CN105914252B - Ultraviolet-infrared two-color focal plane detector array and its performance design and fabrication method - Google Patents
Ultraviolet-infrared two-color focal plane detector array and its performance design and fabrication method Download PDFInfo
- Publication number
- CN105914252B CN105914252B CN201610406753.1A CN201610406753A CN105914252B CN 105914252 B CN105914252 B CN 105914252B CN 201610406753 A CN201610406753 A CN 201610406753A CN 105914252 B CN105914252 B CN 105914252B
- Authority
- CN
- China
- Prior art keywords
- ultraviolet
- insb
- cds
- infrared
- focal plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013461 design Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims description 35
- 238000004519 manufacturing process Methods 0.000 title 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 claims abstract description 63
- 238000003491 array Methods 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 11
- 238000004088 simulation Methods 0.000 claims description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- 238000010521 absorption reaction Methods 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 6
- 230000003595 spectral effect Effects 0.000 claims description 6
- 229910052681 coesite Inorganic materials 0.000 claims description 5
- 229910052906 cristobalite Inorganic materials 0.000 claims description 5
- 230000006798 recombination Effects 0.000 claims description 5
- 238000005215 recombination Methods 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 229910052682 stishovite Inorganic materials 0.000 claims description 5
- 229910052905 tridymite Inorganic materials 0.000 claims description 5
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 4
- 230000005672 electromagnetic field Effects 0.000 claims description 3
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 3
- 238000004659 sterilization and disinfection Methods 0.000 claims description 3
- 238000000825 ultraviolet detection Methods 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 claims description 2
- 230000035699 permeability Effects 0.000 claims description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims 3
- 238000001259 photo etching Methods 0.000 claims 2
- 229960002415 trichloroethylene Drugs 0.000 claims 2
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 claims 2
- 230000005540 biological transmission Effects 0.000 claims 1
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 claims 1
- 230000008676 import Effects 0.000 claims 1
- 230000002262 irrigation Effects 0.000 claims 1
- 238000003973 irrigation Methods 0.000 claims 1
- 238000001459 lithography Methods 0.000 claims 1
- 239000012528 membrane Substances 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract description 15
- 238000002360 preparation method Methods 0.000 abstract description 5
- 230000003287 optical effect Effects 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 description 17
- 239000010409 thin film Substances 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 229910052785 arsenic Inorganic materials 0.000 description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- 238000000233 ultraviolet lithography Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/221—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PN homojunction
- H10F30/2215—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PN homojunction the devices comprising active layers made of only Group III-V materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种紫外红外双色焦平面探测器阵列及其性能设计和制备方法。该结构单片集成了Pt/CdS紫外焦平面和InSb红外焦平面,Pt/CdS紫外焦平面受到正面入射,由于红外辐射可以透过CdS到达InSb吸收层,从而可以实现紫外辐射和红外辐射的同时探测。Pt/CdS紫外与InSb红外双色焦平面阵列的工作波段为300~550nm和2.9~5.7μm。本发明的优点在于,Pt/CdS紫外与InSb红外双色焦平面阵列结构中紫外焦平面与红外焦平面距离很近从而共焦,并且紫外红外光敏元上下对齐有利于光学系统的设计。本发明对于实际双色器件的优化设计和制备都有着十分重要的意义。
The invention discloses an ultraviolet-infrared two-color focal plane detector array and its performance design and preparation method. The structure monolithically integrates the Pt/CdS ultraviolet focal plane and the InSb infrared focal plane. The Pt/CdS ultraviolet focal plane is incident on the front. Since the infrared radiation can pass through the CdS and reach the InSb absorbing layer, it can achieve simultaneous ultraviolet radiation and infrared radiation. probing. The working bands of the Pt/CdS ultraviolet and InSb infrared two-color focal plane arrays are 300-550nm and 2.9-5.7μm. The invention has the advantages that in the Pt/CdS ultraviolet and InSb infrared two-color focal plane array structure, the distance between the ultraviolet focal plane and the infrared focal plane is very close so as to be confocal, and the upper and lower alignment of the ultraviolet and infrared photosensitive elements is beneficial to the design of the optical system. The invention has very important significance for the optimal design and preparation of practical two-color devices.
Description
技术领域technical field
本发明涉及Pt/CdS肖特基节紫外光探测器件和InSb光伏型红外光探测器件的设计和性能测量,具体是指基于Pt/CdS紫外焦平面和InSb红外焦平面进行紫外波段和红外波段的双色探测方法。The present invention relates to the design and performance measurement of Pt/CdS Schottky junction ultraviolet light detection devices and InSb photovoltaic infrared light detection devices, specifically refers to the detection of ultraviolet and infrared light based on the Pt/CdS ultraviolet focal plane and InSb infrared focal plane Two-color detection method.
背景技术Background technique
多色探测的能力在先进探测系统中有着很重要的地位,通过获取不同波段的信号可以精确辨别探测区域内物体的温度和特征。相比于单色探测,多色探测提供了多维度的对比并可以依据信号处理算法来提高器件灵敏度。比如,双色焦平面探测器阵列可以处理两个波段的辐射信号去除背景杂波和太阳光等干扰信息而只留下目标物体。双色焦平面阵列由于有效信噪比高于单色焦平面探测器阵列而广泛应用于地球行星遥感、天文和军事等领域。The ability of multi-color detection plays a very important role in advanced detection systems. By obtaining signals of different bands, the temperature and characteristics of objects in the detection area can be accurately identified. Compared with single-color detection, multi-color detection provides multi-dimensional contrast and can improve device sensitivity based on signal processing algorithms. For example, the two-color focal plane detector array can process the radiation signals of two bands to remove background clutter and sunlight and other interference information, leaving only the target object. Due to the higher effective signal-to-noise ratio than monochromatic focal plane detector arrays, two-color focal plane arrays are widely used in the fields of earth and planetary remote sensing, astronomy and military affairs.
紫外辐射波段为0.01μm~0.4μm,而太阳则是很强的紫外辐射源。对于不同波长的紫外线在大气中的透射率也不同,波长小于280nm的紫外辐射基本都被大气所吸收,而这个波段的紫外辐射也被称为日盲波段。300nm~400nm波段的紫外线能穿过大气到达地面,被称为紫外窗口。军事领域紫外探测技术主要基于近地面紫外窗口的探测。The ultraviolet radiation band is 0.01μm ~ 0.4μm, and the sun is a strong source of ultraviolet radiation. The transmittance of ultraviolet rays in the atmosphere is also different for different wavelengths. The ultraviolet radiation with a wavelength of less than 280nm is basically absorbed by the atmosphere, and the ultraviolet radiation in this band is also called the solar blind band. Ultraviolet rays in the 300nm-400nm band can pass through the atmosphere and reach the ground, which is called the ultraviolet window. The ultraviolet detection technology in the military field is mainly based on the detection of near-ground ultraviolet windows.
对于空中的物体(处于均匀的紫外背景辐射中),遮挡了被大气散射的紫外辐射并且自身发出红外辐射,则紫外/红外双色焦平面阵列通过同时对紫外辐射信号和红外辐射信号进行处理来探测或跟踪该物体,从而大幅提升识别率。CdS的工作波段为300nm~500nm,包括紫外窗口和一部分可见光波段,同时由于红外辐射在CdS材料中有很好的透射性,所以该材料在双色探测器的应用中具有很大优势。同时选取功函数较大的Pt与CdS形成肖特基节,并作为紫外探测器的核心部分。由于InSb材料在中红外波段有高量子效率、高灵敏度的优点和大规模阵列InSb焦平面阵列制作工艺成熟,所以红外探测部分则使用InSb红外焦平面阵列。For an object in the air (in a uniform ultraviolet background radiation), which blocks the ultraviolet radiation scattered by the atmosphere and emits infrared radiation itself, the ultraviolet/infrared two-color focal plane array is detected by simultaneously processing the ultraviolet radiation signal and the infrared radiation signal Or track the object, thereby greatly improving the recognition rate. The working band of CdS is 300nm-500nm, including the ultraviolet window and a part of the visible light band. At the same time, because infrared radiation has good transmittance in CdS materials, this material has great advantages in the application of two-color detectors. At the same time, Pt and CdS with larger work functions are selected to form a Schottky junction, which is used as the core part of the ultraviolet detector. Since the InSb material has the advantages of high quantum efficiency and high sensitivity in the mid-infrared band and the large-scale array InSb focal plane array is mature, the infrared detection part uses the InSb infrared focal plane array.
本发明通过设计Pt/CdS紫外与InSb红外双色焦平面阵列,并且通过ISE-TCAD软件数值计算该器件的光谱响应和串音,从而验证紫外和红外双色探测方法的可行性。The invention verifies the feasibility of the ultraviolet and infrared dual-color detection method by designing a Pt/CdS ultraviolet and InSb infrared dual-color focal plane array, and numerically calculating the spectral response and crosstalk of the device through ISE-TCAD software.
发明内容Contents of the invention
本发明公开了一种紫外和红外双色焦平面探测器及其性能设计和制备方法。通过数值设计得到Pt/CdS紫外与InSb红外双色焦平面阵列的结构和该结构所对应的光谱响应和工作波段,验证了该器件双色探测的可行性。The invention discloses an ultraviolet and infrared two-color focal plane detector and its performance design and preparation method. The structure of the Pt/CdS ultraviolet and InSb infrared two-color focal plane array and the corresponding spectral response and working band of the structure are obtained by numerical design, and the feasibility of the two-color detection of the device is verified.
一种紫外红外双色焦平面探测器阵列,包括n型衬底InSb吸收层4,SiO2阻挡层3,n型CdS吸收层2,p型InSb吸收层5,所述的紫外红外双色焦平面探测器阵列的结构为:在n型衬底InSb吸收层4上面依次为SiO2阻挡层3、n型CdS吸收层2和Pt薄膜1,紫外焦平面每个探测器像元所对应的电极6位于Pt薄膜1上,紫外焦平面的公共电极7位于n型CdS吸收层2上;在n型衬底InSb吸收层4背面为p型InSb吸收层5,红外焦平面探测器像元对应的电极8位于p型InSb吸收层5上,红外焦平面的公共电极9位于n型衬底InSb吸收层4上;An ultraviolet-infrared two-color focal plane detector array, comprising an n-type substrate InSb absorption layer 4, a SiO barrier layer 3 , an n-type CdS absorption layer 2, and a p-type InSb absorption layer 5, and the ultraviolet-infrared two-color focal plane detection The structure of the detector array is: on the n-type substrate InSb absorbing layer 4, there are SiO2 barrier layer 3, n-type CdS absorbing layer 2 and Pt thin film 1 in sequence, and the electrode 6 corresponding to each detector pixel on the ultraviolet focal plane is located at On the Pt film 1, the common electrode 7 of the ultraviolet focal plane is located on the n-type CdS absorbing layer 2; on the back of the n-type substrate InSb absorbing layer 4 is a p-type InSb absorbing layer 5, and the electrode 8 corresponding to the pixel of the infrared focal plane detector Located on the p-type InSb absorption layer 5, the common electrode 9 of the infrared focal plane is located on the n-type substrate InSb absorption layer 4;
所述的n型衬底InSb吸收层4厚度为dn、砷掺杂浓度为Nn;The n-type substrate InSb absorbing layer 4 has a thickness of d n and arsenic doping concentration of N n ;
所述的p型衬底InSb吸收层5厚度为dp、硼掺杂浓度为Np;The p-type substrate InSb absorption layer 5 has a thickness of dp and a boron doping concentration of Np ;
所述的CdS吸收层2厚度为dcds、砷掺杂浓度为Ncds;The thickness of the CdS absorbing layer 2 is d cds , and the doping concentration of arsenic is N cds ;
所述的Pt薄膜1厚度为dpt。The thickness of the Pt thin film 1 is d pt .
双色探测器的性能设计和制备方法如下:The performance design and preparation method of the two-color detector are as follows:
1).n型衬底InSb吸收层4上面为SiO2阻挡层3,而2为n型CdS吸收层,Pt薄膜1表面的电极6为紫外焦平面每个探测器像元所对应的电极,7为紫外焦平面的公共电极,p型InSb吸收层5表面的电极,8为红外焦平面探测器像元对应的电极,9为红外焦平面的公共电极。1). On the n-type substrate InSb absorbing layer 4 is a SiO 2 barrier layer 3, and 2 is an n-type CdS absorbing layer, and the electrode 6 on the surface of the Pt film 1 is the electrode corresponding to each detector pixel on the ultraviolet focal plane, 7 is the common electrode of the ultraviolet focal plane, the electrode on the surface of the p-type InSb absorbing layer 5, 8 is the electrode corresponding to the pixel of the infrared focal plane detector, and 9 is the common electrode of the infrared focal plane.
2).所述n型衬底InSb吸收层4厚度为dn、砷掺杂浓度为Nn,所述p型衬底InSb吸收层厚度为dp、硼掺杂浓度为Np,同时p区和n区分别安装电极6和7以测量输出电流信号;2). The n-type substrate InSb absorbing layer 4 has a thickness of d n and an arsenic doping concentration of N n , and the p-type substrate InSb absorbing layer has a thickness of d p and a boron doping concentration of N p , while p The electrodes 6 and 7 are respectively installed in the area and the n area to measure the output current signal;
3).所述Pt薄膜1厚度为dpt,所述CdS吸收层2厚度为dcds、砷掺杂浓度为Ncds,同时在Pt薄膜和CdS吸收层分别安装电极8、9以测量输出电流信号。3). The thickness of the Pt thin film 1 is d pt , the thickness of the CdS absorbing layer 2 is d cds , and the arsenic doping concentration is N cds . At the same time, electrodes 8 and 9 are respectively installed on the Pt thin film and the CdS absorbing layer to measure the output current Signal.
4).构建物理模型。采用有限时域差分法(FDTD)和有限元法(FEM)联合模拟来对器件进行二维数值分析。在FDTD方法模拟电磁场的过程中,先建立各种材料参数的数据库,如各频率对应的电导率、相对介电常数和相对磁导率等,然后对设计的器件结构进行网格划分,结合材料参数和色散模型使用FDTD方法计算目标区域内的电磁场分布并转化为光生载流子浓度分布。在FEM方法模拟器件电学特性的过程中,结合光生载流子浓度分布结果,导入材料的迁移率、带隙、吸收系数、介电常数等参数,并依据经典漂移扩散模型、SRH复合和俄歇复合等基本物理模型计算器件零偏下的电流。4). Build a physical model. The 2D numerical analysis of the device is carried out by joint simulation of finite difference time domain method (FDTD) and finite element method (FEM). In the process of simulating the electromagnetic field by the FDTD method, a database of various material parameters, such as the electrical conductivity, relative permittivity, and relative magnetic permeability corresponding to each frequency, is established first, and then the designed device structure is meshed. The parameter and dispersion model uses the FDTD method to calculate the electromagnetic field distribution in the target area and convert it into a photogenerated carrier concentration distribution. In the process of simulating the electrical characteristics of the device by the FEM method, combined with the results of the photogenerated carrier concentration distribution, the parameters such as the mobility, band gap, absorption coefficient, and dielectric constant of the material are introduced, and based on the classic drift-diffusion model, SRH recombination and Auger Composite and other basic physical models calculate the current of the device under zero bias.
5).设置环境温度为T,正面入射到中间的紫外探测像元的入射光波长为λ,光功率恒为P,紫外波段的入射光会被CdS吸收层吸收,而红外光则会透过CdS吸收层被InSb吸收层吸收,通过数值模拟不同波长入射光照射情况下的光响应率可以得到光谱响应和串音。5). Set the ambient temperature as T, the wavelength of the incident light incident on the ultraviolet detection pixel from the front to the middle is λ, and the optical power is constant as P. The incident light in the ultraviolet band will be absorbed by the CdS absorbing layer, while the infrared light will pass through The CdS absorbing layer is absorbed by the InSb absorbing layer, and the spectral response and crosstalk can be obtained by numerically simulating the photoresponsivity under different wavelengths of incident light.
6).首先根据Pt/CdS紫外和InSb红外双色焦平面阵列的规模制备相应的光刻掩膜版,然后以n型InSb材料为基底使用等离子体增强化学气相沉积法(PECVD)生长厚度为1μm左右的SiO2,进而使用物理气相传输法(PVT)在SiO2表面生长厚度为5μm左右的n型CdS单晶。6). First, the corresponding photolithographic mask is prepared according to the scale of Pt/CdS ultraviolet and InSb infrared two-color focal plane arrays, and then the n-type InSb material is used as the substrate to grow to a thickness of 1 μm by plasma enhanced chemical vapor deposition (PECVD). About SiO 2 , and then use the physical vapor transport method (PVT) to grow n-type CdS single crystal with a thickness of about 5 μm on the surface of SiO 2 .
7).通过丙酮和甲醇清洗CdS表面并且使用盐酸溶液去除表面的氧化层,然后使用紫外光刻技术和刻蚀工艺制作CdS台面结构和肖特基节窗口,然后使用射频磁控溅射技术生长高透光率的Pt薄膜电极以形成肖特基接触,并且经过剥离工艺得到紫外焦平面阵列。7). Clean the CdS surface with acetone and methanol and use hydrochloric acid solution to remove the oxide layer on the surface, then use ultraviolet lithography technology and etching process to make CdS mesa structure and Schottky junction window, and then use radio frequency magnetron sputtering technology to grow High light transmittance Pt thin film electrodes to form Schottky contacts, and a UV focal plane array is obtained through a lift-off process.
8).将器件放置在干净的玻璃板上(InSb基底朝上),在器件四周放置适量的蜡并加热,待融化的蜡进入器件底部之后,用三氯乙烯冲洗多余的蜡,并且使用乙醚丙醇冲洗消毒。对n型InSb基底进行抛光减薄,并且进行离子注入形成p+区,再通过光刻工艺、刻蚀工艺、热蒸发方法和剥离工艺制作InSb台面结构和电极。最后加热玻璃板并且使用三氯乙烯冲洗掉粘附的蜡以获得Pt/CdS紫外和InSb红外双色焦平面阵列器件。8). Place the device on a clean glass plate (InSb substrate facing up), place an appropriate amount of wax around the device and heat it, after the melted wax enters the bottom of the device, rinse the excess wax with trichlorethylene, and use ether Rinse with propanol for disinfection. The n-type InSb substrate is polished and thinned, and ion implantation is carried out to form a p + region, and then the InSb mesa structure and electrodes are fabricated by photolithography process, etching process, thermal evaporation method and stripping process. Finally the glass plate was heated and the adhering wax was rinsed off using trichlorethylene to obtain a Pt/CdS UV and InSb IR two-color focal plane array device.
本发明的优点是:Pt/CdS紫外与InSb红外双色焦平面阵列结构中紫外焦平面与红外焦平面距离很近从而共焦,并且紫外红外光敏元上下对齐有利于光学系统的设计。双色焦平面阵列中紫外焦平面处于红外焦平面上层,并且CdS吸收层对于红外波段的入射光几乎是透明的。台面结构的设计减小了光敏区域的面积从而有效降低了暗电流和串音。通过数值模拟的结果验证了Pt/CdS紫外与InSb红外双色焦平面阵列双色探测的可行性,为实际器件的制备和优化提供理论指导。The invention has the advantages that: in the Pt/CdS ultraviolet and InSb infrared two-color focal plane array structure, the distance between the ultraviolet focal plane and the infrared focal plane is very close to be confocal, and the upper and lower alignment of the ultraviolet and infrared photosensitive elements is beneficial to the design of the optical system. In the two-color focal plane array, the ultraviolet focal plane is above the infrared focal plane, and the CdS absorbing layer is almost transparent to the incident light in the infrared band. The design of the mesa structure reduces the area of the photosensitive area to effectively reduce dark current and crosstalk. The feasibility of dual-color detection of Pt/CdS ultraviolet and InSb infrared dual-color focal plane arrays is verified by the results of numerical simulation, which provides theoretical guidance for the preparation and optimization of practical devices.
附图说明Description of drawings
图1为Pt/CdS紫外与InSb红外双色焦平面阵列的截面示意图。其中1为Pt薄膜,2为n型CdS吸收层,3为SiO2阻挡层,4为n型InSb吸收层,5为p型InSb收集层,6为紫外焦平面每个探测器像元所对应的电极,7为紫外焦平面的公共电极,8为红外焦平面探测器像元对应的电极,9为红外焦平面的公共电极。Fig. 1 is a cross-sectional schematic diagram of a Pt/CdS ultraviolet and InSb infrared two-color focal plane array. Among them, 1 is the Pt thin film, 2 is the n-type CdS absorbing layer, 3 is the SiO2 barrier layer, 4 is the n-type InSb absorbing layer, 5 is the p-type InSb collecting layer, and 6 is the UV focal plane corresponding to each detector pixel 7 is the common electrode of the ultraviolet focal plane, 8 is the electrode corresponding to the pixel of the infrared focal plane detector, and 9 is the common electrode of the infrared focal plane.
图2为Pt/CdS紫外与InSb红外双色焦平面阵列归一化光谱响应。Figure 2 shows the normalized spectral response of Pt/CdS ultraviolet and InSb infrared two-color focal plane arrays.
图3为Pt/CdS紫外与InSb红外双色焦平面阵列的串音。Figure 3 shows the crosstalk between Pt/CdS ultraviolet and InSb infrared two-color focal plane arrays.
具体实施方式detailed description
下面结合附图对本发明的具体实施方式作详细说明:The specific embodiment of the present invention is described in detail below in conjunction with accompanying drawing:
1.构建Pt/CdS紫外与InSb红外双色焦平面阵列二维模型,CdS吸收层厚度dcds设置为4.5μm,掺杂浓度Ncds为1.6×10cm-3,Pt薄膜厚度dpt为8nm,紫外光敏面长度LUV为25μm。InSb n型吸收层厚度dn为9.2μm,n型掺杂浓度Nn为1015cm-3,P型掺杂浓度Np为1017cm-3。红外探测像元光敏面长度LIR为15μm,而焦平面阵列周期为50μm,见图1。1. Construct a two-dimensional model of Pt/CdS ultraviolet and InSb infrared two-color focal plane array. The thickness d cds of the CdS absorbing layer is set to 4.5 μm, the doping concentration N cds is 1.6×10cm -3 , the thickness d pt of the Pt film is 8nm, and the ultraviolet The photosensitive surface length L UV is 25 μm. The thickness d n of the InSb n-type absorbing layer is 9.2 μm, the n-type doping concentration N n is 10 15 cm -3 , and the p-type doping concentration N p is 10 17 cm -3 . The length L IR of the photosensitive surface of the infrared detection pixel is 15 μm, and the period of the focal plane array is 50 μm, as shown in Figure 1.
2.构建物理模型。使用FDTD方法计算光生载流子浓度在模拟区域的分布,继而将这个结果耦合到电学部分的模拟中,器件的电学性质模拟过程依据漂移扩散模型、SRH复合模型、俄歇复合模型、辐射复合模型和色散模型等基本物理机制进行数值计算,最终获得电流和电压等宏观物理量来研究分析器件的性能和进一步优化结构参数。2. Build a physical model. Use the FDTD method to calculate the distribution of the photogenerated carrier concentration in the simulation area, and then couple this result to the simulation of the electrical part. The electrical property simulation process of the device is based on the drift diffusion model, SRH recombination model, Auger recombination model, and radiation recombination model. Numerical calculations are carried out on basic physical mechanisms such as dispersion models, and finally macroscopic physical quantities such as current and voltage are obtained to study and analyze device performance and further optimize structural parameters.
3.设置背景温度为T=77K,入射光功率P=0.0001W/cm-2,入射光波长从300nm变化到5.9μm,通过数值模拟得到Pt/CdS紫外与InSb红外双色焦平面阵列的归一化光谱响应(图2)和串音(图3)。3. Set the background temperature as T=77K, the incident light power P=0.0001W/cm -2 , and the incident light wavelength is changed from 300nm to 5.9μm, and the normalization of Pt/CdS ultraviolet and InSb infrared two-color focal plane arrays is obtained through numerical simulation Spectral response (Figure 2) and crosstalk (Figure 3).
4.研究结果显示Pt/CdS紫外与InSb红外双色焦平面阵列的工作波段为300~550nm(紫外)和2.9~5.7μm(红外)。在紫外波段,器件在入射光波长为500nm时有峰值响应率为0.0403A/W,而在红外波段,入射光波长为5.1μm时有峰值响应率1.07A/W。通过数值模拟验证了Pt/CdS紫外与InSb红外双色焦平面阵列可以进行紫外波段和红外波段的双色探测。4. The research results show that the working bands of Pt/CdS ultraviolet and InSb infrared two-color focal plane arrays are 300-550nm (ultraviolet) and 2.9-5.7μm (infrared). In the ultraviolet band, the device has a peak responsivity of 0.0403A/W when the incident light wavelength is 500nm, while in the infrared band, the peak responsivity is 1.07A/W when the incident light wavelength is 5.1μm. Numerical simulations verify that the Pt/CdS ultraviolet and InSb infrared dual-color focal plane arrays can perform dual-color detection in the ultraviolet and infrared bands.
5.根据数值模拟结果确定Pt/CdS紫外和InSb红外双色焦平面阵列的几何结构,首先根据该双色焦平面阵列的规模制备相应的光刻掩膜版,然后以n型InSb材料为基底使用等离子体增强化学气相沉积法(PECVD)生长厚度为1μm左右的SiO2,进而使用物理气相传输法(PVT)在SiO2表面生长厚度为5μm左右的n型CdS单晶。5. Determine the geometric structure of the Pt/CdS ultraviolet and InSb infrared two-color focal plane arrays according to the numerical simulation results. First, prepare the corresponding photolithographic mask according to the scale of the two-color focal plane array, and then use the n-type InSb material as the substrate to use plasma SiO 2 with a thickness of about 1 μm was grown by volume-enhanced chemical vapor deposition (PECVD), and an n-type CdS single crystal with a thickness of about 5 μm was grown on the surface of SiO 2 by physical vapor transport (PVT).
6.通过丙酮和甲醇清洗CdS表面并且使用盐酸溶液去除表面的氧化层,然后使用紫外光刻技术和刻蚀工艺制作CdS台面结构和肖特基节窗口,然后使用射频磁控溅射技术生长高透光率的Pt薄膜电极以形成肖特基接触,并且经过剥离工艺得到紫外焦平面阵列。6. Clean the CdS surface with acetone and methanol and use hydrochloric acid solution to remove the oxide layer on the surface, then use ultraviolet lithography technology and etching process to make CdS mesa structure and Schottky junction window, and then use radio frequency magnetron sputtering technology to grow high The Pt film electrode with light transmittance is used to form a Schottky contact, and a UV focal plane array is obtained through a lift-off process.
7.将器件放置在干净的玻璃板上(InSb基底朝上),在器件四周放置适量的蜡并加热,待融化的蜡进入器件底部之后,用三氯乙烯冲洗多余的蜡,并且使用乙醚丙醇冲洗消毒。对n型InSb基底进行抛光减薄,并且进行离子注入形成p+区,再通过光刻工艺、刻蚀工艺、热蒸发方法和剥离工艺制作InSb台面结构和电极。最后加热玻璃板并且使用三氯乙烯冲洗掉粘附的蜡以获得Pt/CdS紫外和InSb红外双色焦平面阵列器件。7. Place the device on a clean glass plate (InSb substrate facing up), place an appropriate amount of wax around the device and heat it, after the melted wax enters the bottom of the device, rinse the excess wax with trichlorethylene, and use ether propylene Alcohol rinse disinfection. The n-type InSb substrate is polished and thinned, and ion implantation is carried out to form a p + region, and then the InSb mesa structure and electrodes are fabricated by photolithography process, etching process, thermal evaporation method and stripping process. Finally the glass plate was heated and the adhering wax was rinsed off using trichlorethylene to obtain a Pt/CdS UV and InSb IR two-color focal plane array device.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610406753.1A CN105914252B (en) | 2016-06-12 | 2016-06-12 | Ultraviolet-infrared two-color focal plane detector array and its performance design and fabrication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610406753.1A CN105914252B (en) | 2016-06-12 | 2016-06-12 | Ultraviolet-infrared two-color focal plane detector array and its performance design and fabrication method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105914252A CN105914252A (en) | 2016-08-31 |
CN105914252B true CN105914252B (en) | 2017-06-27 |
Family
ID=56749868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610406753.1A Active CN105914252B (en) | 2016-06-12 | 2016-06-12 | Ultraviolet-infrared two-color focal plane detector array and its performance design and fabrication method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105914252B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109216485B (en) * | 2017-06-29 | 2020-11-27 | 中国科学院苏州纳米技术与纳米仿生研究所 | Infrared detector and preparation method thereof |
CN107579123A (en) * | 2017-08-31 | 2018-01-12 | 华中科技大学 | A kind of antimony selenide thin film solar cell and preparation method thereof |
CN108489923B (en) * | 2018-01-30 | 2020-08-07 | 中国科学院上海技术物理研究所 | Infrared gas imaging focal plane based on double-sensitive-element differential signal and imaging method |
CN108321244B (en) * | 2018-03-26 | 2024-03-29 | 厦门三优光电股份有限公司 | Ultraviolet photodetector for ultraviolet and infrared dual-color detection and preparation method thereof |
CN110836861A (en) * | 2019-10-28 | 2020-02-25 | 西北工业大学 | Long-wave infrared dual-color imaging monitoring system for SF6 gas leakage |
CN111653630B (en) * | 2020-04-29 | 2021-08-24 | 西北工业大学 | A method for making a dual-color focal plane detector and a method for acquiring dual-color images |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101894831A (en) * | 2009-05-20 | 2010-11-24 | 中国科学院半导体研究所 | Ultraviolet-infrared dual band detector and manufacturing method thereof |
CN102117842A (en) * | 2009-12-30 | 2011-07-06 | 上海欧菲尔光电技术有限公司 | Infrared focal plane detector packaging window and manufacturing method thereof |
CN205810842U (en) * | 2016-06-12 | 2016-12-14 | 中国科学院上海技术物理研究所 | A kind of ultraviolet and infrared double color focus plane detector array |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7436038B2 (en) * | 2002-02-05 | 2008-10-14 | E-Phocus, Inc | Visible/near infrared image sensor array |
CN101419092B (en) * | 2008-12-02 | 2012-02-08 | 中国电子科技集团公司第十三研究所 | Method for making pyroelectric infrared detector for planarization thermal isolation structure |
JP2011192873A (en) * | 2010-03-16 | 2011-09-29 | Irspec Corp | Wide-wavelength-band photodetector array |
CN103915525A (en) * | 2014-04-08 | 2014-07-09 | 上海电力学院 | Infrared focal plane detector capable of improving photoelectric conversion performance |
-
2016
- 2016-06-12 CN CN201610406753.1A patent/CN105914252B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101894831A (en) * | 2009-05-20 | 2010-11-24 | 中国科学院半导体研究所 | Ultraviolet-infrared dual band detector and manufacturing method thereof |
CN102117842A (en) * | 2009-12-30 | 2011-07-06 | 上海欧菲尔光电技术有限公司 | Infrared focal plane detector packaging window and manufacturing method thereof |
CN205810842U (en) * | 2016-06-12 | 2016-12-14 | 中国科学院上海技术物理研究所 | A kind of ultraviolet and infrared double color focus plane detector array |
Also Published As
Publication number | Publication date |
---|---|
CN105914252A (en) | 2016-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105914252B (en) | Ultraviolet-infrared two-color focal plane detector array and its performance design and fabrication method | |
Zhang et al. | Wafer-scale fabrication of CMOS-compatible trapping-mode infrared imagers with colloidal quantum dots | |
Feng et al. | Frequency response characteristics of pyroelectric effect in pn junction UV detectors | |
Liu et al. | Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction | |
CN103681937B (en) | Based on the method for designing of the focus planardetector structure of photonic crystal limit luminous effect | |
US10439093B2 (en) | Antenna-assisted photovoltaic graphene detectors | |
CN110491956B (en) | photodetector | |
CN103762220A (en) | High-linearity degree-of-polarization quantum-well infrared detector with plasmon micro-cavity coupled structure | |
Solanki et al. | Harnessing the interplay between photonic resonances and carrier extraction for narrowband germanium nanowire photodetectors spanning the visible to infrared | |
CN110459548B (en) | A kind of photodetector based on van der Waals heterojunction and its preparation method | |
CN102201487B (en) | Method for optimizing light gathering ability of micro-lens array of back-illuminated infrared detector | |
CN111682087A (en) | A two-dimensional material polariton-enhanced infrared photodetector and its preparation method | |
Yang et al. | Visible and infrared photodiode based on γ-InSe/Ge van der Waals heterojunction for polarized detection and imaging | |
Feng et al. | A broadband photoelectronic detector in a silicon nanopillar array with high detectivity enhanced by a monolayer graphene | |
Zhang et al. | Wavelength-selective infrared detector fabricated by integrating LiTaO3 with a metamaterial perfect absorber | |
CN205810842U (en) | A kind of ultraviolet and infrared double color focus plane detector array | |
Kumar et al. | Optimal design and noise analysis of high-performance DBR-integrated lateral germanium (Ge) photodetectors for SWIR applications | |
Setälä et al. | Boron-implanted black silicon photodiode with Close-to-Ideal responsivity from 200 to 1000 nm | |
Jahromi et al. | A fast and sensitive Schottky photodiode with surface plasmon enhanced photocurrent and extremely low dark current for high-frequency applications in near-infrared | |
Pearce et al. | Design of photonic light-trapping structures for ultra-thin solar cells | |
Zhao et al. | Self-powered organic phototransistors with asymmetrical van der Waals stacking for flexible image sensors | |
Liu et al. | Sensitive silicon nanowire ultraviolet B photodetector induced by leakage mode resonances | |
Li et al. | Crosstalk suppressing design of GaAs microlenses integrated on HgCdTe infrared focal plane array | |
Yan et al. | Inverse design of GaAs nanowire array solar cell structures with nonuniform diameters | |
Fu et al. | A UV to NIR Si wavelength sensor with simple geometry and good resolution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |