[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN105899076B - 益生菌和杀生物剂及其生产方法和装置 - Google Patents

益生菌和杀生物剂及其生产方法和装置 Download PDF

Info

Publication number
CN105899076B
CN105899076B CN201480071370.2A CN201480071370A CN105899076B CN 105899076 B CN105899076 B CN 105899076B CN 201480071370 A CN201480071370 A CN 201480071370A CN 105899076 B CN105899076 B CN 105899076B
Authority
CN
China
Prior art keywords
powder
slurry
particle
carbonate
biocide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480071370.2A
Other languages
English (en)
Other versions
CN105899076A (zh
Inventor
马克·西茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calix Pty Ltd
Original Assignee
Calix Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2014900006A external-priority patent/AU2014900006A0/en
Application filed by Calix Pty Ltd filed Critical Calix Pty Ltd
Publication of CN105899076A publication Critical patent/CN105899076A/zh
Application granted granted Critical
Publication of CN105899076B publication Critical patent/CN105899076B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/06Aluminium; Calcium; Magnesium; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/12Powders or granules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/10Preheating, burning calcining or cooling
    • C04B2/102Preheating, burning calcining or cooling of magnesia, e.g. dead burning
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/10Preheating, burning calcining or cooling
    • C04B2/106Preheating, burning calcining or cooling in fluidised bed furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Agronomy & Crop Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Toxicology (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catalysts (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本发明描述了一种用于从轻烧碳酸盐粉末和碳酸盐中生产杀生物剂产品的方法和装置,所述碳酸盐例如是菱镁矿、白云石或者水菱镁矿。所述生产方法是基于使用间接加热逆向流反应器来生产高表面积的氧化物颗粒。所述杀生物剂所需的特性是通过建立的应用方法学而被当作为粉末,颗粒或料浆施用至农作物,食品,口罩或抹布时,具有抗病毒,细菌,真菌和昆虫的广谱活性。所述料浆通常是对特定应用的原料,例如,喷雾,或干燥成粉末以形成粉末产品或颗粒剂,或与油混合以形成乳液,或加工成泡沫或雾。在另一种应用中,粉末产品可直接应用。

Description

益生菌和杀生物剂及其生产方法和装置
技术领域
本发明广泛地涉及一种从轻煅烧材料中生产煅烧粉末用于制备具有生物活性材料的方法和装置。其中所述生物活性适用于广谱的病毒,细菌,真菌活性,并根据目标作为益生菌或者杀生物剂。
背景技术
具有杀生物剂和益生菌特性的纳米材料被广泛的发展,特别是,纳米氧化镁MgO和纳米氧化锌ZnO。一个杀生物剂的例子是“氧化镁粉末的抗菌性能”,J.Sawei等人,《世界微生物与生物技术》,16,第2期,第187-194页,2000年。另一个例子是“氧化镁纳米颗粒粉末对食源性致病菌的抗菌活性”,J.Nanopart.Res,13,6877-6885。
Sawai等人的研究中,目标是生成高表面积并且颗粒尺寸小于50nm的MgO。在这些材料的试验中,MgO颗粒能够与水迅速的反应生成纳米氢氧化镁。现有技术中此处引用的纳米氧化镁被归结到纳米氢氧化镁。这些含水的纳米材料展示了广谱的生物活性,能够抗病毒、细菌和真菌。这些粉末和含水的纳米粉末能够使有毒的物质无效,例如化学战剂。
T.Yin和Y.Lu发表的一篇文章中,证明了纳米氧化镁颗粒针对食源性病原体大肠杆菌和沙氏门菌具有强效的杀菌活性。这个工作是非常重要的,因为纳米氧化镁或者纳米氢氧化镁并不被认为是对人或者动物是有毒的和作为肥料通过镁的供应对植物有一个积极的影响。例如,七个记录观察到在8克/升的固体剂量率时大肠杆菌的减少,1克/升的剂量时抑制生长,13克/升的剂量时24小时内会杀死所有的细胞。尽管Mg(OH)2是相对不溶性的,但它能迅速溶解在低pH环境中,特别是在消化系统的pH。因为纳米MgO/Mg(OH)2的表面积越大,其溶解速率越快。
美国专利US 6827766 B2保护了一种去污产品,其包含纳米颗粒,所述纳米颗粒包括氧化镁和Mg(OH)2,选择性的杀生物剂和液体载体,包括水。抑菌性能由于纳米颗粒的存在而显著增强。去污过程包括液体喷雾,雾,气溶胶贴,凝胶,擦,蒸气或泡沫。虽然权利要求限制于往产品中添加现有的杀生物剂作为佐剂,所公开的实施例教导了纳米颗粒在液体载体中有一个有效的,长期的抑菌活性而不需要佐剂。具体地,其实例3表明5/1水/油乳液,2%纳米氧化镁,氧化钙,和ZnO的固体具有这样的特性,特别是没有杀生物剂的要求。
颗粒大小的影响似乎是重要的。美国专利US 2,576,731A号(Thomson)公开了使用从标准氧化镁制成的氢氧化镁料浆,作为用于叶面喷洒的基础,作为对昆虫和真菌活性的杀生物剂的载体,其中的益处与碱性颗粒的吸收活性杀生物剂的能力相关,以使它们不溶性的,并且杀生物剂颗粒对植物的叶强粘附力,使得杀生物剂在叶子多次洗涤后仍能发挥作用。这个专利描述了氢氧化镁的作用,其不具有杀虫或杀菌活性。在本发明的上下文中,所述专利的重要的启示是氢氧化镁的粘附。
这一观点得到了由Motoike等人发表的一篇题目为“加热白云石粉的抗病毒活性”(Biocontrol Sci.13(4):131-82008)的论文的支持,论文中处理的白云石被表现出抗病毒活性。美国专利US 20090041818 A1请求保护一种抗病毒剂,是一种氧化物和一种氢氧化物的混合物,其中氢氧根离子是由氧化物与氢氧化物反应产生的。据称,许多材料可以提供氢氧化物,其中一种是Mg(OH)2,并且氧化物优选为MgO。所述现有技术中的有关公开内容是,这种传统的料浆的杀生物活性主要是短暂的,因此生产的氢氧化镁,或水合煅烧白云石料浆,不具有显著长期杀生物剂效果。不受理论的限制,本研究表明,在这样的氢氧化物料浆中的活性化学物质是天然存在的,但它们的浓度过低会对微生物产生持续的影响。本发明设法克服这个限制。
与标准材料相比,深刻理解纳米Mg(OH)2如何具有显著生物活性表现在两个水平。
首先,在生物水平,为什么病理真菌生长是通过化学过程抑制最合理的理论是因为活性氧的存在(ROS)。活性氧具有高氧化还原电位,并包括超氧离子O2 2-,通过水的水解作用生成羟基自由基OH·、过羟基阴离子HO2 -和过氧化氢H2O2是众所周知的。这些物种在水中的均衡主要是通过pH值进行调节,并且在pH值接近纳米Mg(OH)2颗粒,即在pH值10.4左右时,过羟基负离子占主导地位。植物可以斜升产生活性氧作为对病原微生物攻击的防御,并且活性氧攻击病原真菌和细菌的原始细胞壁。作为响应,真菌能产生与所述ROS反应并中和的化学物质,并且,活性氧攻击和破坏病原微生物的细胞壁。所述用于活性检测的相同模型适用于致病菌,特别是厌氧革兰氏阴性菌。所述ROS共生与植物活性氧和有益的革兰氏阳性菌密切相关,这些都是对于健康的成长环境至关重要的。革兰氏阳性菌是通常有益的和好氧的,ROS能增加在环境中的氧水平。革兰氏阳性菌是通常有益的,有氧和ROS增加在环境中的氧水平。例如,如稻瘟菌的案例所述:Kun Huang,Kirk J.Czymmek,Jeffrey L.Caplan,James A.Sweigard&Nicole M.Donofrio(2011).
其次,在原子水平上,显而易见的是,纳米Mg(OH)2料浆长期的生物活性与其生产和稳定的ROS的能力相关联。一般而言,小的晶粒已经根据定义,这是在高能量表面上形成其晶体表面的高比例,并且很好理解的是,这样的表面是有活力的氧化剂的来源,例如活性氧物种。在Mg(OH)2的情况下,诸如电子顺磁共振技术,尽管在低浓度下,能检测所有的如上所述的正常晶体表面的自由基物种。在溶液中活性氧自由基可以重组,和ROS的生物活性的影响将通过径向重组降解。在Mg(OH)2的存在下,活性氧耗散率可以被显着降低,如果不通过过氧化镁MgO2的生成抑制。过氧化镁是一种稳定的晶体材料,且通常是在与过氧化氢H2O2,水和过量的MgO的混合物中形成的。在环境温度下它是稳定的(I.I.Vol'nov,andE.I.Latysheva,“过氧化镁的热稳定性”Izvestiya Akademii Nauk SSSR,SeriyaKhimicheskaya,No.1,pp.13–18,January,1970)。因此,纳米Mg(OH)2不仅可以在晶界形成活性氧,而且ROS物种可以在颗粒表面上稳定化。活性氧物种存储在纳米颗粒表面上,并且将通过与病原体攻击相关联的平衡的变化被释放,并且所述纳米Mg(OH)2的一般溶出作为肥料给植物供给镁。
综上所述,一种生物活性纳米Mg(OH)2的合理模型是每个颗粒是具有稳定存在于颗粒能量表面的高浓度活性氧的纳米级晶粒,和通过增强植物自身天然防御系统生物活性提高生物活性,所述植物自身天然防御系统形成活性氧以提供有氧的环境来抑制致病微生物。这个效果是由Mg(OH)2的pH值来提高,在pH值为10.4时,其可以中和由病原体挤出酸;水解的净正的粒子电荷,吸引特定的微生物和细胞的负电荷表面;和颗粒粘附于植物的微生物和细胞的表面上。与此相反,正常的大小为0.1至100微米Mg(OH)2颗粒,通常具有表面,所述表面以稳定的001面为主面,并且活性氧的浓度将变小。
上述描述的纳米Mg(OH)2相同的机制可以适用于基于金属氧化物的其它生物活性材料,如纳米ZnO和的AgO。其纳米颗粒也将支持一个ROS物种范围,所述ROS物种依赖于在相应的晶界上的特定缺陷。例如,已经已知纳米氧化锌用于生产过氧化氢和羟基自由基。
对于纳米粒径的粒子的生物活性的机制与其它杀真菌剂和杀菌剂具有本质上的不同,所述杀真菌剂和杀菌剂使用有毒化合物到靶病原微生物。首先,活性氧的机理在于需氧和厌氧微生物的核心的差异,和遗传进化之间以限制生物活性的影响是不可能的。其次,机制的增强是自然过程,由此植物保护自己免受致病攻击。没有新的化学物质参与其中,分解的产品是必需的营养素或微量营养素,和对于镁,它是用于生产叶绿素的必需的营养素。植物通过气孔在叶子上吸收镁,而真菌,革兰氏阳性和革兰氏阴性微生物和植物细胞之间的好氧/厌氧竞赛存在于土壤内和在叶子上,例如,Susan S.Hirano和Christen D(Upper,Microbiol.Mol.Biol.Rev.64,3624-653(2000))所描述的。
益生菌已在美国商标和专利局,商标评审和上诉委员会提出定义,序号77758863(2013)一种肥料的通用名称用土壤中友好的细菌生产微生物生态学,恢复土壤的共生关系。在本申请中,定义被扩展至包括植物叶子上的共生关系,并且这个共生尤其与植物和有益的革兰氏阳性菌的关系相关,这对生长所需的健康环境至关重要。实际上,当Mg(OH)2作为一个叶形线喷雾应用于叶子上时,作为肥料影响的镁吸收效应是明显的,通过增加的叶绿素颜色和增加的叶子的厚度。因此从技术水平上,纳米Mg(OH)2的特性满足其作为益生菌土壤或者植物修复的需求。
使用化学合成纳米材料的生产资料,生产和材料是昂贵的。此外,处理非常细的粉末是困难的,因为这些粉末颗粒有一种倾向,容易漂浮在空气中。最重要的是,纳米材料很难使用传统的空气过滤器过滤。因此这些材料的生产加工需要昂贵的搬运设备,以避免损失,并符合安全、健康和环保规定。这些成本使得纳米材料没有在农药市场产生重大影响。同样重要的是,人们担心纳米粒子因其能够通过皮肤被吸收,吸入肺部,由于其体积小。
需要一种产品,所述产品有相同的理想的内在生物活性的纳米材料,使用一个过程,可以产生显著的产品,而且避免纳米材料的物料搬运问题,及其潜在的吸收和吸入。
通过说明书对现有技术的任何讨论不应视为承认这样的现有技术是众所周知的或构成本领域公知常识的一部分。
发明内容
需要解决的问题
要解决的问题,包括材料的生产,以高浓度的活性物种做纳米粒子,但没有从他们的小尺寸纳米粒子产生不良的特性。它可能是一个本发明的一个目标以克服现有技术的缺点。
解决问题的一种可能的手段是,第一步生产多孔纳米颗粒复合粉末,是由晶体纳米颗粒材料构成,其中纳米颗粒在纳米级的晶粒尺寸以生成活性物种,负责生物活性。
粉末可以被直接使用,或者可能是稀释于水中形成料浆,并喷洒提供保护,以防止微生物的活动。
粉末或喷雾的材料可能是应用于农业或水产养殖作物,或产品如种子,蔬菜,肉,鱼,或加工食品的产品,或可能是一个待净化的表面。能被应用于土壤或植物修复。
这些颗粒需要足够多孔,以便在接触微生物时,活性氧物种很容易在粒子表面扩散,和/或扩散的粒子当应用到产品时的控制释放,产生持续的生物影响。
颗粒的粒度是最好是使得粉末不透气的,也不能通过皮肤扩散。这些粒子在10-100微米的大小之间,很容易被用户处理和加工。
粒子的结合是机械稳定的,并且不容易降解至纳米粒子,所述纳米颗粒可以吸入或通过皮肤吸收。粒子不微弱地结合单个纳米颗粒聚集的聚合物。
颗粒要具有要充分多孔,使得活性氧物种形成和稳定存在于颗粒表面并可以扩散,影响微生物,如病毒、细菌和真菌以粉末或水合形式。纳米复合材料是有目的地不是纳米粒子的聚集,而是一种材料,其中组成颗粒高强度地相互连着,以抵抗机械解体。孔隙度约为0.5的颗粒粉末可能是所需的。
有利的是材料是一种氧化物,这样形成的缺陷种类因为它们的氧化还原电位测定为具有较高的氧化能力,并进一步期望,所述材料有一个基本的pH值,使其在微生物生长的酸性介质中逐渐退化,所以新鲜的表面不断暴露,因此生物活性反应保持一段时间,直到粒子溶解。
它可能是有利的,从所述纳米复合材料通过本文所描述的方法制备的材料是一种矿物。
这可能是有利的,作为粉末或者水分材料的纳米复合材料的表面,粘附于微生物和细胞壁,以启动所需的活性来保护所述材料,以尽量减少材料在水的应用中的损失。
这可能也是有利的,当少量消耗水合的纳米复合材料时对人体是没有毒性时,因此可以不要求所述材料在食用前被洗掉。当施用于植物,甚至更优选的是,纳米复合下降解成一种肥料,和被植物作为营养吸收。
解决问题的手段
本发明第一个方面包括一个方法,其中所述方法通过以下步骤生成生物活性物质:
a)制备前体物质,所述前体物质是一种含有一个或多个组分如二氧化碳的无机化合物粉末、金属碳酸盐的形式、水的形式金属氢氧化物、碳酸氢盐和NH3,胺的形式或有机配体如醋酸纤维素或草酸盐,这样,当加热这些成分,就会得到具有高孔隙率,优选在0.5或更高的范围内的氧化物粉末。通过加热形成的粉末是金属氧化物,其通常将具有已知的生物活性作为一个传统的纳米材料,如氧化镁或氧化锌。前体波动的标准度量是加热到低于1000℃的温度时的烧失量。烧失量应优选的前体质量的约50%。有各种各样的生产技术,使这样的无机前体化合物,其中所述粉末被制备为结晶材料,通常从水溶液中沉淀,并且其研磨到10-100微米的所需粒径。另一种方法是将研磨矿物前体,这样的金属碳酸盐,氢氧化物或碱式碳酸盐。作为一个例子,氧化镁矿物前体包括菱镁矿(碳酸镁),水镁石(Mg(OH)2),水菱镁矿4MgCO3.Mg(OH)2.4H2O,和Nesquehonite(MgHCO3.OH.H2O)等等。化合物包括柠檬酸镁的Mg(C6H6O7),和草酸镁Mg(C2O4)。所有这些化合物在加热时分解以形成氧化镁。混合的金属化合物可以任一被生产,或者作为矿物质被发现,常作为复盐,如白云石。
b)煅烧所述前体,以产生多孔纳米复合氧化物粉末。闪速焙烧工艺的要求是快速蒸发的挥发性成分以产生具有这些性能的颗粒:
(i)一种测量范围分布在10-100微米的颗粒粒径尺寸,例如通过光散射使用剪切混合,以确保颗粒不微弱地结合到常规的纳米颗粒聚合物;
(ii)一种高的孔隙率(挥发性成分留下的空洞);
(iii)一种纳米晶体结构,所述结构中的颗粒长度特征是处于纳米尺寸,优选是20nm或更小,通过X射线衍射带测量;
(iv)一种表面积,在150m2/gm附近或者更大,例如通过Brunauer-Emmett-Teller(BET)方法测量。
所述表面积和孔隙率可以通过技术,例如Brunauer-Emmett-Teller(BET)方法和小角度X光散射方法测量。所述焙烧工艺的一个重要条件是产生这些性能,它发生在一个较低的温度和足够小的停留时间,生产过程中颗粒不烧结,因此快速烧结导致失去理想的属性。所述颗粒在此生产过程可能会烧得噼啪作响,这样爆裂作用是可以忍受的,可以由煅烧过程的设计和前体的选择来控制。
一个连续生产包括煅烧炉的例子被Sceats和Horley发表的专利申请号为WO2007045048的PCT专利所公开,包括在此作为一个整体来看,发生在一个逆流间接加热过程,通过使用足够高的温度反应在几秒内结束。另一个例子是一批生产方法,其中煅烧发生在真空低温下,持续很长的时间。
(c)保湿粉末以产生一个稳定的具有高的固体含量氢氧化物料浆,所述固体含量最好是在50-60%的范围。料浆所需的特性是它不迅速沉降,展示出最小的脱水收缩,并且具有能计量到一个喷射系统用于许多应用的低粘度。这些属性可以测量通过干燥料浆,和测量与之前的煅烧粉末相同的属性作为考虑。水化过程的目标是可以通过确保粒子内发生水合作用,纳米晶体直接形成氢氧化物,而不是传统工艺的氢氧化物作为晶体从溶液沉淀。来实现这一过程的料浆组合物可能需要使用共溶剂,温度和压力,防止了沉淀的机制。目标是确保水合材料包含负责生物活性的高能表面缺陷。这种缺陷发生在水化颗粒边界,并且所述有限的水合确保了表面缺陷的浓度达到最大。水合过程的一个例子是,由Sceats和Vincent公开于例如AU2013904096专利中(通过引用并入本文)。
本发明公开了还可以提供氧化镁粉或具有长效杀生物剂活性的料浆材料,和这种杀生物剂料浆的生产过程和设备。其中一种形式,提供了一种内在的杀生物剂料浆或粉末组成的颗粒,所述颗粒范围在在50-100微米的范围,且是纳米晶体氢氧化物或氧化物微晶聚合物。在水浆状时,添加剂用于稳定料浆,使料浆保质期长久并且对剪切稀释低阻力。微晶通过来自在生产过程中形成的超氧化物的高含量的缺陷进行表征。矿物前体最好是矿物菱镁矿和白云石。
在本发明的另一个形式或方面,杀生物剂的反应是通过添加辅助毒素,包括过氧化氢、臭氧、传统的分子杀生物剂或纳米颗粒,所述纳米颗粒最好是能在颗粒中吸收并且增强内在杀生的属性。
在另一种形式,粉末可扩散以提供一种杀虫剂,通过其脱水效果,并且粉末水化后继续提供杀生的响应。杀生物剂的好处是专门针对预定用途,其中一种或两种脱水反应和来源于超氧化物缺陷可能发挥作用,作为一种杀虫剂,杀真菌剂,杀菌剂或viracide。例如,在存储和运输颗粒,最好保持低水蒸气气氛,这样无毒的杀生物剂粉末通过脱水达到杀虫剂行为将是可取的。在其他应用中,如加工食品的添加剂,含水量高,浆产品的应用通常是所需的。
在另一种形式,粉末可用于工业应用的纳米颗粒复合材料可能有利的特性,如催化剂基质等。
粉状或料浆产品货架寿命优选几个月,和可以用作原料的生产(a)叶面喷雾农业应用,或(b)食品添加剂作为一个内在无毒的杀生物剂,或(c)作为添加剂添加到纤维或聚合物以作为纱布或擦拭的基底,或(d)干生产粉末或颗粒形式,或(e)与油混合形成乳剂,或(f)充气产生泡沫或雾,或(g)催化剂基质。
本发明的进一步方面可能包括:一个从碳酸盐化合物中生产杀生物剂粉末或化学解毒剂粉的方法,包括如下步骤:磨矿石生产粉末,所述粉末在约1-100微米的范围内具有广泛的粒度分布,平均粒径的选择大约10-20微米,优选为约10微米,在外部加热逆流闪速煅烧窑煅烧粉末以生成具有高的表面积和高程度的煅烧的氧化物。
优选的生产杀虫剂浆或化学解毒剂浆粉的过程可能还包括形成一个稳定、容易变薄,料浆约60%的水合氧化物固体水化后的最终产品。通过在维持温度在水的沸点或者临近水的沸点直至水合作用完成的条件下,用水混合粉末,应用剪切力混合,添加一种羧酸或者盐,其作为稀释剂,淬灭料浆至温度低于60℃。冷却料浆至环境温度,并且添加添加剂用以增强生物杀伤性能。
优选碳酸盐化合物是镁,在这种情况下的氧化表面积优选大于150m2/gm,更优选的是大于190m2/gm,煅烧的程度优选大于90%。优选地,碳酸盐化合物也可能是白云石,在这种情况下煅烧的程度将产生半固体煅烧白云石MgO.CaCO3,表面积优选大于30m2/gm。
优选碳酸盐化合物也可能是水化碳酸镁,包括水菱镁矿或三水菱镁矿,在这种情况下煅烧的程度将生产氧化镁,其表面积优选大于230m2/gm。优选羧酸是乙酸,优选羧酸盐是乙酸镁和乙酸钙。优选的添加剂可能是过氧化氢的水溶液。优选的添加剂也可能是臭氧,喷雾到料浆。进一步的优选添加剂可能是一个分子或纳米颗粒生物杀灭剂。优选地,添加剂是一种分散剂。
优选地,料浆或粉末是用来产生任何喷雾,或与油混合形成乳剂,或加工成泡沫或雾。
本发明的进一步方面可能包括一个反应装置用以从碳酸盐矿物中生产杀虫剂粉或化学解毒剂粉,包括:碳酸盐矿物的磨床;外部加热逆流闪速煅烧窑从研磨的碳酸盐中生产高表面积氧化物。
优选地,用于生产杀虫剂浆或化学解毒剂浆粉的反应装置,包括:一个反应容器,具有一个碳酸碱煅烧粉的进料口和一个水入口;剪切反应混合物的剪切装置;和从反应容器中释放蒸汽的蒸汽出口,使得允许水合热控制反应混合物温度来控制反应,随着水合作用的进行允许反应混合物中的水煮沸去除,并且通过蒸汽出口去除多余的热量,使得反应温度在沸点。一种淬火料浆温度至低于60℃的方法,优选地将料浆转移至一个冷却的容器;一种降低料浆温度至环境温度的方法;如果需要的话一种用臭氧喷雾料浆的方法。
进一步本发明的优选方面可能包括用于杀生物剂的化学组合物,其中所述组合物包括:煅烧粉悬浮在水中的喷雾料浆,其中颗粒的孔隙度大于0.5,其中颗粒的表面微观结构包括由至少一个位于所述颗粒外表面上的纳米晶体结构。优选为,菱镁矿煅烧粉。
优选的颗粒可能适应于允许在预定义的时间间隔从每个粒子的表面释放微观结构。此外,优选的粒子可能形成纳米粒子适用于提供高氧化还原电位。
进一步的发明形式将会通过说明书、附图和权利要求书而容易被理解。
在本发明中,单词“构成”,“包括”和类似的是要解释它们的内容,而不是它们的限定,在某种意义上,“包括但不限于”。
发明是被文献引用,作为至少一个描述的技术问题或属于背景技术。本发明旨在解决或改善至少一个技术问题,这可能会产生一个或多个发明书中所定义的有益效果,本发明的优选实施例中详细描述了本发明。
附图说明
本发明的实施例用于更好的理解并且相对于下述说明书中的本领域一个常规技术显而易见的,仅举例来说,并结合附图,所述附图如下:
图1是用轻烧镁粉末生产稳定的,薄的,高固体的杀生物剂料浆方法的示意图。
具体实施方式
本发明的优选实施例现在将参照附图和非限制性实施例进行说明。
制造的产品的一个实施例可通过考虑图1中氢氧化镁为益生菌或杀生物剂的情况下处理流程的描述。
在本实施例中,第一步骤是其中的碳酸盐矿物是菱镁矿,基本上是碳酸镁,它被粉碎和研磨成颗粒尺寸分布接近于在最终产品中的颗粒。这可能是设定的截止的分类器,并在研磨机中的停留时间被设置。通常情况下,研磨材料将具有约1微米的低级粒度,以及约100微米上的颗粒大小,和在10-20微米范围内的平均粒度。如果需要的话,在矿物杂质如沙子,滑石和磁性粒子在所述过程中提取。确切的分布取决于矿物源上,无论是微晶或隐晶,杂质,所述磨床和研磨机的设置。最重要的是,应当注意的是,没有规范,有任何存在的纳米颗粒(即,直径小于0.1微米),通常,因为如细粒,它们难以从粉碎机空气过滤这种颗粒是不希望的,并且还以下述步骤处理,并满足通常关于纳米颗粒的顾客和社会的关注。研磨机优选是在空气中处理研磨颗粒的轧机,并除去上述1微米的颗粒,才可以进一步研磨。这是已知的现有技术本身。
所述方法的第二个步骤是,煅烧,其中菱镁矿被煅烧。所述经处理的颗粒在煅烧过程期间表现出最小烧结,并达到一定程度的煅烧即优选超过95%是重要的。烧结的影响的最根本的措施是比表面积。它应所述是大于150m2/gm,优选大于190m2/gm。在MgO的粉末X射线衍射分析显示出一个线加宽其是粒子的晶体结构的测量,并用于与表面积的粉末引述,所述宽度对应于约20纳米或更小的结晶顺序。这是在纳米材料中观察到的相同的X射线衍射曲线。然而,与此相反,在纳米氧化镁的粒径与粉末的结晶度相称,而与本发明的产品相比,其颗粒尺寸比结晶更高几个数量级,即约10微米相比至20纳米。本发明的基本主张是,杀生物剂或益生菌活性源于结晶性,而不是粒径。
煅烧炉的类型是实现上述性质的关键。其基本要求是,消除烧结的效果的过程是非常快的,这应当优选为几秒钟。这意味着,这个过程是快速煅烧。第二个要求是,所述粒子在此期间经历可能的最低温度。传统的闪速煅烧炉把颗粒引入一个非常热的燃烧气体,并从那个时候开始,气体的温度降低为从气流的反应提取能量。另外,不是所有的颗粒经历相同的条件。最终结果是,颗粒的外表面被广泛地烧结,这是很难实现超过50平米/克的表面积。小颗粒被最广泛地烧结。优选的煅烧炉中,通过Sceats和Horely例如描述于WO2007/112496(通过引用并入本文),以得到具有表面面积优选为150平方米/克或更大的粉末,在其中使用间接逆流热。在煅烧过程中,一般是输入颗粒的一些爆裂,并经常肩部出现在0.1-1微米的区域的颗粒大小分布。沿煅烧炉的外部燃烧器的控制提供了所需的热量传递给颗粒,和煅烧和表面积的程度可被控制。所述系统本身是已知的,并能够以每小时约5吨的生产水平操作,95%焙烧的颗粒具有190m2/gm的表面积,和20nm的结晶度,并且可忽略不计0.1微米以下的颗粒。这些粒子都很强,抵制打磨和不能通过超声处理显著分解。这些颗粒不是纳米颗粒的聚集体。所述微晶,虽然多孔的,但牢固地结合。
这就决定了杀生的影响的重要因素是煅烧粉末的高表面积。有一个范围内是稳定的镁碳酸氢盐化合物,如形式的水菱镁矿和三水菱镁矿形式(MgCO3)x(Mg(OH)2)y(H2O)z,其的含有H2O和CO2具有的非常大的体积分数,并且当这些材料被煅烧,它们产生很高的表面积氧化镁,或为500平方米/克。这些化合物可以被发现作为稀有矿物,或者可通过喷射CO2合成为如下所述的氢氧化镁料浆,分离并在煅烧之前干燥所述粉末。这种方法提供了具有高杀生物影响的材料。
来自这两个工艺步骤的粉末产品可以用作生物杀伤剂粉末,其中理想的脱水性质是需要的。其中,料浆产物是理想的,所述方法的第三步是水合料浆。这个过程是由Sceats和Vincent例如在AU2013904096专利中所述(通过引用并入本文),作为方法,其中每小时产生数吨料浆以匹配上述煅烧炉的生产速率。颗粒的高表面积,使得水合反应,剧烈混合时,会释放大量的热和沸腾的水。这建立了一组点和在沸点时的热活化水合,和过量的热量由沸腾释放。剪切混合器的应用提供了一个统一的控制处理所需的搅拌。在反应过程中,剪切混合器操作中乙酸被添加到料浆中以提供变薄所必须的材料。当温度开始从热损失下降至反应完全。优选迅速骤冷料浆低于60℃,然后让料浆冷却至环境为下一个处理步骤。最终结果是,已水合的料浆,并且是在相对于沉降许多个月稳定的,这是很容易的剪切稀化,以允许浇注和加工。所述料浆具有相同的固有杀生物活性,因为含有纳米颗粒,作为叶面喷雾应用时应在水中稀释。这将在下面考虑。重要的是,在以上的数月料浆寿命中,杀生物活性无显著损失。
第四个步骤,如果需要的话,是对佐剂添加任一粉末或料浆产品,以便增加上述,以下考虑的固有杀生物响应的杀生物性质。有很多这样的佐剂。这些可以是过氧化氢,或臭氧,其可以添加到饱和结晶结合在Mg(OH)2的表面与自由基作为超氧离子,氢过氧化物阴离子,氧自由基,和羟基自由基位点。此外,乙酸根离子,可以进一步转化为过氧乙酸离子,其在pH值为10.4的料浆中是稳定的。杂质离子,如Fe2+和Fe3+将被除去,在研磨这些基团以降解氧的过程中。使用过氧化氢或臭氧的补充煅烧和水合过程中形成的内在基。臭氧是通过喷射加入臭氧空气的料浆。其他辅助剂包括大量建立的杀生物剂,包括在美国6827766B2专利中列出的所有那些或纳米颗粒,例如AgO及其氧化锌。取决于具体的佐剂和添加量,料浆的稳定性可以通过加入分散剂来重新建立。佐剂的使用一般不是优选的,因为它可能使产品对人体有毒,并与在前面的步骤中开发的固有杀生物剂相比,增加生产成本。
使用上述1-4步骤生产的固有杀生物剂生产任一氧化镁粉末或者60%的固体含量料浆,所述固体指通过粒度分析仪测量的颗粒尺寸范围在0.4微米至50微米之间的氢氧化镁颗粒。对于所述料浆,颗粒被确认通过在约100℃干燥这些料浆,并测定TGA和DSC,和用分析级氢氧化镁来比较这些。氧化镁或氢氧化镁颗粒的纳米结晶度是从干燥的料浆衍射峰的谱线增宽使用舍雷尔的公式为20nm测定的。干燥的氢氧化镁粉末产物下的SEM外观揭示的粒子形状与那些通过煅烧制得的多孔氧化镁粉末相比没有什么不同,通过与水的反应填充在孔中。测定的MgO粉末的表面积为具有190平方米/克的BET表面积,而其在干燥的氢氧化镁料浆中为20平方米/克。
固有料浆的杀生物活性已经用体外测量和初步作物试验来建立。对于体外研究,通过加入水将料浆稀释至1%,并喷入准备的培养皿中,所述培养皿中含有已被培养并生长24小时以上的真菌,细菌或待测病毒株的点。半径的增长速度是在一段时间后测定,杀生物的影响是由已被抑制的环增长率程度进行测定。研究在数个真菌上完成,以及观察到的广谱抗真菌剂的影响,并且是可比的商业杀真菌剂。
对于初步作物试验中,用稀释的料浆喷洒的的一些作物如葡萄,鳄梨,香蕉呈现出真菌暴发,和杀生的影响来衡量健康的作物,尤其是对真菌的存在,与没有喷洒的田地相比。在检查,7天之后,在喷洒区观察不到所述真菌。有人指出,粉末对叶子产生了强烈粘附力,而叶子的外观有所改善,意味着镁被吸附进植物,促进更大的光合作用。这样的叶特征包括颜色和叶片厚度。
在杀虫剂响应的试验中,氧化镁粉末使得缠身小麦上的昆虫撤离。几天后,昆虫数已大大减少,并且响应类似于脱水硅藻土。
显而易见的是经稀释的料浆与报道的纳米氢氧化物具有相似生物学活性,不受理论的束缚,所述方法遵循的氧化镁粉末的纳米晶粒性能,以及单粒纳米MgO的结晶性能的相似性是常见的特征。MgO和Mg(OH)2的晶体表面的既定倾向稳定了自由基种,如超氧化物,羟基,氧原子,和已知的具有能打破原始微生物上皮细胞壁活性的每一氢氧化物,是这个特性最有可能的解释。这些位点的高密度和稳定特性提供了所述料浆的长寿命性能的基础上,并解释其对这些基团的分解性,以产生氧,否则将随着时间减少效力。也明显的是,与粉末产品的试验,只要是典型脱水的杀虫剂响应。不受理论的束缚,所述响应可以是脱水的组合和超氧响应。
当然,大颗粒与微生物的表面紧密接触的能力小于纳米颗粒。但是,所述MgO的所有粒子具有负电荷的表面,和对革兰氏阴性和革兰氏阳性微生物的活性表明,紧密接触是不需要的。更可能的解释是,自由基种在与水平衡,并通过扩散从颗粒转移到微生物。在料浆的情况下,它是氢氧化物颗粒,将控制所述过程的表面积,并且应当注意的是水合纳米粒子的表面积为30平方米/克,在此类似的测量粉末的结果。增加较小纳米颗粒的活性可以简单地是更小的颗粒的增加的几何表面积的反映。值得注意的是,纳米颗粒的聚集倾向是公认的,并且粒径的诊断测试是由分散的超声处理粒径的测定之前进行。悬浮液中的纳米粉末提供他们的杀菌剂活性的骨料。这是不与本发明的粒子大小不是杀生物性的来源的前提不一致。在脱水的情况下,氧化镁粒子表面积约是190平方米/克。脱水的高速率被链接到表面积,和另外粒子表面很粗糙,并能够穿透昆虫的外骨骼。
目标不是如上所述只有微生物,还包括化学品。一种不同的料浆应用是停用有毒化学品,否则将损害植物,动物和人类。纳米氧化镁已用于此目的,如在所述攻击和分类许多试剂,例如那些可以被部署为化学和生化战剂自由基种的来源。这是因为许多这样的化学物质获取通过自由基产生的毒性作用,料浆,或分散的料浆的自由基可以反应并破坏这些化合物的载体。氧化镁粉末或者料浆可以被用于使这些化学品失去效果。
本发明所述的料浆一般不部署为含60%固体的杀生物剂。它是用来制造用于不同应用的杀生物剂的浓缩物。在农业的杀生物剂的应用的手段优选是通过一个喷水系统,以避免从风中损失作物。一个常见的手段是使用材料的料浆,所述料浆由喷射水稀释至约1%。这叶面喷施的方法具有广泛的行业认可。在这种情况下,基于氢氧化镁的材料能提供镁源,这是光合作用的必需营养素的一个额外的好处。喷雾具有小于100微米,优选25微米直径的颗粒,以避免喷嘴的堵塞。使用喷雾也可以适用于医疗应用。然而,在这方面,还存在一个口罩中对材料的掺入的应用,以减少从大气微生物或擦拭到从表面去除微生物中的感染。
MgO的花边纱布或其他织物材料可由粉末或者各种聚合物形成的材料料浆的反应制得,并施加混合物设置在织物上,用其目的是吸附颗粒在纱布上。在另一个应用领域,在食品工业中,无毒的杀生物剂的氢氧化镁料浆可加入到液体产品中,或可以作为粉末加入到干燥的产品。已经有现有技术处理料浆的过程,如使用常规的处理,以产生所需粒度研磨干燥的产品,或通过结合适合的材料产生颗粒用于应用中。值得注意的是,在MgO粉末可应用于食品,因为水合的方法可以借助于食物产品本身的发生。在另一应用中,所述产品应能够被分散到喷雾或雾,或泡沫,以得到大面积的覆盖,例如用有毒化学品溢出物。
在另一应用中,所述料浆应与现有的杀生物剂混合作为辅助剂。这包括常规的水溶性杀生物剂,通常是分子,其吸附到粒子以提供所需的杀生物剂的活性。乳液与含有油溶性辅助剂油的形成是另一个这样的应用。
氧化镁是可以使用的一种特定的氧化物材料,具有的无机前体的可用性的优点。另一实施例使用白云石,其中镁地点和钙地点的煅烧程度被控制以得到所需的杀生物性质白云石。
虽然本发明的具体实施方案被进行了描述,但是对于本领域技术人员是显而易见的,本发明可以以其他特定形式来体现而不脱离其实质特征。因此,本实施例和实例的所有方面是作为说明性的而不是限制性的,因此旨在被包含在其中的含义和等价范围内的所有变化。还应所述理解的是,除非出现相反的指示,任何参考本文中已知的现有技术不构成承认这样的现有技术是本领域技术人员所公知的。
在说明书中,引用术语“益生菌”指任意材料能有益于促进或者增强在治疗领域、位置或者地点的微生物平衡。
益生菌也是一种肥料的通用名称,所述肥料是指使用土壤中有益的细菌生产微生物生态学方法以恢复土壤的共生关系[1]。在本申请中,我们扩展的定义,以包括对植物的叶子共生关系,并指出,植物通过叶片气孔吸收施加的镁作为肥料。事实上,当叶形喷雾喷涂到叶上,镁吸收作为肥料冲击的影响是通过增加的叶绿素的颜色和增加的叶片厚度被注意到。为什么病理真菌生长被抑制的最合理的理论是因为活性氧物种的存在2。植物可以斜坡上升产生活性氧,作为对微生物攻击活性氧攻击真菌的原始细胞壁的防御。对此,真菌可产生的化学物质会起反应中和活性氧[2]。所述活性的相同的模型是致病菌,特别是厌氧革兰氏阴性菌。这种共生关系与植物和有益的革兰氏阳性菌,这些都是成长的健康环境至关重要之间的关系有关。这些细菌是好氧,并且ROS增加在环境中的氧水平。这样的细菌在土壤和叶子上存在[3]。益生菌的效果是,除了纳米颗粒或的纳米颗粒复合物MgOH)2的增加高于所述植物提供活性氧的供应。通过酸环境中的晶粒的缓慢溶出导致ROS的长期持久的生物活性的持续供应。所述过程中没有引入新的化学物质。
尽管本发明已经参照具体实施例描述,但本领域技术人员可以理解被发明的其他形式,符合宽阔原则和本发明此处被描述的精神。
本发明和被描述的优选实施例看具体包括至少一个是工业应用的特征。
参考文献
[1]美国商标与专利局,商标评审和上诉委员会,序号77758863(2013)。
[2]例如,在稻瘟病菌的情况中:Kun Huang,Kirk J.Czymmek,Jeffrey L.Caplan,James A.Sweigard&Nicole M.Donofrio(2011);植物产生的活性氧的抑制是稻瘟病菌成功感染所必须的,Virulence,2:6,559-562,DOI:10.4161/viru.2.6.18007。
[3]细菌与丁香假单胞菌在叶生态系统中-病原体,冰核和附生植物,Susan S.Hirano and Christen D.Upper,Microbiol.Mol.Biol.Rev.September 64,3624-653(2000)。

Claims (14)

1.一种用碳酸盐化合物生产杀生物剂的粉末或化学解毒粉末或催化剂载体的方法,包括以下步骤:
a)研磨矿物以产生具有广泛粒度分布的粉末,所述粉末的粒径分布范围为1-100微米,平均粒径大小在10-20微米之间;
b)在外部加热的逆流闪速焙烧炉中煅烧粉末,以生产具有高表面积、高孔隙率和高煅烧程度的氧化物;
c)水合作用之后,形成稳定的,容易稀释的,最终产品中含60%固体含量的水合氧化物料浆,通过以下方法实施:将水与粉末混合,在温度保持在或临近水的沸点直至水合作用完毕的条件下,施加剪切混合,以及加入羧酸或盐作为稀释剂;
d)淬灭所述料浆至温度在60℃以下;
e)冷却所述料浆至环境温度;和
f)加入添加剂以增强生物杀伤性能。
2.根据权利要求1所述的方法,其中所述的碳酸盐化合物是菱镁矿,所述菱镁矿的氧化物的表面积大于150m2/gm,煅烧程度大于90%。
3.根据权利要求1所述的方法,其中所述的碳酸盐化合物是白云石,其中煅烧程度被设定为以生成表面积大于30m2/gm的半固体煅烧白云石MgO.CaCO3
4.根据权利要求1所述的方法,其中所述的碳酸盐化合物是水化碳酸镁,包括水菱镁矿或者三水菱镁矿,所述水化碳酸镁的煅烧程度被设定以生成表面积大于230m2/gm的氧化镁MgO。
5.根据权利要求1所述的方法,其中所述的羧酸是醋酸,并且所述的羧酸盐是醋酸镁或者醋酸钙。
6.根据权利要求1所述的方法,其中所述的添加剂是过氧化氢水溶液。
7.根据权利要求1所述的方法,其中所述的添加剂是臭氧,所述臭氧被喷入到料浆中。
8.根据权利要求1所述的方法,其中所述的添加剂是一种分散剂。
9.根据权利要求1所述的方法,其中所述的料浆或者粉末被用于生产任一喷雾或者与油混合生成乳剂,或者加工成泡沫或者雾。
10.一种用碳酸盐矿物生产杀生物剂粉末或化学解毒粉末或催化剂载体的反应装置,包括:
a碳酸盐矿物的磨床;
b外部加热的逆流闪速焙烧炉,所述焙烧炉用于从研磨的碳酸盐中生产高表面积的氧化物;
c)第二反应容器,具有一个轻烧碳酸盐粉末的进口和一个进水口;
d)用于剪切反应混合物的剪切装置;和
e)用于从反应容器中释放蒸汽的蒸汽出口,以使反应通过以下条件控制:允许水合作用的热量提高反应混合物的温度,随着水合作用的进行允许水从反应混合物中煮沸去除,通过蒸汽出口释放蒸汽以除去多余的热量,并控制反应温度在沸点;
f)用于淬灭料浆使其温度至低于60℃的装置;
g)用于将料浆冷却至环境温度的装置;
h)添加固态或者液态添加剂至料浆的装置;
i)往料浆中喷射臭氧的装置。
11.一种适用于作为杀生物剂使用的化学组合物,其中所述化学组合物包括:轻烧碳酸盐粉末颗粒悬浮于水中的可喷射的料浆,其中所述颗粒的孔隙率大于0.5,并且其中所述颗粒的表面包括微结构,所述微结构定义为至少一个纳米晶状结构,位于颗粒的外表面上。
12.根据权利要求11所述的化学组合物,其中所述碳酸盐粉末是菱镁矿。
13.根据权利要求12所述的化学组合物,其中所述颗粒适于允许所述微结构以一个预定的时间间隔从各颗粒的表面上被释放。
14.根据权利要求13所述的化学组合物,其中颗粒形成适于提供高的氧化还原电位的纳米颗粒。
CN201480071370.2A 2014-01-02 2014-12-10 益生菌和杀生物剂及其生产方法和装置 Active CN105899076B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2014900006 2014-01-02
AU2014900006A AU2014900006A0 (en) 2014-01-02 Process and Apparatus for Manufacture of Biocide
PCT/AU2014/001115 WO2015100468A1 (en) 2014-01-02 2014-12-10 Oxide products formed from calcined carbonate powder for use as biocide, chemical detoxifier and catalyst support products.

Publications (2)

Publication Number Publication Date
CN105899076A CN105899076A (zh) 2016-08-24
CN105899076B true CN105899076B (zh) 2019-07-16

Family

ID=53492839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480071370.2A Active CN105899076B (zh) 2014-01-02 2014-12-10 益生菌和杀生物剂及其生产方法和装置

Country Status (9)

Country Link
US (1) US9913475B2 (zh)
EP (2) EP3089589A4 (zh)
CN (1) CN105899076B (zh)
AU (1) AU2014374829B2 (zh)
CA (1) CA2933373C (zh)
HK (1) HK1223793A1 (zh)
MY (1) MY180027A (zh)
PH (1) PH12016501454B1 (zh)
WO (1) WO2015100468A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2925924C (en) 2013-10-24 2018-03-20 Calix Ltd Process and apparatus for manufacture of hydroxide slurry
CN105899076B (zh) 2014-01-02 2019-07-16 卡利有限公司 益生菌和杀生物剂及其生产方法和装置
US9637393B2 (en) 2014-05-19 2017-05-02 Carbon Engineering Limited Partnership Recovering a caustic solution via calcium carbonate crystal aggregates
CN107105671A (zh) 2015-01-14 2017-08-29 卡利有限公司 改进的病原体抑制剂
WO2017219068A1 (en) 2016-06-20 2017-12-28 Calix Ltd A bioactive material
PL3532444T3 (pl) 2016-10-31 2022-07-18 Calix Ltd Kalcynator błyskawiczny
US10743535B2 (en) 2017-08-18 2020-08-18 H&K Solutions Llc Insecticide for flight-capable pests
WO2020077391A1 (en) 2018-10-18 2020-04-23 Calix Ltd Powder formulations for controlled release of reactive oxygen species
FR3093893B1 (fr) 2019-03-21 2021-09-17 Timab Magnesium Hydroxyde de magnésium comme fongicide de contact en agriculture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1835681A (zh) * 2003-08-12 2006-09-20 用濑电机株式会社 抗病毒剂、使用它的纤维和抗病毒部件
WO2008064417A1 (en) * 2006-11-28 2008-06-05 Calix Limited A coating material
CN101378992A (zh) * 2005-10-21 2009-03-04 Calix私人有限公司 材料化合物及其制造方法
CN101466461A (zh) * 2006-03-31 2009-06-24 Calix有限公司 用于矿物煅烧的系统和方法
WO2012145802A2 (en) * 2011-04-27 2012-11-01 Calix Limited Reactor system and method for thermally activating minerals

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2576731A (en) 1948-11-19 1951-11-27 Alfred M Thomsen Method of preparing a fungicidal preparation utilizing magnesium hydroxide
IN183464B (zh) * 1994-07-25 2000-01-15 Orica Australia Pty Ltd
JP2002205947A (ja) 2000-12-11 2002-07-23 Chafflose Corporation 水虫治療薬
US6827766B2 (en) 2002-10-08 2004-12-07 United States Air Force Decontaminating systems containing reactive nanoparticles and biocides
KR101159372B1 (ko) 2003-08-12 2012-06-25 고이치 오츠키 항바이러스제와 이것을 이용한 섬유 및 항바이러스 부재
US7276217B2 (en) * 2004-08-16 2007-10-02 Premier Chemicals, Llc Reduction of coal-fired combustion emissions
US8603222B2 (en) 2005-10-21 2013-12-10 Calix Ltd. System and method for calcination/carbonation cycle processing
US8807055B2 (en) * 2005-11-05 2014-08-19 Clearchem Development, Llc Control of combustion system emissions
US8999278B2 (en) * 2010-03-11 2015-04-07 The Board Of Trustees Of The University Of Illinois Method and apparatus for on-site production of lime and sorbents for use in removal of gaseous pollutants
CA2925924C (en) 2013-10-24 2018-03-20 Calix Ltd Process and apparatus for manufacture of hydroxide slurry
CN105899076B (zh) 2014-01-02 2019-07-16 卡利有限公司 益生菌和杀生物剂及其生产方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1835681A (zh) * 2003-08-12 2006-09-20 用濑电机株式会社 抗病毒剂、使用它的纤维和抗病毒部件
CN101378992A (zh) * 2005-10-21 2009-03-04 Calix私人有限公司 材料化合物及其制造方法
CN101466461A (zh) * 2006-03-31 2009-06-24 Calix有限公司 用于矿物煅烧的系统和方法
WO2008064417A1 (en) * 2006-11-28 2008-06-05 Calix Limited A coating material
WO2012145802A2 (en) * 2011-04-27 2012-11-01 Calix Limited Reactor system and method for thermally activating minerals

Also Published As

Publication number Publication date
EP3089589A1 (en) 2016-11-09
WO2015100468A1 (en) 2015-07-09
CA2933373A1 (en) 2015-07-09
EP3530117A1 (en) 2019-08-28
CN105899076A (zh) 2016-08-24
PH12016501454A1 (en) 2016-08-22
EP3089589A4 (en) 2017-06-14
EP3530117B1 (en) 2024-11-13
PH12016501454B1 (en) 2016-08-22
HK1223793A1 (zh) 2017-08-11
CA2933373C (en) 2023-02-14
AU2014374829A1 (en) 2016-06-30
US9913475B2 (en) 2018-03-13
US20170035053A1 (en) 2017-02-09
MY180027A (en) 2020-11-20
AU2014374829B2 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
CN105899076B (zh) 益生菌和杀生物剂及其生产方法和装置
TWI728159B (zh) 調配物與其製造方法、及氫供給方法
AU2015376853B2 (en) Improved pathogen inhibitor
CN102210325B (zh) 一种复合型抗菌粉剂及其制备方法
ES2341749B1 (es) Polvo compuesto nanoestructurado fosfato de calcio-plata. procedimiento de obtencion y sus aplicaciones bactericidas y fungicidas.
AU2017203723A1 (en) Meeting management system and process
JP2019531242A (ja) 異なる機能性カチオンによる表面反応炭酸カルシウムの後処理
US20210289790A1 (en) Bioactive material
CN111067917A (zh) 一种负载纳米氧化锌的复合材料及其制备方法
Su et al. Mesoporous silica doped with different water-soluble ligands to enhance the antibacterial performance of nano zinc oxides by coordination effect
JP2012017401A (ja) 抗菌性塗料およびその製造方法
Kaur et al. Synthesis and characterisation of zinc oxide nanoparticles and its antimicrobial activity against Staphylococcus aureus and Micrococcus
KR20100024529A (ko) 용수(用水)의 정화(淨化) 및 활성화(活性化) 처리(處理)를위한 「2가3가 수산화철」용액(溶液)과 고형체(固形體)제조 조성물
JP2023537634A (ja) 即時殺菌性能を有する抗菌複合素材及びその製造方法
CN118139530A (zh) 一种防治黄瓜白粉病的纳米悬浮液
JP2011111331A (ja) 抗菌性製品
Sharma et al. A Review on Biofabrication of Zinc Nanoparticles, Its Mechanism and Recent Applications
CN107535524A (zh) 生物农药的杀菌组合物及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1223793

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant