CN105910601B - A kind of indoor ground magnetic positioning method based on Hidden Markov Model - Google Patents
A kind of indoor ground magnetic positioning method based on Hidden Markov Model Download PDFInfo
- Publication number
- CN105910601B CN105910601B CN201610379288.7A CN201610379288A CN105910601B CN 105910601 B CN105910601 B CN 105910601B CN 201610379288 A CN201610379288 A CN 201610379288A CN 105910601 B CN105910601 B CN 105910601B
- Authority
- CN
- China
- Prior art keywords
- fingerprint
- geomagnetic
- steps
- calculate
- offline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000005358 geomagnetic field Effects 0.000 claims abstract description 33
- 230000033001 locomotion Effects 0.000 claims abstract description 17
- 230000007704 transition Effects 0.000 claims abstract description 7
- 238000009826 distribution Methods 0.000 claims description 15
- 238000013480 data collection Methods 0.000 claims description 5
- 230000001133 acceleration Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/04—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means
- G01C21/08—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means involving use of the magnetic field of the earth
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
- G01C21/206—Instruments for performing navigational calculations specially adapted for indoor navigation
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Navigation (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
本发明涉及一种基于隐马尔科夫模型的室内地磁定位方法,包括离线阶段和在线阶段,离线阶段包括:根据地图把待定位区域分成网格;使用智能手机内置的磁力计在每个网格中心RP测量地磁场强度数据;构建离线指纹库,离线指纹库由N个指纹构成,每个指纹数据包括指纹位置lw=[xw,yx]和指纹向量ξw=[μw,σw],在线定位包括:根据步长估计与磁力计确定步伐长度Di和运动方向角度Φi,预测行人位置;计算状态转移概率;估计行人步行i步之后的位置。本发明仅通过智能手机即可达到较高的室内定位精度。
The invention relates to an indoor geomagnetic positioning method based on a hidden Markov model, which includes an offline stage and an online stage. The offline stage includes: dividing a to-be-located area into grids according to a map; using a magnetometer built in a smart phone to locate each grid The center RP measures the geomagnetic field strength data; builds an offline fingerprint database, which consists of N fingerprints, each fingerprint data includes the fingerprint position l w =[x w ,y x ] and the fingerprint vector ξ w =[μ w ,σ w ], the online positioning includes: determining the step length D i and the motion direction angle Φ i according to the step size estimation and the magnetometer, predicting the pedestrian position; calculating the state transition probability; estimating the position of the pedestrian after i steps. The present invention can achieve higher indoor positioning accuracy only through the smart phone.
Description
技术领域technical field
本发明属于利用地磁信息进行行人室内定位的领域,特别是针对室内复杂环境下的定位问题。The invention belongs to the field of indoor positioning of pedestrians by using geomagnetic information, and is particularly aimed at positioning problems in complex indoor environments.
背景技术Background technique
高精度且普遍适用的室内定位在各个领域已经显得越来越重要了。为此,很多科研工作者已经提出了很多定位技术,如基于到达时间(TOA)、基于到达角度(AOA)、基于到达的相位差(PDOA)、基于接收信号能量(RSS)、惯性导航以及前面几种方法的融合等。此外,用于室内定位的信号类型也越来越多,如WiFi、UWB、Zigbee等,这些方法已经取得了非常好的定位结果。然而,现有的定位方法大部分都需要额外的硬件支持,并且由于无线信号会被人体吸收,在人群密集的时候无线信号会非常微弱甚至接收不到导致定位系统在实际应用中定位效果不佳。High-precision and universally applicable indoor positioning has become more and more important in various fields. To this end, many researchers have proposed many positioning technologies, such as time-of-arrival (TOA), angle-of-arrival (AOA), phase-difference-of-arrival (PDOA), received signal energy (RSS), inertial navigation, and front Fusion of several methods, etc. In addition, more and more signal types are used for indoor positioning, such as WiFi, UWB, Zigbee, etc. These methods have achieved very good positioning results. However, most of the existing positioning methods require additional hardware support, and because the wireless signal will be absorbed by the human body, the wireless signal will be very weak or even not received when the crowd is dense, resulting in poor positioning effect of the positioning system in practical applications. .
如今,很多研究者把目光转向了地磁场。地磁场作为地球的固有资源,是一个矢量场,具有全天时、全天候以及全地域的特征。地磁场不受人体的影响并且室内地磁场的分布主要由建筑物结构决定,而地磁场在建筑物结构确定之后非常稳定,因此地磁场有潜力应用于高精度且普遍适用的室内定位。由于受到室内复杂环境的影响,尤其是钢筋混凝土的影响,室内地磁场复杂多变,而这种变化的地磁异常场恰好可以作为一种与位置对应的指纹信息进行匹配定位。其实,地磁场已经广泛的用于室内定位了。一种方法是在惯性导航系统中利用磁场辨别运动方向。另外一种方法是把地磁场强度作为一种指纹利用指纹法进行定位。一些研究者在惯性导航系统的帮助下,采用动态时间规划(DTW)算法对连续时刻的地磁场强度信息序列进行匹配定位。这种方法可以达到很高的定位精度,但是这种方法只适用于走廊这样狭长的区域进行定位。还有一些研究者利用粒子滤波把地磁强度信息与惯性导航进行融合,这种方法在实际定位过程中需要大量的计算来达到较高的定位精度。Today, many researchers have turned their attention to the geomagnetic field. As an inherent resource of the earth, the geomagnetic field is a vector field with the characteristics of all-day, all-weather and all-region. The geomagnetic field is not affected by the human body and the distribution of the indoor geomagnetic field is mainly determined by the building structure, and the geomagnetic field is very stable after the building structure is determined, so the geomagnetic field has the potential to be applied to high-precision and universally applicable indoor positioning. Due to the influence of the complex indoor environment, especially the influence of reinforced concrete, the indoor geomagnetic field is complex and changeable, and this changing geomagnetic anomaly field can just be used as a kind of fingerprint information corresponding to the location for matching and positioning. In fact, the geomagnetic field has been widely used for indoor positioning. One approach is to use magnetic fields in inertial navigation systems to discern the direction of motion. Another method is to use the geomagnetic field strength as a fingerprint to locate using the fingerprint method. With the help of inertial navigation system, some researchers use dynamic time planning (DTW) algorithm to match and locate the sequence of geomagnetic field strength information at successive moments. This method can achieve high positioning accuracy, but this method is only suitable for positioning in narrow and long areas such as corridors. Some researchers use particle filtering to fuse geomagnetic intensity information with inertial navigation. This method requires a lot of calculations in the actual positioning process to achieve high positioning accuracy.
尽管地磁场已经广泛的应用于室内定位,但仍有问题没有处理的很好,首先地磁场强度非常微弱(大约只有几十uT),其次对于指纹法来说,利用单一地磁场强度作为指纹来区分不同位置的分辨率太低。虽然三轴磁力计可以获得三维的地磁场数据,很自然的想到利用全部三轴的地磁场强度来提高地磁指纹的分辨率,但实际上,磁力计采集的三个数据会随着传感器坐标系的变化而变化,因此,在室内可以利用的只有总的磁场强度。Although the geomagnetic field has been widely used in indoor positioning, there are still problems that have not been handled very well. First, the geomagnetic field strength is very weak (about tens of uT), and secondly, for the fingerprint method, a single geomagnetic field strength is used as a fingerprint to The resolution to distinguish different locations is too low. Although the three-axis magnetometer can obtain three-dimensional geomagnetic field data, it is natural to think of using all three-axis geomagnetic field strengths to improve the resolution of the geomagnetic fingerprint, but in fact, the three data collected by the magnetometer will follow the sensor coordinate system. changes, therefore, only the total magnetic field strength is available indoors.
发明内容SUMMARY OF THE INVENTION
针对目前基于地磁场室内定位技术中的地磁场信号微弱以及分辨率较低很难应用于指纹法定位的问题,本发明提供一种增加地磁指纹信息的分辨率,获得较好的定位精度的室内地磁定位方法。本发明的技术方案如下:Aiming at the problem that the weak geomagnetic field signal and low resolution in the current indoor positioning technology based on the geomagnetic field are difficult to apply to fingerprint positioning, the present invention provides an indoor positioning technology that increases the resolution of geomagnetic fingerprint information and obtains better positioning accuracy. Geomagnetic positioning method. The technical scheme of the present invention is as follows:
一种基于隐马尔科夫模型的室内地磁定位方法,包括离线阶段和在线阶段,An indoor geomagnetic positioning method based on hidden Markov model, including offline stage and online stage,
离线数据采集阶段包括以下步骤:The offline data collection phase includes the following steps:
1)根据地图把待定位区域分成网格,Bw为第w个网格;1) Divide the to-be-located area into grids according to the map, and Bw is the wth grid;
2)使用智能手机内置的磁力计在每个网格中心RP测量地磁场强度数据;2) Use the built-in magnetometer of the smartphone to measure the geomagnetic field strength data at each grid center RP;
3)构建离线指纹库,离线指纹库由N个指纹构成,每个指纹数据包括指纹位置lw=[xw,yx]和指纹向量ξw=[μw,σw],其中μw和σw分别为在第w个网格内采集的地磁场数据的平均值和方差,L表示所有网格中心RP组成的集合,L={lw|1≤w≤N};3) Build an offline fingerprint database. The offline fingerprint database consists of N fingerprints. Each fingerprint data includes a fingerprint position l w =[x w ,y x ] and a fingerprint vector ξ w =[μ w ,σ w ], where μ w and σw are the mean and variance of the geomagnetic field data collected in the wth grid, respectively, L represents the set composed of all grid centers RP, L={l w |1≤w≤N};
在线定位阶段包括以下步骤:The online positioning phase includes the following steps:
1)令上一次定位的结果为位置表示人步行i步之后的位置,当检测到人步行一步,根据步长估计与磁力计确定步伐长度Di和运动方向角度Φi,认为Di与Φi相互独立并服从高斯分布,分别计算Di与Φi的概率分布;利用贝叶斯准则,预测行人位置的概率分布求行人位置的概率分布大于pT的集合H:1) Let the result of the last positioning be Location Represents the position after a person walks i steps. When a person walks one step, the step length D i and the movement direction angle Φ i are determined according to the step size estimation and the magnetometer. It is considered that D i and Φ i are independent of each other and obey the Gaussian distribution, and calculate separately Probability distribution of D i and Φ i ; using Bayesian criterion to predict the probability distribution of pedestrian locations Find the probability distribution of pedestrian locations Set H greater than p T :
其中pT为设置的阈值概率l为人员当前可能存在的位置;where p T is the set threshold probability l is the current possible location of the person;
2)计算状态转移概率:设在行人步行i步之后存储的地磁强度值序列为Oi:其中oi-k+1为第i-k+1步时测得的地磁信息;2) Calculate the state transition probability: set the sequence of geomagnetic intensity values stored after the pedestrian walks i steps as O i : where o i - k+1 is the geomagnetic information measured at step i-k+1;
a.计算H和L的交集为H',其中li,j表示行人在步行i步之后可能存在的位置,可能存在的位置总数为NP:a. Calculate the intersection of H and L as H', where l i,j represent the possible positions of pedestrians after walking i steps, and the total number of possible positions is N P :
b.根据运动信息对于每个位置li,j=(xi,j,yi,j)预测之前的Ns个位置,横坐标为xi,j,纵坐标为yi,j,Ns为序列的长度,li,j,k=(xi,j,k,yi,j,k)表示通过PDR来预测的li,j之前的第k个位置:b. According to the motion information, for each position l i,j =( xi,j ,y i,j ), predict the previous N s positions, the abscissa is x i,j , the ordinate is y i,j , N s is the length of the sequence, and l i,j,k =( xi,j,k ,y i,j,k ) represents the kth position before l i,j predicted by PDR:
c.在离线指纹库的指纹位置lw中寻找距离li,j,k最近的点,并且分别存储该网格中心RP的均值与方差为μi,j,k和σi,j,k;c. Find the points closest to l i, j, k in the fingerprint position l w of the offline fingerprint database, and store the mean and variance of the grid center RP as μ i, j, k and σ i, j, k respectively ;
d.对于每一个li,j构建两个后向序列:和 d. For each l i,j construct two backward sequences: and
e.认定地磁场强度观测值符合以真实值为中心的高斯分布,计算在位置li,j,k出现地磁场强度oi-k+1的概率:e. Determine that the observed value of the geomagnetic field strength conforms to the Gaussian distribution centered on the true value, and calculate the probability that the geomagnetic field strength o i-k+1 appears at the positions l i, j, k :
f.对于每个可能的位置li,j,计算观测值概率bi,j f. For each possible position l i,j , calculate the observation probability b i,j
g.对每一个可能存在的位置li,j计算状态转移概率ai,j;g. Calculate the state transition probability a i,j for each possible position l i ,j;
3)将ai,j作为权重估计行人步行i步之后的位置。3) Use a i,j as the weight to estimate the pedestrian's position after walking i steps.
本发明是一种基于隐马尔科夫模型的后向序列匹配定位方法,该方法采用行人步伐检测来获得运动信息(PDR),利用后向序列匹配定位技术增加地磁指纹信息的分辨率,在基于隐马尔科夫模型的基础上对行人进行定位。并且对于不同的用户(身高、体重)有很好的鲁棒性,从而可以获得较好的定位精度且本身计算量较少。本发明的定位方法已经在MatLab中采用蒙特卡洛方法进行了2000多次的仿真实验。仿真中测试场景为20×20×5米的范围空间内,行人步行方向随机,设定一个行人步行的步伐长度和步行方向,来获得真实的位置,定位阶段获得的补偿与运动方向角度中添加高斯噪声,同时,为了测试环境因素对定位效果的影响,在接收地磁场强度信号中考虑了0.1uT到1uT的噪声干扰。仿真结果表明,在不同噪声的条件下,平均定位精度均为1.2米左右。本发明还在智能手机(魅族MX3端)采集数据进行实际实验,实验场地位于天津大学26楼D座5楼,由5个不同身高的志愿者分别拿着同一部手机进行数据采集,并在电脑上进行定位。实验结果表明,对于不同身高的人来说,定位精度均达到了1.4米以下。由此表明,本发明不仅定位精度较高,而且具有很好的鲁棒性。The invention is a backward sequence matching positioning method based on hidden Markov model. The method adopts pedestrian pace detection to obtain motion information (PDR), and uses backward sequence matching positioning technology to increase the resolution of geomagnetic fingerprint information. Pedestrian location based on Hidden Markov Model. And it has good robustness for different users (height, weight), so that better positioning accuracy can be obtained and the amount of calculation itself is less. The positioning method of the present invention has been used for more than 2000 simulation experiments in MatLab by using the Monte Carlo method. In the simulation, the test scene is within the range of 20×20×5 meters. The walking direction of pedestrians is random. Set a pedestrian’s walking pace length and walking direction to obtain the real position. The compensation and motion direction angles obtained in the positioning stage are added. Gaussian noise, at the same time, in order to test the influence of environmental factors on the positioning effect, the noise interference of 0.1uT to 1uT is considered in the received geomagnetic field strength signal. The simulation results show that under different noise conditions, the average positioning accuracy is about 1.2 meters. The present invention also collects data on a smartphone (Meizu MX3 terminal) to conduct an actual experiment. The experimental site is located on the 5th floor, Building D, 26th Floor, Tianjin University. Five volunteers with different heights hold the same mobile phone to collect data, and perform data collection on the computer. position on. The experimental results show that for people of different heights, the positioning accuracy is below 1.4 meters. This shows that the present invention not only has high positioning accuracy, but also has good robustness.
附图说明Description of drawings
图1为本发明的流程示意图,其中,(a)(b)(c)分别代表位置预测阶段、序列匹配阶段和位置估计阶段。FIG. 1 is a schematic flowchart of the present invention, wherein (a) (b) and (c) respectively represent the position prediction stage, the sequence matching stage and the position estimation stage.
具体实施方式Detailed ways
为了使本发明的技术方案更加清晰,以下结合附图及实例,对本发明进行进一步的详细说明。应当理解,此处所描述的具体实例仅用于解释发明,并不用于限定本发明。如图1所示本发明包括三个主要步骤:位置预测、后向序列匹配和位置估计。In order to make the technical solutions of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and examples. It should be understood that the specific examples described herein are only used to explain the invention, but not to limit the invention. As shown in Figure 1, the present invention includes three main steps: position prediction, backward sequence matching and position estimation.
离线数据采集阶段包括以下步骤:The offline data collection phase includes the following steps:
1)根据地图把待定位区域分成网格,Bw为第w个网格,其网格中心(RP)为lw。1) Divide the to-be-located area into grids according to the map, B w is the wth grid, and its grid center (RP) is l w .
2)使用磁场测量装置(磁力计、带磁场传感器的手机等)在每个网格中心测量地磁场强度数据。2) Use a magnetic field measuring device (magnetometer, mobile phone with a magnetic field sensor, etc.) to measure the geomagnetic field strength data at the center of each grid.
3)构建离线指纹库,指纹库由N个指纹构成。每个指纹数据包括指纹位置lw=[xw,yx]和指纹向量ξw=[μw,σw],其中μw和σw分别为在第w个网格内采集的地磁场数据的平均值和方差。L表示所有RP组成的集合:L={lw|1≤w≤N}。3) Build an offline fingerprint database, which consists of N fingerprints. Each fingerprint data includes the fingerprint position l w =[x w ,y x ] and the fingerprint vector ξ w =[μ w ,σ w ], where μ w and σ w are the geomagnetic field collected in the wth grid respectively The mean and variance of the data. L represents the set composed of all RPs: L={l w |1≤w≤N}.
在线定位阶段包括以下步骤:The online positioning phase includes the following steps:
3)令上一次定位的结果为位置表示人步行了i步之后的位置。当步伐检测机制检测到人步行了一步,根据步长估计与磁力计确定步伐长度Di和运动方向角度Φi。3) Let the result of the last positioning be Location Represents the position after the person has walked i steps. When the step detection mechanism detects that the person has taken a step, the step length D i and the movement direction angle Φ i are determined according to the step length estimation and the magnetometer.
a)假设Di与Φi相互独立并服从高斯分布,分别计算概率:a) Assuming that D i and Φ i are independent of each other and obey a Gaussian distribution, calculate the probabilities separately:
其中,和分别为Di与Φi的概率分布,σd和σΦ分别为运动距离和角度的方差,li为本次定位的位置,为上一次定位的估计位置。in, and are the probability distributions of D i and Φ i , respectively, σ d and σ Φ are the variance of the movement distance and angle, respectively, l i is the position of this positioning, is the estimated position of the last fix.
b)利用贝叶斯准则,预测行人位置的概率分布 b) Using the Bayesian criterion, predict the probability distribution of pedestrian locations
c)求概率大于pT的集合H:c) Find the probability Set H greater than p T :
其中pT为设置的阈值概率l为人员当前可能存在的位置。Where p T is the set threshold probability l is the current possible location of the person.
4)利用惯导信息和在线采集的地磁场强度信息进行匹配,计算状态转移概率。在行人步行i步之后存储的地磁强度值序列为Oi:其中oi-k+1为第i-k+1步时测得的地磁信息。4) Use the inertial navigation information to match the geomagnetic field strength information collected online to calculate the state transition probability. The sequence of geomagnetic intensity values stored after a pedestrian walks i steps is O i : where o i-k+1 is the geomagnetic information measured at the i-k+1th step.
a)计算H和L的交集为H',其中li,j表示行人在步行i步之后可能存在的位置,可能存在的位置总数为NP:a) Calculate the intersection of H and L as H', where l i,j represent the possible positions of pedestrians after walking i steps, and the total number of possible positions is N P :
b)根据运动信息∑Δli对于每个位置li,j=(xi,j,yi,j)预测之前的Ns个位置(横坐标为xi,j,纵坐标为yi,j),Ns为序列的长度,换句话说,li,j,k=(xi,j,k,yi,j,k)表示通过PDR来预测的li,j之前的第k个位置(横坐标为xi,j,k,纵坐标为yi,j,k):b) According to the motion information ΣΔl i , for each position l i,j =( xi,j ,y i,j ), predict the previous N s positions (the abscissa is x i,j , the ordinate is y i, j ), N s is the length of the sequence, in other words, l i,j,k =( xi,j,k ,y i,j,k ) represents the kth before l i,j predicted by PDR positions (the abscissa is x i,j,k , the ordinate is y i,j,k ):
c)在指纹库lw中寻找距离li,j,k最近的点,并且分别存储该RP的均值与方差为μi,j,k和σi,j,k:c) Find the points closest to l i,j,k in the fingerprint library lw , and store the mean and variance of the RP as μ i,j,k and σ i,j,k respectively :
其中pw为RP的位置。where pw is the location of the RP.
d)对于每一个li,j构建两个后向序列:和 d) For each li,j construct two backward sequences: and
e)假定地磁场强度观测值符合以真实值为中心的高斯分布,计算在位置li,j,k出现地磁场强度oi-k+1的概率:e) Assuming that the observed value of the geomagnetic field strength conforms to a Gaussian distribution centered on the true value, calculate the probability that the geomagnetic field strength o i-k+1 appears at the positions l i, j, k :
其中μi,j,k为均值而σi,j,k为对应的方差,li-k+1为第i-k+1步伐之后人员的位置。where μ i,j,k is the mean and σ i,j,k is the corresponding variance, and l i-k+1 is the position of the person after the i-k+1th step.
f)对于每个可能的位置li,j,比较Ui,j和Oi,计算观测值概率bi,j(即p(oi|li=li,j)):f) For each possible position l i,j , compare U i,j with O i , calculate the observation probability b i,j (ie p(o i |l i =l i,j )):
g)对每一个可能存在的位置li,j计算状态转移概率ai,j,C为归一化常数:g) Calculate the state transition probability a i,j for each possible position l i, j , C is a normalization constant:
5)将ai,j作为权重估计行人步行i步之后的位置为:5) Use a i, j as weights to estimate the pedestrian's position after walking i steps as:
6)当系统再次检测到行人运动一步,重复(1)到(3)步,估计用户位置。6) When the system detects pedestrian movement one step again, repeat steps (1) to (3) to estimate the user's position.
本实施例主要包括离线数据采集和在线匹配定位两个阶段。This embodiment mainly includes two stages of offline data collection and online matching and positioning.
离线阶段主要包括以下步骤,首先将待定位区域划分为0.6m×0.6m的网格,以每个网格的中心作为参考节点RP。然后,携带可以测量并记录地磁场强度传感器的仪器,如智能手机、IMU等,根据传感器速率不同在每个网格中心(RP)测量记录地磁强度数据约100组。对数据求平均值并计算方差。最后,把RP的位置与所得到的平均值和方差对应作为一个指纹数据,构建指纹库。The offline stage mainly includes the following steps. First, the area to be located is divided into grids of 0.6m×0.6m, and the center of each grid is used as the reference node RP. Then, carry instruments that can measure and record geomagnetic field intensity sensors, such as smartphones, IMUs, etc., and measure and record about 100 sets of geomagnetic intensity data at each grid center (RP) according to the sensor rate. Average the data and calculate the variance. Finally, the position of the RP corresponds to the obtained mean and variance as a fingerprint data, and a fingerprint library is constructed.
在线阶段中,以智能手机为例,待定位用户用手拖着手机行走,屏幕朝上放置,即手机的Z轴朝上而Y轴朝向运动的方向,这样人在行走过程中,可以根据手机自带的加速度传感器来获得运动信息。根据Z轴加速度数据可以进行步伐的检测,可以先对Z轴加速度数据进行积分,然后利用峰值检测就可以判定步伐。由于噪声等的干扰,有可能在一个步伐运动内检测到两次步伐,为此,可以设一个阈值时间TMIN,在这个时间内不管检测到几个步伐,都判定第一步为一个步伐,根据实验结果,建议TMIN设定为0.3秒。根据Y轴加速度数据可以估计步伐长度。利用磁力计和加速度传感器来获得运动的方向,也可以利用陀螺仪得到的角速度信息来获得运动方向。In the online stage, taking a smartphone as an example, the user to be located drags the phone while walking with the screen facing up, that is, the Z-axis of the phone is facing up and the Y-axis is facing the direction of movement. Built-in accelerometer to obtain motion information. Steps can be detected according to the Z-axis acceleration data. The Z-axis acceleration data can be integrated first, and then the steps can be determined by using the peak detection. Due to the interference of noise, it is possible to detect two steps in one step movement. Therefore, a threshold time T MIN can be set. No matter how many steps are detected within this time, the first step is determined as a step. According to the experimental results, it is recommended to set T MIN to 0.3 seconds. Step length can be estimated from Y-axis acceleration data. The direction of movement can be obtained by using the magnetometer and the acceleration sensor, and the direction of movement can also be obtained by using the angular velocity information obtained by the gyroscope.
根据仿真与实验结果,Ns太小将影响定位精度,Ns过大会产生过多的计算量,因此建议Ns设定为7到15之间。而PT设定太大会导致系统等效于惯性导航,太小则会导致匹配范围为全地图,因此建议PT设定为0.4到0.65之间。According to the simulation and experimental results, if N s is too small, the positioning accuracy will be affected, and if N s is too large, too much computation will be generated. Therefore, it is recommended to set N s between 7 and 15. If P T is set too large, the system will be equivalent to inertial navigation. If it is too small, the matching range will be the whole map. Therefore, it is recommended to set P T between 0.4 and 0.65.
采用这种方法,我们对本发明进行了多组不同人之间的定位实验。我们邀请了5位不同身高的志愿者进行实验,实验结果显示平均精度都可以达到1.2米左右。Using this method, we performed localization experiments for the present invention among groups of different people. We invited 5 volunteers of different heights to conduct experiments, and the experimental results show that the average accuracy can reach about 1.2 meters.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610379288.7A CN105910601B (en) | 2016-05-31 | 2016-05-31 | A kind of indoor ground magnetic positioning method based on Hidden Markov Model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610379288.7A CN105910601B (en) | 2016-05-31 | 2016-05-31 | A kind of indoor ground magnetic positioning method based on Hidden Markov Model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105910601A CN105910601A (en) | 2016-08-31 |
CN105910601B true CN105910601B (en) | 2019-01-18 |
Family
ID=56742923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610379288.7A Active CN105910601B (en) | 2016-05-31 | 2016-05-31 | A kind of indoor ground magnetic positioning method based on Hidden Markov Model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105910601B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106371064B (en) * | 2016-09-08 | 2018-11-20 | 成都希盟泰克科技发展有限公司 | A kind of localization method based on layering Hidden Markov Model |
CN106441302B (en) * | 2016-09-23 | 2020-06-12 | 上海交通大学 | Indoor positioning methods in large open areas |
CN106919785B (en) * | 2017-01-23 | 2019-07-16 | 哈尔滨工程大学 | An online compensation method for carrier interference magnetic field based on geomagnetic vector and particle filter |
CN106682239B (en) * | 2017-02-06 | 2019-11-08 | 北京邮电大学 | A method, device and system for indoor position prediction based on motion feature association |
CN107635204B (en) * | 2017-09-27 | 2020-07-28 | 深圳大学 | A motion-behavior-assisted indoor fusion positioning method and device, and storage medium |
CN108225324B (en) * | 2017-12-27 | 2021-08-17 | 中国矿业大学 | An indoor positioning method based on intelligent terminal-based geomagnetic matching and PDR fusion |
CN108521627B (en) * | 2018-03-14 | 2021-01-19 | 华南理工大学 | Indoor positioning system and method based on wifi and geomagnetic fusion based on HMM |
CN109781094A (en) * | 2018-12-24 | 2019-05-21 | 上海交通大学 | Geomagnetic Positioning System Based on Recurrent Neural Network |
CN109743680B (en) * | 2019-02-28 | 2020-01-31 | 电子科技大学 | An indoor online localization method based on PDR combined with hidden Markov model |
CN110057355B (en) * | 2019-04-18 | 2021-06-08 | 吉林大学 | Indoor positioning method, device and system and computing equipment |
CN110287821B (en) * | 2019-06-06 | 2023-07-25 | 深圳数位大数据科技有限公司 | Fingerprint library collection method and device based on geomagnetic field |
CN110146073A (en) * | 2019-06-11 | 2019-08-20 | 中国神华能源股份有限公司 | Personnel positioning method and apparatus based on earth magnetism |
CN112304317B (en) * | 2020-10-28 | 2022-04-12 | 中国矿业大学 | Indoor positioning method based on indoor multidimensional geomagnetic features |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1651864A (en) * | 2004-02-04 | 2005-08-10 | 三星电子株式会社 | Method and apparatus for producing magnetic field picture and checking posture of mobile body thereby |
CN103471589A (en) * | 2013-09-25 | 2013-12-25 | 武汉大学 | Method for identifying walking mode and tracing track of pedestrian in room |
CN104215238A (en) * | 2014-08-21 | 2014-12-17 | 北京空间飞行器总体设计部 | Indoor positioning method of intelligent mobile phone |
CN104977006A (en) * | 2015-08-11 | 2015-10-14 | 北京纳尔信通科技有限公司 | Indoor positioning method based on fuzzy theory and multi-sensor fusion |
CN105516929A (en) * | 2016-01-25 | 2016-04-20 | 赵佳 | Indoor map data building method and device and indoor positioning method and device |
-
2016
- 2016-05-31 CN CN201610379288.7A patent/CN105910601B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1651864A (en) * | 2004-02-04 | 2005-08-10 | 三星电子株式会社 | Method and apparatus for producing magnetic field picture and checking posture of mobile body thereby |
CN103471589A (en) * | 2013-09-25 | 2013-12-25 | 武汉大学 | Method for identifying walking mode and tracing track of pedestrian in room |
CN104215238A (en) * | 2014-08-21 | 2014-12-17 | 北京空间飞行器总体设计部 | Indoor positioning method of intelligent mobile phone |
CN104977006A (en) * | 2015-08-11 | 2015-10-14 | 北京纳尔信通科技有限公司 | Indoor positioning method based on fuzzy theory and multi-sensor fusion |
CN105516929A (en) * | 2016-01-25 | 2016-04-20 | 赵佳 | Indoor map data building method and device and indoor positioning method and device |
Non-Patent Citations (2)
Title |
---|
《地磁信息辅助的多维指纹室内移动轨迹映射方法》;刘文远 等;《电子与信息学报》;20131015;第35卷(第10期);2397-2401 |
《基于电磁场的室内定位技术研究》;陆晓欢;《中国优秀硕士学位论文全文数据库(信息科技辑)》;20150515(第05期);I135-179 |
Also Published As
Publication number | Publication date |
---|---|
CN105910601A (en) | 2016-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105910601B (en) | A kind of indoor ground magnetic positioning method based on Hidden Markov Model | |
Zhou et al. | Activity sequence-based indoor pedestrian localization using smartphones | |
CN105588566B (en) | An indoor positioning system and method based on fusion of bluetooth and MEMS | |
CN109164411B (en) | A Person Location Method Based on Multi-data Fusion | |
CN109470238B (en) | A positioning method, device and mobile terminal | |
CN105043380A (en) | Indoor navigation method based on a micro electro mechanical system, WiFi (Wireless Fidelity) positioning and magnetic field matching | |
CN107179079A (en) | The indoor orientation method merged based on PDR with earth magnetism | |
Seitz et al. | A hidden markov model for urban navigation based on fingerprinting and pedestrian dead reckoning | |
Ma et al. | Basmag: An optimized HMM-based localization system using backward sequences matching algorithm exploiting geomagnetic information | |
CN104061934A (en) | Pedestrian indoor position tracking method based on inertial sensor | |
Yu et al. | Autonomous 3D indoor localization based on crowdsourced Wi-Fi fingerprinting and MEMS sensors | |
CN106767828A (en) | A kind of mobile phone indoor positioning solution | |
CN109211229A (en) | A kind of personnel's indoor orientation method based on mobile phone sensor and WiFi feature | |
CN106092095A (en) | A kind of smart phone user indoor orientation method of earth magnetism correction inertial navigation | |
Kuang et al. | Consumer-grade inertial measurement units enhanced indoor magnetic field matching positioning scheme | |
Pei et al. | Using motion-awareness for the 3D indoor personal navigation on a Smartphone | |
Seitz et al. | A hidden markov model for pedestrian navigation | |
Huang et al. | Smartphone-based indoor position and orientation tracking fusing inertial and magnetic sensing | |
CN108801267B (en) | An indoor anchor-free localization method based on fusion of multi-sensors | |
Bolat et al. | A hybrid indoor positioning solution based on Wi-Fi, magnetic field, and inertial navigation | |
Lin et al. | Multi-floor indoor localization scheme using a Seq2Seq-based floor detection and particle filter with clustering | |
CN106028450B (en) | Indoor positioning method and equipment | |
Qiu et al. | Indoor geomagnetic positioning based on a joint algorithm of particle filter and dynamic time warp | |
Chen et al. | Pedestrian positioning with physical activity classification for indoors | |
Huang et al. | Indoor positioning system based on improved PDR and magnetic calibration using smartphone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |