[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN105887235B - 一种高性能的纳米纤维素/甲壳素复合纤维的制备方法 - Google Patents

一种高性能的纳米纤维素/甲壳素复合纤维的制备方法 Download PDF

Info

Publication number
CN105887235B
CN105887235B CN201610371041.0A CN201610371041A CN105887235B CN 105887235 B CN105887235 B CN 105887235B CN 201610371041 A CN201610371041 A CN 201610371041A CN 105887235 B CN105887235 B CN 105887235B
Authority
CN
China
Prior art keywords
nano
cellulose
whisker
suspension
chitin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610371041.0A
Other languages
English (en)
Other versions
CN105887235A (zh
Inventor
李书成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Banzhu Technology Co., Ltd.
Original Assignee
Jiangsu Owner Fashion Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Owner Fashion Co ltd filed Critical Jiangsu Owner Fashion Co ltd
Priority to CN201810339623.XA priority Critical patent/CN108441983B/zh
Priority to CN201610371041.0A priority patent/CN105887235B/zh
Publication of CN105887235A publication Critical patent/CN105887235A/zh
Application granted granted Critical
Publication of CN105887235B publication Critical patent/CN105887235B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/02Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from cellulose, cellulose derivatives, or proteins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/18Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from other substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明提供一种高性能的纳米纤维素/甲壳素复合纤维的制备方法,包括以下步骤:将纯化的纤维素经过纤维素酶溶液酶解、离心分离超声均质得到纳米纤维素晶须悬浮液;将甲壳素粉末去除矿物质和蛋白质后,经过氧化氢溶液中催化水解、离心分离研磨超声得到纳米甲壳素晶须悬浮液;将纳米纤维素晶须悬浮液和纳米甲壳素晶须悬浮液混合,真空抽滤脱泡形成复合晶须悬浮液;将复合晶须悬浮液置于挤出容器中,经加压加热挤出置于钢丝网上,施压干燥得到高性能的纳米纤维素/甲壳素复合纤维。该方法制备的纤维透明,比重轻,韧性好,柔软度好。

Description

一种高性能的纳米纤维素/甲壳素复合纤维的制备方法
技术领域
本发明属于纺织材料技术领域,具体涉及一种高性能的纳米纤维素/甲壳素复合纤维的制备方法。
背景技术
随着科学技术的不断进步,越来越多新型的纤维应运而生。在现代材料应用中,光学材料中的高折射率材料具有很好的应用价值。高折射率光学材料可以在不影响材料折射性能的情况下降低材料的比重,使材料轻量化小型化。
随着纳米技术的不断发展,纳米复合技术为高折射率光学材料提供了一个新的发展方向。材料在进入纳米级后会表现出许多奇异的性质,将生物资源与纳米技术相结合可开发出性能优异、绿色环保的功能产品,而且可以提高生物资源的综合利用率,提高其经济价值。
目前基于纳米复合材料制备的高折射率光学材料多为薄膜形态。中国专利CN101186109A公开的一种具有高透光率的纳米纤维增强复合树脂的制备,将由纤维素纳米纤维、尼龙纳米纤维、聚碳酸酯纳米纤维、玻璃纳米纤维或碳纳米纤维制备的薄膜充分浸润与聚乙烯醇、大豆分离蛋白、丙烯酸树脂、环氧树脂或者聚碳酸酯中,然后经干燥得到强透光纳米纤维复合材料。中国文献(“光学透明、低热膨胀性的甲壳素纳米纤维/聚醚砜复合薄膜”,邓巧云等,科学导报,2014年第32期4/5,第45-50页)公开的一种甲壳素纳米纤维/聚醚砜复合薄膜,是将机械处理制备的甲壳素纳米纤维制成纳米纤维膜,再浸渍于树脂溶液中,真空干燥取出得到纳米纤维/聚醚砜树脂复合薄膜。由上述现有技术可知,目前基于纳米纤维制备的高折射率光学材料,多需要透明树脂作为粘结剂将纳米纤维复合在一起形成光学材料,其主要的机械强力还是基于树脂的强度,纳米纤维在透明树脂中可起到增强强力的作用,其本身的光学性质和机械强度并不能完全体现出来,而且制备的材料的多为薄膜状,纤维状十分少见。
发明内容
本发明要解决的技术问题是提供一种高性能的纳米纤维素/甲壳素复合纤维的制备方法,选用纳米纤维素晶须和纳米甲壳素晶须作为原料,利用加热加压挤出后,经施压干燥后,得到孔隙率低于0.1%的纤维。该方法制备的复合纤维不需要使用交联剂和聚合物基质就具有低膨胀系数、高透明度、强度和热稳定性的特点,制备工艺绿色环保。
为解决上述技术问题,本发明的技术方案是:
一种高性能的纳米纤维素/甲壳素复合纤维的制备方法,所述纳米纤维素/甲壳素复合纤维中包括纳米纤维素晶须和纳米甲壳素晶须,所述纳米纤维素/甲壳素复合纤维是经加压加热挤出后经施压干燥后制备而成,所述纳米纤维素/甲壳素复合纤维中的孔隙率低于0.1%,所述纳米纤维素/甲壳素复合纤维中纳米纤维素晶须的直径为15-25nm和纳米甲壳素晶须的直径为30-50nm,纳米纤维素晶须与纳米甲壳素晶须的质量比为1:0.5-0.8。
所述一种高性能的纳米纤维素/甲壳素复合纤维的制备方法,包括以下步骤:
(1)将纯化的纤维素经过质量分数为1-3%的纤维素酶溶液酶解,加热至80-100℃终止反应,经离心分离去除粒径大于1μm的物质,超声均质得到纳米纤维素晶须悬浮液;
(2)将甲壳素粉末去除矿物质和蛋白质后,加入质量分数为30%的过氧化氢溶液中催化水解1-3h,加入用量为30%的过氧化氢溶液体积的6-10倍的去离子水终止反应,经离心分离去除粒径大于1μm的物质,研磨超声得到纳米甲壳素晶须悬浮液;
(3)将步骤(1)制备的纳米纤维素晶须悬浮液和步骤(2)制备的纳米甲壳素晶须悬浮液充分混合,真空抽滤脱泡形成复合晶须悬浮液;
(4)将步骤(3)制备的复合晶须悬浮液置于挤出容器中,对挤出容器内的复合晶须悬浮液进行加压加热,挤出置于钢丝网上,施压干燥得到高性能的纳米纤维素/甲壳素复合纤维。
作为上述技术方案的优选,所述步骤(1)中,酶解的温度为45-55℃,pH值为4.5-5,时间为30-60min。
作为上述技术方案的优选,所述步骤(1)中,纳米纤维素晶须悬浮液中纳米纤维素晶须的质量分数为0.1-2%。
作为上述技术方案的优选,所述步骤(2)中,纳米甲壳素晶须悬浮液中纳米甲壳素晶须的质量分数为0.2-3%。
作为上述技术方案的优选,所述步骤(3)中,复合晶须悬浮液的固体的质量分数为1-10%。
作为上述技术方案的优选,所述步骤(4)中,挤出的温度为60-65℃,压力为10-15mPa。
作为上述技术方案的优选,所述步骤(4)中,施压干燥的温度为50-55℃,压力为20-25kPa。
作为上述技术方案的优选,所述步骤(4)中,施压干燥的时间为3-4d。
与现有技术相比,本发明具有以下有益效果:
(1)本发明制备的高性能的纳米纤维素/甲壳素复合纤维中含有的纳米纤维素晶须和纳米甲壳素晶须具有纳米级尺寸,强度高、高比表面积、高长径比等性能,通过在水蒸发的过程中对纤维进行施压加热,毛细管现象使纳米纤维素晶须相互排斥,且纳米纤维素晶须之间形成的氢键使纤维的形态保持不变,因此不需要使用交联剂便可形成高强度的材料。
(2)本发明选用的纳米纤维素晶须和纳米甲壳素晶须的尺寸均匀纳米级,将两者结合制备的超低孔隙率的复合纤维具有较高的透明度、低膨胀系数、较好的强度和热稳定性,而且两者来源都为可再生资源,绿色环保,制备的纤维比重轻,韧性好,柔软度好。
(3)本发明的制备方法简单,制备工艺绿色环保,对环境无负担,制备的复合纤维可用于纺织服装、民用、建筑等诸多领域。
具体实施方式
下面将结合具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
实施例1:
(1)将纯化的纤维素置于质量分数为1%的纤维素酶溶液中,调节pH值为4.5,在45℃下酶解30min,加热至80℃终止反应,经离心分离去除粒径大于1μm的物质,超声均质得到质量分数为0.1%的纳米纤维素晶须悬浮液,其中纳米纤维素晶须的直径为25nm。
(2)将甲壳素粉末去除矿物质和蛋白质后,加入质量分数为30%的过氧化氢溶液中催化水解1h,加入用量为30%的过氧化氢溶液体积的6倍的去离子水终止反应,经离心分离去除粒径大于1μm的物质,研磨超声得到质量分数为0.2%的纳米甲壳素晶须悬浮液,其中纳米甲壳素晶须的直径为50nm。
(3)将步骤(1)制备的纳米纤维素晶须悬浮液和步骤(2)制备的纳米甲壳素晶须悬浮液充分混合,真空抽滤脱泡形成固体的质量分数为10%的复合晶须悬浮液,其中纳米纤维素晶须与纳米甲壳素晶须的质量比为1:0.8。
(4)将步骤(3)制备的复合晶须悬浮液置于挤出容器中,复合晶须悬浮液在60℃的温度和10-15mPa的压力下挤出置于钢丝网上,在50℃的温度和20kPa的压力和温度下干燥3d,得到高性能的纳米纤维素/甲壳素复合纤维。
实施例2:
(1)将纯化的纤维素置于质量分数为3%的纤维素酶溶液中,调节pH值为5,在55℃下酶解60min,加热至100℃终止反应,经离心分离去除粒径大于1μm的物质,超声均质得到质量分数为2%的纳米纤维素晶须悬浮液,其中纳米纤维素晶须的直径为15nm。
(2)将甲壳素粉末去除矿物质和蛋白质后,加入质量分数为30%的过氧化氢溶液中催化水解3h,加入用量为30%的过氧化氢溶液体积的10倍的去离子水终止反应,经离心分离去除粒径大于1μm的物质,研磨超声得到质量分数为3%的纳米甲壳素晶须悬浮液,其中纳米甲壳素晶须的直径为30nm。
(3)将步骤(1)制备的纳米纤维素晶须悬浮液和步骤(2)制备的纳米甲壳素晶须悬浮液充分混合,真空抽滤脱泡形成固体的质量分数为1%的复合晶须悬浮液,其中纳米纤维素晶须与纳米甲壳素晶须的质量比为1:0.5。
(4)将步骤(3)制备的复合晶须悬浮液置于挤出容器中,复合晶须悬浮液在65℃的温度和15mPa的压力下挤出置于钢丝网上,在55℃的温度和25kPa的压力和温度下干燥4d,得到高性能的纳米纤维素/甲壳素复合纤维。
实施例3:
(1)将纯化的纤维素置于质量分数为2%的纤维素酶溶液中,调节pH值为4.5,在50℃下酶解40min,加热至90℃终止反应,经离心分离去除粒径大于1μm的物质,超声均质得到质量分数为0.5%的纳米纤维素晶须悬浮液,其中纳米纤维素晶须的直径为20nm。
(2)将甲壳素粉末去除矿物质和蛋白质后,加入质量分数为30%的过氧化氢溶液中催化水解2h,加入用量为30%的过氧化氢溶液体积的8倍的去离子水终止反应,经离心分离去除粒径大于1μm的物质,研磨超声得到质量分数为1%的纳米甲壳素晶须悬浮液,其中纳米甲壳素晶须的直径为40nm。
(3)将步骤(1)制备的纳米纤维素晶须悬浮液和步骤(2)制备的纳米甲壳素晶须悬浮液充分混合,真空抽滤脱泡形成固体的质量分数为5%的复合晶须悬浮液,其中纳米纤维素晶须与纳米甲壳素晶须的质量比为1:0.6。
(4)将步骤(3)制备的复合晶须悬浮液置于挤出容器中,复合晶须悬浮液在60℃的温度和10-15mPa的压力下挤出置于钢丝网上,在50℃的温度和20kPa的压力和温度下干燥3.5d,得到高性能的纳米纤维素/甲壳素复合纤维。
实施例4:
(1)将纯化的纤维素置于质量分数为1.5%的纤维素酶溶液中,调节pH值为5,在45℃下酶解60min,加热至95℃终止反应,经离心分离去除粒径大于1μm的物质,超声均质得到质量分数为1%的纳米纤维素晶须悬浮液,其中纳米纤维素晶须的直径为18nm。
(2)将甲壳素粉末去除矿物质和蛋白质后,加入质量分数为30%的过氧化氢溶液中催化水解2.5h,加入用量为30%的过氧化氢溶液体积的10倍的去离子水终止反应,经离心分离去除粒径大于1μm的物质,研磨超声得到质量分数为0.8%的纳米甲壳素晶须悬浮液,其中纳米甲壳素晶须的直径为35nm。
(3)将步骤(1)制备的纳米纤维素晶须悬浮液和步骤(2)制备的纳米甲壳素晶须悬浮液充分混合,真空抽滤脱泡形成固体的质量分数为3%的复合晶须悬浮液,其中纳米纤维素晶须与纳米甲壳素晶须的质量比为1:0.7。
(4)将步骤(3)制备的复合晶须悬浮液置于挤出容器中,复合晶须悬浮液在65℃的温度和12mPa的压力下挤出置于钢丝网上,在55℃的温度和20kPa的压力和温度下干燥4d,得到高性能的纳米纤维素/甲壳素复合纤维。
实施例5:
(1)将纯化的纤维素置于质量分数为1%的纤维素酶溶液中,调节pH值为5,在45℃下酶解60min,加热至100℃终止反应,经离心分离去除粒径大于1μm的物质,超声均质得到质量分数为1.6%的纳米纤维素晶须悬浮液,其中纳米纤维素晶须的直径为17nm。
(2)将甲壳素粉末去除矿物质和蛋白质后,加入质量分数为30%的过氧化氢溶液中催化水解2h,加入用量为30%的过氧化氢溶液体积的10倍的去离子水终止反应,经离心分离去除粒径大于1μm的物质,研磨超声得到质量分数为0.3%的纳米甲壳素晶须悬浮液,其中纳米甲壳素晶须的直径为35nm。
(3)将步骤(1)制备的纳米纤维素晶须悬浮液和步骤(2)制备的纳米甲壳素晶须悬浮液充分混合,真空抽滤脱泡形成固体的质量分数为2%的复合晶须悬浮液,其中纳米纤维素晶须与纳米甲壳素晶须的质量比为1:0.6。
(4)将步骤(3)制备的复合晶须悬浮液置于挤出容器中,复合晶须悬浮液在60℃的温度和15mPa的压力下挤出置于钢丝网上,在55℃的温度和20kPa的压力和温度下干燥4d,得到高性能的纳米纤维素/甲壳素复合纤维。
实施例6:
(1)将纯化的纤维素置于质量分数为3%的纤维素酶溶液中,调节pH值为4.5,在55℃下酶解60min,加热至100℃终止反应,经离心分离去除粒径大于1μm的物质,超声均质得到质量分数为0.4%的纳米纤维素晶须悬浮液,其中纳米纤维素晶须的直径为21nm。
(2)将甲壳素粉末去除矿物质和蛋白质后,加入质量分数为30%的过氧化氢溶液中催化水解3h,加入用量为30%的过氧化氢溶液体积的8倍的去离子水终止反应,经离心分离去除粒径大于1μm的物质,研磨超声得到质量分数为0.8%的纳米甲壳素晶须悬浮液,其中纳米甲壳素晶须的直径为35nm。
(3)将步骤(1)制备的纳米纤维素晶须悬浮液和步骤(2)制备的纳米甲壳素晶须悬浮液充分混合,真空抽滤脱泡形成固体的质量分数为6%的复合晶须悬浮液,其中纳米纤维素晶须与纳米甲壳素晶须的质量比为1:0.6。
(4)将步骤(3)制备的复合晶须悬浮液置于挤出容器中,复合晶须悬浮液在60℃的温度和12mPa的压力下挤出置于钢丝网上,在50℃的温度和20kPa的压力和温度下干燥4d,得到高性能的纳米纤维素/甲壳素复合纤维。
经检测,实施例1-6制备的高性能的纳米纤维素/甲壳素复合纤维的孔隙率、直径、透明度、强度、弹性和热膨胀系数的结果如下所示:
实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
孔隙率(%) 0.1 0.08 0.1 0.09 0.1 0.08
直径(μm) 25 31 26 29 28 30
透明度(%) 65 6765 68 64 65 65
断裂强力cN 2.3 2.0 2.4 2.1 2.6 2.4
弹性模量(mPa) 59 62 64 67 65 61
热膨胀系数(×10-5K-1) 8.7 9.0 8.6 8.4 8.1 8.5
由上表可见,本发明制备的高性能的纳米纤维素/甲壳素复合纤维的孔隙率小,低膨胀系数,机械强度较好。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (8)

1.一种高性能的纳米纤维素/甲壳素复合纤维的制备方法,其特征在于:所述纳米纤维素/甲壳素复合纤维中包括纳米纤维素晶须和纳米甲壳素晶须,所述纳米纤维素/甲壳素复合纤维是经加压加热挤出后经施压干燥后制备而成,所述纳米纤维素/甲壳素复合纤维中的孔隙率低于0.1%,所述纳米纤维素/甲壳素复合纤维中纳米纤维素晶须的直径为15-25nm和纳米甲壳素晶须的直径为30-50nm,纳米纤维素晶须与纳米甲壳素晶须的质量比为1:0.5-0.8;
所述高性能的纳米纤维素/甲壳素复合纤维的制备方法,包括以下步骤:
(1)将纯化的纤维素经过质量分数为1-3%的纤维素酶溶液酶解,加热至80-100℃终止反应,经离心分离去除粒径大于1μm的物质,超声均质得到纳米纤维素晶须悬浮液;
(2)将甲壳素粉末去除矿物质和蛋白质后,加入质量分数为30%的过氧化氢溶液中催化水解1-3h,加入用量为30%的过氧化氢溶液体积的6-10倍的去离子水终止反应,经离心分离去除粒径大于1μm的物质,研磨超声得到纳米甲壳素晶须悬浮液;
(3)将步骤(1)制备的纳米纤维素晶须悬浮液和步骤(2)制备的纳米甲壳素晶须悬浮液充分混合,真空抽滤脱泡形成复合晶须悬浮液;
(4)将步骤(3)制备的复合晶须悬浮液置于挤出容器中,对挤出容器内的复合晶须悬浮液进行加压加热,挤出置于钢丝网上,施压干燥得到高性能的纳米纤维素/甲壳素复合纤维。
2.根据权利要求1所述的一种高性能的纳米纤维素/甲壳素复合纤维的制备方法,其特征在于:所述步骤(1)中,酶解的温度为45-55℃,pH值为4.5-5,时间为30-60min。
3.根据权利要求1所述的一种高性能的纳米纤维素/甲壳素复合纤维的制备方法,其特征在于:所述步骤(1)中,纳米纤维素晶须悬浮液中纳米纤维素晶须的质量分数为0.1-2%。
4.根据权利要求1所述的一种高性能的纳米纤维素/甲壳素复合纤维的制备方法,其特征在于:所述步骤(2)中,纳米甲壳素晶须悬浮液中纳米甲壳素晶须的质量分数为0.2-3%。
5.根据权利要求1所述的一种高性能的纳米纤维素/甲壳素复合纤维的制备方法,其特征在于:所述步骤(3)中,复合晶须悬浮液的固体的质量分数为1-10%。
6.根据权利要求1所述的一种高性能的纳米纤维素/甲壳素复合纤维的制备方法,其特征在于:所述步骤(4)中,挤出的温度为60-65℃,压力为10-15mPa。
7.根据权利要求1所述的一种高性能的纳米纤维素/甲壳素复合纤维的制备方法,其特征在于:所述步骤(4)中,施压干燥的温度为50-55℃,压力为20-25kPa。
8.根据权利要求1所述的一种高性能的纳米纤维素/甲壳素复合纤维的制备方法,其特征在于:所述步骤(4)中,施压干燥的时间为3-4d。
CN201610371041.0A 2016-05-27 2016-05-27 一种高性能的纳米纤维素/甲壳素复合纤维的制备方法 Active CN105887235B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810339623.XA CN108441983B (zh) 2016-05-27 2016-05-27 一种高性能的纳米纤维素/甲壳素复合纤维及其制备方法
CN201610371041.0A CN105887235B (zh) 2016-05-27 2016-05-27 一种高性能的纳米纤维素/甲壳素复合纤维的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610371041.0A CN105887235B (zh) 2016-05-27 2016-05-27 一种高性能的纳米纤维素/甲壳素复合纤维的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201810339623.XA Division CN108441983B (zh) 2016-05-27 2016-05-27 一种高性能的纳米纤维素/甲壳素复合纤维及其制备方法

Publications (2)

Publication Number Publication Date
CN105887235A CN105887235A (zh) 2016-08-24
CN105887235B true CN105887235B (zh) 2018-05-04

Family

ID=56709030

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610371041.0A Active CN105887235B (zh) 2016-05-27 2016-05-27 一种高性能的纳米纤维素/甲壳素复合纤维的制备方法
CN201810339623.XA Active CN108441983B (zh) 2016-05-27 2016-05-27 一种高性能的纳米纤维素/甲壳素复合纤维及其制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201810339623.XA Active CN108441983B (zh) 2016-05-27 2016-05-27 一种高性能的纳米纤维素/甲壳素复合纤维及其制备方法

Country Status (1)

Country Link
CN (2) CN105887235B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106727280B (zh) * 2016-12-08 2019-07-16 华南理工大学 一种纳米生物质基抗癌缓释凝胶及其制备方法
CN107540858B (zh) * 2017-08-29 2020-06-19 华南理工大学 一种秸秆纳米纤维素/甲壳素晶复合膜及其制法与应用
CN108395579A (zh) * 2018-04-14 2018-08-14 邳州易萨新型材料有限公司 一种新型高强度复合纤维材料的制备方法
CN110028703A (zh) * 2019-02-27 2019-07-19 华南理工大学 一种纳米生物质基高强度高透明度大幅面复合膜的制备方法
GR20200100195A (el) * 2020-04-15 2021-11-11 Πανεπιστημιο Πατρων, Ολοκληρωμενη τεχνολογια παραγωγης υδατανθρακουχων νανοσωληνων (nanotubes, cnts)
CN111592693B (zh) * 2020-06-17 2022-01-28 暨南大学 一种高强度甲壳素复合水凝胶材料及其制备方法与应用
CN115819848B (zh) * 2022-11-28 2024-04-30 浙江大学 一种多功能纳米纤维素复合溶液及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101821327A (zh) * 2007-09-21 2010-09-01 连津格股份公司 纤维素悬浮液及其制备方法
CN104451949A (zh) * 2014-12-04 2015-03-25 江苏苏博特新材料股份有限公司 纳米纤维素晶须增强聚氧亚甲基纤维的制备方法
CN104451930A (zh) * 2014-11-20 2015-03-25 江苏金太阳纺织科技有限公司 一种晶须增强再生纤维素纤维的制备方法
CN104877145A (zh) * 2014-02-28 2015-09-02 恒天海龙股份有限公司 一种天然有机晶须分散液的制备方法及利用该方法制备的分散液的应用
CN105504715A (zh) * 2016-01-15 2016-04-20 暨南大学 甲壳素晶须/氧化镁晶须/生物降解聚酯复合材料及其制备与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103342826B (zh) * 2013-07-10 2015-02-11 南京林业大学 一种甲壳素纳米纤维/蒙脱土复合膜材料的制备方法
CN103342821B (zh) * 2013-07-10 2014-10-15 南京林业大学 一种利用虾蟹壳制备甲壳素纳米纤维的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101821327A (zh) * 2007-09-21 2010-09-01 连津格股份公司 纤维素悬浮液及其制备方法
CN104877145A (zh) * 2014-02-28 2015-09-02 恒天海龙股份有限公司 一种天然有机晶须分散液的制备方法及利用该方法制备的分散液的应用
CN104451930A (zh) * 2014-11-20 2015-03-25 江苏金太阳纺织科技有限公司 一种晶须增强再生纤维素纤维的制备方法
CN104451949A (zh) * 2014-12-04 2015-03-25 江苏苏博特新材料股份有限公司 纳米纤维素晶须增强聚氧亚甲基纤维的制备方法
CN105504715A (zh) * 2016-01-15 2016-04-20 暨南大学 甲壳素晶须/氧化镁晶须/生物降解聚酯复合材料及其制备与应用

Also Published As

Publication number Publication date
CN108441983B (zh) 2021-03-26
CN108441983A (zh) 2018-08-24
CN105887235A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
CN105887235B (zh) 一种高性能的纳米纤维素/甲壳素复合纤维的制备方法
Li et al. Alignment of cellulose nanofibers: harnessing nanoscale properties to macroscale benefits
Hooshmand et al. Dry-spun single-filament fibers comprising solely cellulose nanofibers from bioresidue
CN103061174B (zh) 一种强酸预处理辅助制备纤维素纳米纤丝的方法
CN102872652B (zh) 一种含有改性迪开石粉的滤纸
US20150104642A1 (en) Production method of electrically conductive graphene composite fiber
CN106192550B (zh) 一种用再生纤维素辅助制造的透明纸及其制造方法
CN106893116A (zh) 一种纤维素纳米纤维生物质凝胶及气凝胶的制备方法
CN108085772B (zh) 一种纤维素纳米纤丝增强聚氨酯纤维及其制备方法与应用
CN109235102A (zh) 一种低共熔溶剂预处理制备纤维素纳米纤丝的方法
CN102977393B (zh) 一种透明耐水植物纳米纤维复合材料的制备方法
CN107447565A (zh) 一种植物纤维制备纳米纤维素的方法
CN105926050B (zh) 基于细菌纤维素纳米纤维定向排列的宏观纤维及其制备方法
CN101186109A (zh) 一种具有高透光率的纳米纤维增强复合树脂的制备
CN106000105A (zh) 一种孔径可调控高通量纳米纤维复合超滤膜的制备方法
CN103879120A (zh) 基于废弃茧丝原料的丝蛋白纳米纤维雾霾防护产品
CN104878465A (zh) 一种碳纳米管再生竹纤维及其生产方法
CN106757767A (zh) 一种高强度β‑环糊精/醋酸纤维素复合纳米纤维膜的制备及应用
CN113174701B (zh) 一种基于聚丙烯腈的电纺增强膜材料的制备方法
CN103265638A (zh) 纤维素纳米晶须有机无机耐热杂化材料的制备方法
CN110863349B (zh) 一种离心纺纳米纤维体型材料的制备方法
CN113368710A (zh) 一种疏水性细菌纤维素气凝胶基空气过滤膜的制备方法
CN106149357A (zh) 一种碳纤维表面负载碳纳米管的方法
Qin et al. “Bottom-up” and “top-down” strategies toward strong cellulose-based materials
CN109228421A (zh) 高强细菌纤维素微米纤维及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Li Shucheng

Inventor before: Wang Wenqing

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20180412

Address after: 224013 Yuet Hsing Road, Zhongfu community, Zhongfu Town, Yancheng City, Jiangsu, 1

Applicant after: Jiangsu Owner Fashion Co.,Ltd.

Address before: 523000 Guangdong province Dongguan City Songshan Lake high tech Industrial Zone Building 406 industrial development productivity

Applicant before: Dongguan Lianzhou Intellectual Property Operation Management Co.,Ltd.

GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 224013 Yuxing Road, Zhongxing Community, Xuefu Town, Yandu District, Yancheng City, Jiangsu Province

Patentee after: Jiangsu Banzhu Technology Co., Ltd.

Address before: 224013 Yuxing Road, Zhongxing Community, Xuefu Town, Yandu District, Yancheng City, Jiangsu Province

Patentee before: Jiangsu Owner Fashion Co.,Ltd.