particle swarm velocity and position v 0 and x 0 randomly; 步骤2.3.3:对每个粒子计算其适应值F(Xi);Step 2.3.3: Calculate the fitness value F(X i ) of each particle; 步骤2.3.4:比较各个粒子的适应值,记录其自身最优值pi和群体最优粒子标号g;Step 2.3.4: Compare the fitness value of each particle, record its own optimal value p i and group optimal particle label g; 步骤2.3.5:应用下述公式更新粒子的速度和位置;Step 2.3.5: Apply the following formula to update the velocity and position of the particle; 其中各参数意义为:在一个n=10维的搜索空间中,由m个粒子组成的种群X={x1,...,xi,...,xm},其中第i个粒子的位置为xi={xi1,xi2,...,xin}T,即xi={xi1,xi2,...,xi10}T,其速度为vi={vi1,vi2,...,vin}T;第i个粒子的个体极值为pi={pi1,pi2,...,pi10}T,种群的全局极值为pg={pg1,pg2,...,pg10}T;d=1,2,..,n,i=1,2,...,m,t为当前进化代数,r1和r2为分布于[0,1]之间的随机数,c1和c2为加速度常数;The meaning of each parameter is: in an n=10-dimensional search space, a population X={x 1 ,..., xi ,...,x m } composed of m particles, where the i-th particle The position of x i ={x i1 ,x i2 ,...,x in } T , that is, x i ={x i1 ,x i2 ,...,x i10 } T , and its velocity is v i ={v i1 ,v i2 ,...,v in } T ; the individual extremum value of the i-th particle is p i ={p i1 ,p i2 ,...,p i10 } T , and the global extremum value of the population is p g ={p g1 ,p g2 ,...,p g10 } T ; d=1,2,...,n, i=1,2,...,m, t is the current evolution algebra, r 1 and r 2 is a random number distributed between [0, 1], c 1 and c 2 are acceleration constants; 步骤2.3.6:将粒子群中任意两个粒子的位置进行遗传更新,新位置由下式来计算:Step 2.3.6: Genetically update the positions of any two particles in the particle swarm, and the new position is calculated by the following formula: x1′(t)=rand()*x1(t)+(1-rand())*x2(t)x 1 ′(t)=rand()*x 1 (t)+(1-rand())*x 2 (t) x2′(t)=rand()*x2(t)+(1-rand())*x1(t)x 2 ′(t)=rand()*x 2 (t)+(1-rand())*x 1 (t) 其中,x1′(t)、x2′(t)分别表示更新后的位置;rand()表示随机选取某一位置进行交叉操作;Among them, x 1 ′(t) and x 2 ′(t) represent the updated positions respectively; rand() represents randomly selecting a certain position for cross operation; 步骤2.3.7:检查是否满足算法终止条件,若否,则转至步骤2.3.3;若是,则求出最优值;Step 2.3.7: Check whether the termination condition of the algorithm is satisfied, if not, go to step 2.3.3; if so, find the optimal value; 步骤2.3.8:粒子群算法所找到的最优值即为遗传算法个体的适应值;Step 2.3.8: The optimal value found by the particle swarm optimization algorithm is the fitness value of the genetic algorithm individual; 步骤2.4:根据遗传算法个体适应值计算每个个体的选择概率,按线性排名计算;Step 2.4: Calculate the selection probability of each individual according to the individual fitness value of the genetic algorithm, and calculate according to the linear ranking; 步骤2.5:执行选择、交叉和变异算子,生成新一代种群;Step 2.5: Execute selection, crossover and mutation operators to generate a new generation of population; 步骤2.6:检查是否满足遗传算法终止条件,若否,转至步骤2.3;若是,则求出最优解,此解即为设计参数的值。Step 2.6: Check whether the termination condition of the genetic algorithm is satisfied, if not, go to step 2.3; if yes, find the optimal solution, which is the value of the design parameters. 2.根据权利要求1所述的基于遗传粒子群多学科设计优化算法的导弹参数设计方法,其特征在于步骤1所述的根据燃料重量x7限制对导弹在水平面内的运动方程进行积分得到导弹弹道总航程的具体过程如下:2. the missile parameter design method based on the genetic particle swarm multidisciplinary design optimization algorithm according to claim 1, is characterized in that according to fuel weight x 7 limit described in step 1, the equation of motion of the missile in the horizontal plane is integrated to obtain the missile The specific process of the ballistic total voyage is as follows: 步骤1.1、气动计算:Step 1.1, pneumatic calculation: 弹体总的升力系数为:The total lift coefficient of the projectile is: Cy=CyW+CyT+CyB C y =C yW +C yT +C yB 式中,CyW为弹翼的升力系数;CyT为弹体作用在尾翼上的升力系数;CyB为弹体的升力系数;In the formula, C yW is the lift coefficient of the missile wing; C yT is the lift coefficient of the missile body acting on the empennage; C yB is the lift coefficient of the missile body; 步骤1.2、动力计算:Step 1.2, power calculation: 用于内弹道计算的固体火箭发动机零维内弹道微分方程为:The zero-dimensional internal ballistic differential equation of solid rocket motor used for internal ballistic calculation is: 其中,ρc为燃烧室燃气平均密度;t′表示时间,表示对时间求导;Vc为燃烧室自由容积;ρp为推进剂密度;S为燃烧面面积,即为x2;r为推进剂燃烧速度;Γ为比冲的函数,即为x5;pc为燃烧室工作压强;At为喷管喉部面积,即为Tc为平均温度;R为气体常数;Among them, ρ c is the average density of combustion chamber gas; t' represents time, V c is the free volume of the combustion chamber; ρ p is the propellant density; S is the burning surface area, that is, x 2 ; r is the propellant burning velocity; Γ is the function of specific impulse, that is, x 5 ; p c is the working pressure of the combustion chamber; A t is the throat area of the nozzle, which is Tc is the average temperature; R is the gas constant; 根据有限元分析方法可得装药肉厚E和燃烧面面积,装药肉厚E即为x3According to the finite element analysis method, the thickness E of the charge and the area of the burning surface can be obtained, and the thickness E of the charge is x3 ; 燃烧面面积的关系为:The relationship between the burning surface area is: 其中,Ve为燃尽装药体积,ΔVj为有限体积元内装药体积,下脚标e,e-Δe分别代表燃烧时刻及上一时刻的固体燃料状态;n′表示有限元个数;Among them, V e is the charge volume after burnt out, ΔV j is the charge volume in the finite volume element, subscripts e, e-Δe respectively represent the state of solid fuel at the combustion moment and the previous moment; n′ represents the number of finite elements; 对动力计算中上述各式做出相应简化和计算得发动机平稳工作段推力P为:Corresponding simplification and calculation of the above formulas in the power calculation, the thrust P in the steady working section of the engine is: 上式中,为喷管的质量流量,pe为喷管口出口压强,pa为外界压强,εA为喷管扩张比,εp为喷管膨胀比,k为燃气比热比;In the above formula, is the mass flow rate of the nozzle, pe is the outlet pressure of the nozzle mouth, pa is the external pressure, ε A is the expansion ratio of the nozzle, ε p is the expansion ratio of the nozzle, and k is the specific heat ratio of the gas; 步骤1.3、弹道计算:Step 1.3, ballistic calculation: 考虑导弹在水平面的运动,下面给出导弹在水平面内的运动方程为:Considering the motion of the missile in the horizontal plane, the equation of motion of the missile in the horizontal plane is given below: mg=Pα+Ymg=Pα+Y 上式中,V是导弹瞬时飞行速度,x,z分别为水平面内弹体轴向和弹体垂直方向坐标分量;g为重力加速度,m为导弹质量,x6为m的主要影响因素;P为发动机推力;Y,Z分别为升力和侧滑力;V为飞行速度;α为导弹飞行攻角;φv为航迹偏角;β为侧滑角;mc为发动机燃料秒耗量,mc受到x7限制;In the above formula, V is the instantaneous flight speed of the missile, x and z are the coordinate components of the axial direction and the vertical direction of the projectile in the horizontal plane respectively; g is the acceleration of gravity, m is the mass of the missile, and x6 is the main influencing factor of m; P Y, Z are the lift force and sideslip force respectively; V is the flight speed; α is the missile flight angle of attack; φv is the track deflection angle; β is the sideslip angle; m c is limited by x 7 ; 根据燃料重量x7限制,对上述运动方程积分,可以得到导弹弹道总航程,即为目标函数F(Xi)。According to the limitation of fuel weight x 7 , the total range of the missile trajectory can be obtained by integrating the above motion equation, which is the objective function F(X i ). 3.根据权利要求2所述的基于遗传粒子群多学科设计优化算法的导弹参数设计方法,其特征在于步骤1.1所述的CyW、CyT、CyB的计算过程如下:3. the missile parameter design method based on genetic particle swarm multidisciplinary design optimization algorithm according to claim 2, is characterized in that the calculation process of C yW , C yT , C yB described in step 1.1 is as follows: 其中,KW,KT,KB分别为弹翼、尾翼和弹体的干扰因子;SW,ST,SB分别为弹翼、尾翼和弹体的参考面积。Among them, K W , K T , KB are the interference factors of the wing, tail and body respectively; S W , S T , S B are the reference areas of the wing, tail and body respectively. 4.根据权利要求3所述的基于遗传粒子群多学科设计优化算法的导弹参数设计方法,其特征在于步骤1.1所述的SW,ST,SB的计算过程如下:4. the missile parameter design method based on genetic particle swarm multidisciplinary design optimization algorithm according to claim 3, is characterized in that the SW described in step 1.1, ST , the calculation process of S B is as follows: SW=x8·lW S W =x 8 ·l W ST=(x9+x10)·lT/2S T =(x 9 +x 10 )·l T /2 SB=SW+ST+π(x4/2)2·lB S B =S W +S T +π(x 4 /2) 2 l B 其中,lW、lT、lB分别表示弹翼、尾翼和弹体的长度。Among them, l W , l T , and l B represent the lengths of the wing, empennage, and body, respectively.
CN201610224896.0A 2016-04-12 2016-04-12 Guided missile Parameters design based on Genetic Particle Swarm algorithms for multidisciplinary design optimization Active CN105975651B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610224896.0A CN105975651B (en) 2016-04-12 2016-04-12 Guided missile Parameters design based on Genetic Particle Swarm algorithms for multidisciplinary design optimization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610224896.0A CN105975651B (en) 2016-04-12 2016-04-12 Guided missile Parameters design based on Genetic Particle Swarm algorithms for multidisciplinary design optimization

Publications (2)

Publication Number Publication Date
CN105975651A CN105975651A (en) 2016-09-28
CN105975651B true CN105975651B (en) 2018-09-07

Family

ID=56989290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610224896.0A Active CN105975651B (en) 2016-04-12 2016-04-12 Guided missile Parameters design based on Genetic Particle Swarm algorithms for multidisciplinary design optimization

Country Status (1)

Country Link
CN (1) CN105975651B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110532614B (en) * 2019-07-26 2020-08-28 上海机电工程研究所 Pneumatic optimization method for rotating speed characteristic of rotating missile
CN110531622B (en) * 2019-09-05 2022-04-05 沈阳航空航天大学 Thrust control method of solid rocket engine based on radial basis function neural network
CN111090936B (en) * 2019-12-13 2023-09-29 上海新力动力设备研究所 Multi-stage ignition performance matching simulation calculation method for gas generator
CN111783251B (en) * 2020-07-16 2021-12-03 中国人民解放军国防科技大学 Method for designing overall parameters of solid rocket engine
CN112528423B (en) * 2021-02-18 2021-04-27 中国人民解放军国防科技大学 Solid rocket motor combustion surface data correction method, device and equipment
CN114440711B (en) * 2021-12-03 2024-02-02 北京星途探索科技有限公司 Four-stage solid carrier rocket trajectory optimization method based on particle swarm optimization
CN116738583B (en) * 2023-08-16 2023-10-31 中国人民解放军国防科技大学 Solid rocket motor charge configuration constraint design method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286071A (en) * 2008-04-24 2008-10-15 北京航空航天大学 Multi-UAV 3D Formation Reconstruction Method Based on Particle Swarm Optimization and Genetic Algorithm
CN101609479A (en) * 2009-06-23 2009-12-23 北京理工大学 A Ballistic Robust Optimization Design Method
CN102168938A (en) * 2011-02-11 2011-08-31 北京理工大学 Ignition control method for impulse vector controller optimized by genetic algorithm
CN105659801B (en) * 2009-06-08 2013-10-02 北京理工大学 Robust optimization trajectory design method for direct attack of self-seeking anti-tank missile
CN103413186A (en) * 2013-08-19 2013-11-27 中国电子科技集团公司第二十八研究所 Cooperative multi-aircraft target distribution method based on hybrid optimization algorithm
CN105205275A (en) * 2015-10-09 2015-12-30 电子科技大学 Missile and engine integrated multi-disciplinary design optimizing method based on variable correlation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286071A (en) * 2008-04-24 2008-10-15 北京航空航天大学 Multi-UAV 3D Formation Reconstruction Method Based on Particle Swarm Optimization and Genetic Algorithm
CN105659801B (en) * 2009-06-08 2013-10-02 北京理工大学 Robust optimization trajectory design method for direct attack of self-seeking anti-tank missile
CN101609479A (en) * 2009-06-23 2009-12-23 北京理工大学 A Ballistic Robust Optimization Design Method
CN102168938A (en) * 2011-02-11 2011-08-31 北京理工大学 Ignition control method for impulse vector controller optimized by genetic algorithm
CN103413186A (en) * 2013-08-19 2013-11-27 中国电子科技集团公司第二十八研究所 Cooperative multi-aircraft target distribution method based on hybrid optimization algorithm
CN105205275A (en) * 2015-10-09 2015-12-30 电子科技大学 Missile and engine integrated multi-disciplinary design optimizing method based on variable correlation

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Ant Colony Algorithm for Assembly Sequence Planning of Large Space Truss Structures;Guo J, Wang P, Cui N.;《ICCA 2007. IEEE International Conference on. IEEE》;20070601;第2027-2030页 *
基于仿真的空地导弹武器体系作战效能评估决策方法;郭继峰,殷志宏,崔乃刚;《控制与决策》;20091031;第24卷(第10期);第1576-1579页 *
基于改进的序列梯度-修复算法的飞行器上升段轨迹优化;傅瑜, 李延军, 陈阳, 梁欣欣, 王勇;《国际航空航天科学》;20150909;第37-47页 *
智能优化算法及其在飞行器优化设计领域的应用综述;杨希祥,李晓斌,肖飞,张为华;《宇航学报》;20091130;第30卷(第6期);第2051-2060页 *
飞行器轨迹优化方法综述;陈功,傅瑜,郭继峰;《飞行力学》;20110831;第29卷(第4期);第1-5页 *

Also Published As

Publication number Publication date
CN105975651A (en) 2016-09-28

Similar Documents

Publication Publication Date Title
CN105975651B (en) Guided missile Parameters design based on Genetic Particle Swarm algorithms for multidisciplinary design optimization
CN111783251A (en) An overall parameter design method for solid rocket motor
CN107092731B (en) Inter-stage specific thrust trajectory integrated optimization method for sub-orbital launch vehicle
CN110516410A (en) Method and device for determining overall design parameters of aircraft
Van Nguyen et al. Adaptive multifidelity constraints method for efficient multidisciplinary missile design framework
Runduo et al. Multi-objective optimization of the aerodynamic shape of a long-range guided rocket
Korte Parametric model of an aerospike rocket engine
CN109325288B (en) Uncertainty optimization-based solid carrier overall parameter determination method and system
Chuanzhen et al. Design and analysis of double-swept waverider with wing dihedral
Zandavi Surface-to-air missile path planning using genetic and PSO algorithms
CN115906286A (en) Rocket design method and device with coupled inner and outer trajectories, electronic equipment and storage medium
Anderson et al. Multi-disciplinary intelligent systems approach to solid rocket motor design. I-Single and dual goal optimization
Zhao et al. Optimization of the aerodynamic configuration of a tubular projectile based on blind kriging
CN116579259B (en) Ballistic three-dimensional transient flow field modeling and multi-physical field numerical calculation method and device
Wang et al. Aerodynamic optimal design for a glider with the supersonic airfoil based on the hybrid MIGA-SA method
Yan et al. A self-adaptive local diversity-preserving NSGA-II for the multidisciplinary design optimization of a miniaturized supersonic rocket
Paul et al. Influence of bending locations and angles on the aerodynamic performance of a bent body projectile
Arslan Aerodynamic optimization of missile external configurations
Ogawa et al. Multi-phase trajectory optimisation for access-to-space with RBCC-powered TSTO via surrogated-assisted hybrid evolutionary algorithms incorporating pseudo-spectral methods
Yang et al. An aerodynamic shape optimization study to maximize the range of a guided missile
Zhengxiang et al. Convex method for ascent trajectory optimization using iterative narrowing trust region
Kiryushkin et al. Solution of internal ballistic problem for SRM with grain of complex shape during main firing phase
CN109117544B (en) Optimization method for full track of shuttle vehicle
Gottlieb et al. Coupled vehicle and trajectory design optimization for boost-glide hypersonic systems
CN113742847B (en) Multidisciplinary design method and system for solid-liquid power rocket craft

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant