[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN105821049B - 一种Fbxo40基因敲除猪的制备方法 - Google Patents

一种Fbxo40基因敲除猪的制备方法 Download PDF

Info

Publication number
CN105821049B
CN105821049B CN201610285534.2A CN201610285534A CN105821049B CN 105821049 B CN105821049 B CN 105821049B CN 201610285534 A CN201610285534 A CN 201610285534A CN 105821049 B CN105821049 B CN 105821049B
Authority
CN
China
Prior art keywords
pig
fbxo40
cell
gene
clone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610285534.2A
Other languages
English (en)
Other versions
CN105821049A (zh
Inventor
李秋艳
邹云龙
李宁
赵要风
李志远
付怡静
郝海阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN201610285534.2A priority Critical patent/CN105821049B/zh
Publication of CN105821049A publication Critical patent/CN105821049A/zh
Application granted granted Critical
Publication of CN105821049B publication Critical patent/CN105821049B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/873Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
    • C12N15/877Techniques for producing new mammalian cloned embryos
    • C12N15/8778Swine embryos
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/10Animals modified by protein administration, for non-therapeutic purpose
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/108Swine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Environmental Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Developmental Biology & Embryology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了一种Fbxo40基因敲除猪的制备方法。本发明将CRISPR/Cas9打靶载体及PGK‑Neo抗性基因共同转染猪胎儿成纤维细胞,获得G418抗性的阳性单克隆细胞,阳性单克隆细胞中的Fbxo40基因发生插入/缺失突变、且读码框产生移码并提前终止,将这样的细胞克隆作为核移植的供体细胞,以卵母细胞作为核移植的受体卵母细胞,通过体细胞核移植技术获得克隆胚胎,将优质的克隆胚胎移植到发情母猪输卵管内,通过全期发育并获得Fbxo40基因敲除的克隆猪。本发明利用CRISPR/Cas9的基因编辑技术,低成本、高效率地获得了Fbxo40敲除猪,为研究肌肉发育及肌肉相关疾病提供了动物模型。

Description

一种Fbxo40基因敲除猪的制备方法
技术领域
本发明属于动物基因工程和基因遗传修饰领域,具体地说,涉及一种利用CRISPR/Cas9系统对猪Fbxo40基因进行编辑,并通过体细胞核移植技术获得Fbxo40基因敲除猪。
背景技术
IGF1可以通过激活IGF1R/IRS1/PI3K/AKT通路,导致肌肉的肥大,但在分化的肌肉细胞中,IGF1的底物IRS1会被泛素化,并被蛋白酶体降解,从而导致IGF1信号通路的中断。研究发现,介导IRS1快速转化的是E3泛素连接酶Fbxo40。Fbxo40-SCF-E3蛋白复合体能够直接将IRS1泛素化,并且当IRS1的酪氨酸磷酸化时,这种泛素化作用会增强。在小鼠中敲除Fbxo40之后,肌纤维显著增粗。在小鼠的快速生长期,IGF1处于高表达的状态,Fbxo40敲除之后,IRS1表达量会发生上调,小鼠的体重及肌肉量发生显著增加。
Fbxo40可以作为大动物育种的一个候选基因。Fbxo40的表达是肌肉特异的。在小鼠中的报道表明,Fbxo40从出生后第四天开始表达,在青春期达到最高峰。首先,在小鼠中,Fbxo40通过降解IRS1,阻断IGF1的信号通路。文献报道,在猪各个组织半定量的结果表明Fbxo40在背最长肌及心肌中表达量最高,在其他组织中低表达,但Fbxo40在猪中的信号通路还没有研究。那么在猪中,Fbxo40的相关通路是否与小鼠一致呢?现有的文献资料并没有给出这方面的报道。
其次,在小鼠中报道的Fbxo40只在骨骼肌、心肌中表达,且局限于分化的肌肉细胞中表达。Fbxo40敲除小鼠表现出了显著的肌肉增加,并且没有其他异常表型出现。因而Fbxo40基因对于农业上大动物的育种改良,以及医学上肌肉萎缩的治疗具有重要的意义。
因而通过制备Fbxo40基因敲除猪,在此模型的基础上阐明Fbxo40在猪肌肉发育中信号通路的作用,具有重要的意义。
CRISPR/Cas9是一种存在于细菌和古生菌中的适应性免疫系统。利用人工合成的sgRNA序列与基因组DNA的碱基互补配对,Cas9核酸内切酶可以实现基因组的定点切割,从而产生DNA的双链断裂。DNA双链断裂可以通过两种方式进行修复:其一是采取非同源末端连接修复方式(NHEJ),这种方式会在双链断裂处产生随机类型的插入/缺失修复,可能会造成基因的移码突变,造成基因功能缺失。另一种修复方式是在以单链寡核苷酸或者双链Donor质粒载体为模板的指导下,通过同源重组(HR)的方式实现预期的精准修复。CRISPR/Cas9系统可以作为一种具有位点特异性的基因编辑系统,其最大的特点是操作简单、成本低、作用高效。CRISPR/Cas9系统凭借其巨大优势迅速成为基因编辑工具中的佼佼者,在基因功能研究、疾病模型、基因治疗等领域得到广泛的应用。
发明内容
本发明的目的是提供一种Fbxo40基因敲除猪的制备方法,是利用CRISPR-Cas9系统对Fbxo40基因进行编辑,并通过体细胞核移植技术获得Fbxo40基因敲除猪。
本发明首先提供了猪Fbxo40基因第三外显子在制备Fbxo40基因敲除猪中的用途。所述猪Fbxo40基因第三外显子的核苷酸序列如SEQ ID NO.1所示。
本发明首先提供了猪Fbxo40基因第四外显子在制备Fbxo40基因敲除猪中的用途。所述猪Fbxo40基因第四外显子的核苷酸序列如SEQ ID NO.4所示。
本发明提供了特异性靶向猪Fbxo40基因第三外显子的sgRNA,其序列为5’-tgtctgtgctcccctggcggagg-3’(如SEQ ID NO.2所示)。与其互补配对的寡核苷酸序列为5’-cctccgccaggggagcacagaca-3’(如SEQ ID NO.3所示)。
本发明提供了上述sgRNA在制备Fbxo40基因敲除猪中的应用。
本发明提供了上述sgRNA在动物种质资源改良中的应用。
本发明提供了上述sgRNA在构建与肌肉发育和肌肉疾病相关医学研究的动物模型中的应用。
本发明还提供了含有上述sgRNA的DNA序列的CRISPR/Cas9打靶载体。
本发明所述的CRISPR/Cas9打靶载体,其通过以下方法制备得到,将SEQ ID NO.2、3所示的寡聚核苷酸在94℃,5min,37℃,10min,然后立即放冰上对寡聚核苷酸进行退火5min;px330骨架载体用限制性内切酶BbsⅠ进行酶切,回收后,与退火的寡聚核苷酸连接。
在本发明的一个实施例中命名该CRISPR/Cas9打靶载体为pX330 1-8,本发明提供了该CRISPR/Cas9打靶载体在猪育种中的应用。
本发明提供了CRISPR/Cas9打靶载体在构建与肌肉发育和肌肉疾病相关医学研究的动物模型中的应用。所述的肌肉疾病包括肌肉萎缩。
本发明提供了该CRISPR/Cas9打靶载体在制备肌肉量提高的转基因猪中的应用。
本发明还提供了一种制备Fbxo40基因敲除猪的方法,将本发明的CRISPR/Cas9打靶载体pX330 1-8与PGK-Neo基因线性载体共转入猪胎儿成纤维细胞中,G418筛选获得具有抗性的阳性细胞克隆;以阳性细胞为核移植供体细胞,卵母细胞为核移植受体细胞,通过体细胞核移植技术获得克隆胚胎;将克隆胚胎移入猪输卵管内妊娠获得Fbxo40基因敲除的克隆猪。
其中,CRISPR/Cas9打靶载体pX330 1-8与PGK-Neo基因线性载体共转入猪成纤维细胞的方法为:CRISPR/Cas9打靶载体pX330 1-8加入2μg,并与PGK-Neo基因线性载体按照摩尔比3:1混合,用电击转染或脂质体转染的方法转入猪成纤维细胞。
本发明研究了Fbxo40基因第三、第四外显子,从众多备选的sgRNA中筛选了最优的sgRNA,其特异性靶向Fbxo40基因第三外显子。利用CRISPR/Cas9的基因编辑技术,低成本、高效率地获得了Fbxo40基因敲除猪。本发明一方面为阐明Fbxo40在猪中信号通路提供了动物模型,方便医学领域以此模型进一步研究肌肉发育及肌肉相关疾病,另一方面本发明的方法为培育高瘦肉率的猪的新品系提供了技术依据。
附图说明
图1是本发明实施例1中CRSIPR/Cas9的sgRNA设计位置及序列示意图。
图2是本发明实施例4中使用PCR方法扩增靶点周围序列电泳结果图。通过与野生型比较条带大小,检测单克隆细胞的打靶情况。图中泳道1-56分别为细胞单克隆的编号,图中Marker为100bp DNA ladder,第5泳道为5#细胞单克隆,PCR产物大小约为643bp,第31泳道为31#细胞单克隆,PCR产物大小约为1331bp。
图3A-图3D是本发明实施例4中,对单克隆细胞5#及31#进行测序后,序列比对的结果图。图3A,图3B显示31#细胞单克隆的7个单克隆菌落与野生型序列相比,均发生了3bp的替换,同时发生了323bp的插入,产生了移码突变及翻译的提前终止。图3C,图3D显示,5#细胞单克隆的6个单克隆菌落与野生型序列相比,均缺失了365bp,删除了Fbxo40的重要结构域,并产生了移码突变及翻译的提前终止。
图4A和图4B是本发明实施例5中,使用PCR方法鉴定新生猪的突变类型。图中每个泳道对应本发明制备得到的不同编号Fbxo40基因敲除猪的PCR结果。
图5是本发明实施例5中,使用Western blot的方法检测新生猪背最长肌中Fbxo40蛋白的表达水平。
图6是本发明实施例5中,使用Western blot的方法检测新生猪心肌中Fbxo40蛋白的表达水平。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段,所用原料均为市售商品。
pX330载体、PGK-Neo载体购于Addgene公司;T4DNA连接酶、Q5超保真酶、BbsⅠ及T7EN1购于NEB公司;引物合成由上海生工完成;测序由美吉生物公司合成。质粒去内毒素提取试剂盒及基因组提取试剂盒购于QIAGEN公司。胶回收试剂盒购于GENSTAR公司。酶切、连接、切胶回收、转化、PCR扩增等常规实验操作步骤详见《分子克隆(第三版)》。
实施例1 CRSIPR/Cas9打靶载体pX330 1-8的构建
1、猪Fbxo40基因特异性sgRNA的设计和筛选
猪Fbxo40基因的第三外显子、第四外显子序列编码Fbxo40蛋白重要的结构域——zinc-finger结构域和F-box结构域。
根据CRISPR/Cas9的作用原理,在第三外显子及第四外显子的不同位置,共设计了17条sgRNA序列。其序列及互补的序列如表1所示。
表1
表1中粗体部分为CRISPR/Cas9识别的PAM序列。
pX330载体骨架需要使用BbsⅠ进行酶切,所以需要在sgRNA序列上补出BbsⅠ酶切位点的粘性末端,以利于其连入pX330载体骨架。
将设计好的加入BbsⅠ酶切位点粘性末端的sgRNA及其互补序列以合成引物的方式进行合成。将合成的寡核苷酸进行退火操作,使其形成带有粘性末端的DNA双链。退火程序如下:94℃,5min;37℃,10min;冰上,5min。pX330载体骨架使用BbsⅠ酶切,37℃水浴4h。然后进行琼脂糖凝胶电泳,并切胶回收目的条带。载体骨架与sgRNA序列连接。将回收的载体骨架与sgRNA序列退火产物于16℃连接仪进行连接过夜。将连接产物转化DH5α感受态细胞,37℃培养箱培养,待其长出单克隆菌落后,挑取单克隆菌落划线,并进行测序鉴定阳性单克隆菌落。测序引物为PX-F:5’-GAGGGCCTATTTCCCATGAT-3’,其位于pX330载体骨架上。
挑取测序正确的阳性单克隆菌落,将其加入2-5ml氨苄抗性的LB培养基中,于摇床中37℃,300rpm剧烈摇动8h。将初始培养的菌液以1/500-1/1000的稀释比例加入到100ml氨苄抗性的LB培养基中,于摇床中37℃,300rpm剧烈摇动12h-16h。
CRISPR/Cas9打靶载体质粒的去内毒提取:参见QIAGEN公司的EndoFree PlasmidMaxi Kit说明书。将提取好的质粒测浓度后分装、冻存,用于后续的猪胎儿成纤维细胞的转染。
将一个六孔板孔中,已达到80-90%汇合的猪胎儿成纤维细胞,进行消化、离心,获得数量约2×105-2×106的猪胎儿成纤维细胞。将CRISPR/Cas9打靶载体2μg,加入到Lonza转染试剂中,混匀,使用加入质粒的转染试剂重悬细胞,并将细胞悬液加入到电击杯中,T-016程序电击细胞。电击完成后,立即将细胞吸出,加3ml含10%血清的DMEM到六孔板的一个孔中。37℃,5%CO2培养箱培养48h后,细胞达到80%-90%汇合,将细胞消化下来,提取细胞的基因组,作为PCR扩增的模板。在sgRNA靶点的上游设计PCR上游扩增引物F,在sgRNA靶点的下游设计PCR下游扩增引物R。利用PCR扩增包括sgRNA靶点的上下游序列,将PCR产物连接peasy-blunt-simple载体,将连接产物转化DH5α感受态细胞,37℃培养箱培养,待其长出单克隆菌落后,随机挑取一定数量的单克隆菌落进行测序。将各个单克隆菌落测序结果与野生型Fbxo40的序列进行比对,认定发生了碱基插入/缺失的单克隆为阳性单克隆菌落。将阳性单克隆菌落个数除以测序的单克隆菌落总数,就是不同CRISPR/Cas9打靶载体的切割效率。如表2所示。
表2
由表2可知,在猪Fbxo40基因第三外显子及第四外显子设计的17条sgRNA靶点的切割效率在2%-68%之间。为了避免过高的切割效率造成脱靶效应,本发明选取了效率适中(34.6%),且位置比较靠前(便于产生移码突变,使切割位点后面的蛋白序列发生改变及提前终止)的1-8靶点作为用于制备打靶克隆猪的sgRNA。
2、CRSIPR/Cas9打靶载体pX330 1-8的构建
选取了cas9靶点1-8:5’-tgtctgtgctcccctggcggagg-3’。根据碱基互补配对的原则,其反向互补序列为5’-cctccgccaggggagcacagaca-3’。
pX330载体骨架需要使用BbsⅠ进行酶切,所以需要在sgRNA序列上补出BbsⅠ酶切位点的粘性末端,以利于其连入pX330载体骨架。加入BbsⅠ粘性末端的sgRNA序列及其互补序列分别为5’-CACCGtgtctgtgctcccctggcgg-3’,5’-AAACccgccaggggagcacagaca C-3’。
将设计好的加入BbsⅠ酶切位点粘性末端的sgRNA及其互补序列以合成引物的方式进行合成。将合成的寡核苷酸进行退火操作,使其形成带有粘性末端的DNA双链。退火程序如下:94℃,5min;37℃,10min;冰上,5min。pX330载体骨架使用BbsⅠ酶切,37℃水浴4h。然后进行琼脂糖凝胶电泳,并切胶回收目的条带。载体骨架与sgRNA序列连接。将回收的载体骨架与sgRNA序列退火产物于16℃连接仪进行连接过夜。将连接产物转化DH5α感受态细胞,37℃培养箱培养,待其长出单克隆后,挑取单克隆划线,并进行测序鉴定阳性单克隆。测序引物为PX-F:5’-GAGGGCCTATTTCCCATGAT-3’,其位于pX330载体骨架上。构建好的质粒命名为pX330 1-8。
挑取测序正确的阳性单克隆菌落,将其加入2-5ml氨苄抗性的LB培养基中,于摇床中37℃,300rpm剧烈摇动8h。将初始培养的菌液以1/500-1/1000的稀释比例加入到100ml氨苄抗性的LB培养基中,于摇床中37℃,300rpm剧烈摇动12h-16h。pX330 1-8质粒的去内毒提取参见步骤1。
实施例2 猪胎儿成纤维细胞的建系
将妊娠30天的小香猪麻醉,从其子宫内无菌取出胎儿,用含双抗的PBS清洗胎儿后,置于超净工作台中,用眼科剪去除胎儿的头部、四肢、内脏及软骨组织,用PBS冲洗干净;在细胞培养皿内用眼科剪将剩余组织剪碎成约1mm3小块;加入适量的FBS,保持组织不至于过分干燥。将剪碎的组织块转移到1个T75细胞培养瓶中,将组织块均匀铺开;加入5mL细胞培养基,将铺有组织块的一面向上,不被培养基浸没,于37℃,5%CO2培养箱中培养3~5h后,将T75翻转,使组织块被培养基浸没;培养3天左右,观察到组织块周围有大量细胞爬出,待细胞生长至约90%汇合度时,对细胞进行消化并冻存备用。
实施例3 猪胎儿成纤维细胞的转染和中靶细胞单克隆的筛选
1、PGK-Neo质粒的酶切
使用NEB公司的限制性内切酶NotⅠ和NheⅠ对PGK-Neo质粒酶切,37℃水浴4h。使用Genstar的胶回收试剂盒回收PGK-Neo大小为1.8kb的片段。测浓度后分装,冻于-20℃冰箱备用。
2、将一个六孔板孔中,已达到80-90%汇合的猪胎儿成纤维细胞,进行消化、离心,获得数量约2×105-2×106的猪胎儿成纤维细胞。
3、CRISPR/Cas9打靶载体pX330 1-8加入2μg,并与PGK-Neo基因线性载体按照摩尔比3:1加入Lonza转染试剂中,混匀。使用加入质粒的转染试剂重悬细胞,并将细胞悬液加入到电击杯中,T-016程序电击细胞。电击完成后,立即将细胞吸出,加3ml含10%血清的DMEM到六孔板的一个孔中。37℃,5%CO2培养箱培养48h后,细胞达到80%-90%汇合,将细胞消化下来,稀释至20-30个10cm细胞培养皿中。24-48h后,待10cm皿中的细胞贴壁、且状态良好,加入400-600μg/ml的G418,每隔一天补加一次G418,加药量根据细胞状态及汇合度灵活掌控,但最高浓度不能超过1000μg/ml。G418筛选8-12天后,可见优质细胞单克隆。
4、细胞单克隆的挑取及扩大培养。在显微镜下,使用记号笔将状态良好的单克隆用圆圈圈出。弃掉10cm培养皿中的培养基,PBS清洗一次,将克隆环蘸取明胶,用克隆环将细胞单克隆圈住,加入10-30μl 0.1%的胰蛋白酶,37℃消化1min。在显微镜下观察,细胞变圆、游离,加入含20%FBS的DMEM终止消化,将细胞吸出加入24孔板中。48-72h后,24孔板中细胞汇合至80-90%时,将细胞传至12孔板中。待12孔板中细胞达到80%-90%汇合时,对细胞进行冻存。
实施例4 中靶阳性细胞单克隆的鉴定
由于Cas9的切割造成双链断裂,NHEJ的修复方式会随机产生插入/缺失突变,因此需要以打靶细胞单克隆的基因组为模板,PCR扩增打靶位点所在区域,对其区域进行测序,检测其碱基的插入/缺失突变的情况。
提取48个细胞单克隆的基因组DNA,以其为模板进行PCR扩增,PCR扩增引物为xin-1-(0,1,2)-2-F 5’-gcaacaggtcaaggatccag-3’及xin-1-(0,1,2)-2-R 5’-gcgcactgatgagcttgtta-3’,以野生型细胞的基因组作为阴性对照,其PCR产物大小约为1008bp。PCR程序如下:98℃,30s;98℃,10s;67℃,30s;72℃,1min;72℃,2min。35个循环。缺失或者插入大片段的细胞单克隆,可以使用琼脂糖凝胶电泳进行初步判定。可知5#细胞单克隆发生大片段缺失,31#细胞单克隆发生了大片段的插入。如图2所示,5#细胞单克隆发生了大片段的缺失,与6#细胞单克隆(其条带大小与野生型大小相同)相比,可见,5#细胞单克隆的条带要小一些。同理,31#细胞单克隆发生了大片段的插入,与29#细胞单克隆(其条带大小与野生型大小相同)相比,可见,31#细胞单克隆条带要大一些。38#细胞单克隆和25#细胞单克隆与5#细胞单克隆类似,它们也发生了大片段缺失。综合考虑上述细胞单克隆的状态,本发明选择了状态最佳的5#细胞单克隆和31#细胞单克隆,其更适合作为体细胞核移植的供体细胞。
为了进一步确定5#细胞单克隆、31#细胞单克隆的突变类型,将PCR产物连接peasy-simple blunt载体,将连接产物转化DH5α感受态细胞,37℃培养箱培养,待其长出单克隆菌落后,随机挑取一定数量的单克隆菌落进行测序。将各个单克隆菌落测序结果与野生型Fbxo40的序列进行比对。
对于31#细胞单克隆,随机挑取的7个单克隆菌落与野生型Fbxo40序列相比,由图3A,图3B可知,它们均发生了3bp的替换,同时发生了323bp的插入,由此证明31#细胞单克隆发生了3bp的替换,同时发生了323bp的插入,产生了移码突变及翻译的提前终止。图3A为5’端序列比对结果,图3B为3’端序列比对结果。
对于5#细胞单克隆,随机挑取的6个单克隆菌落与野生型Fbxo40序列相比,由图3C,图3D可知,它们均缺失了365bp,由此可知5#细胞单克隆缺失了365bp,删除了Fbxo40的重要结构域,并产生了移码突变及翻译的提前终止。图3C为5’端序列比对结果,图3D为3’端序列比对结果。
实施例5 Fbxo40基因敲除猪的制备
1、以实施例4获得的阳性猪胎儿成纤维细胞为核移植供体细胞。培养胎儿成纤维细胞至100%汇合1-2天,去除培养皿内培养基,加入PBS洗涤1次,然后用0.1%胰蛋白酶消化约2min,待细胞变圆后立即后用含血清的细胞培养液终止消化,1000rpm离心5min,弃上清,用操作液T2重悬离心沉淀的细胞,冰浴放置备用。
以体外成熟的卵母细胞为核移植受体卵质。从母猪卵巢中采集卵丘卵母细胞复合体,经过体外成熟并用透明质酸酶脱去卵丘细胞,而后在体式显微镜下挑选排出第一极体、形态正常、胞质均匀的成熟卵母细胞备用。
在显微操作仪下,将核移植供体细胞移入去核的成熟卵母细胞中。经过电融合及化学激活,诱导细胞与卵子融合并同时激活卵母细胞。构建成重组胚胎,融合胚放入低氧培养环境下(低氧培养箱或充入低氧混合配气封袋密闭培养)培养。采用微滴或四孔板培养,气相条件为含7%O2、88%N2、和5%CO2的混合气体,培养温度为39℃,湿度为100%。体外发育至1-4细胞期后观察卵裂情况及发育状态,并用于胚胎移植。
挑选形态正常、发育优良的克隆胚胎用手术法移植入胚胎同期的母猪内。移植步骤为舒泰常规麻醉,将母猪保定在手术架上面,尽量避开血管,在腹中线处切口,露出卵巢,输卵管及子宫,使用胚胎移植管吸取胚胎,然后沿输卵管伞部进入将克隆胚胎释放到输卵管壶腹部、峡部结合处。胚胎移植后给代孕母猪注射消炎针,30天后进行B超检测妊娠情况。
2、Fbxo40基因敲除猪的DNA水平检测:
使用新生猪的耳组织提取基因组DNA,以其为模板进行PCR扩增。新生公猪7801#、7802#、7803#、7804#、7901#、9402#的PCR扩增引物为xin-1-(0,1,2)-2-F 5’-gcaacaggtcaaggatccag-3’及xin-1-(0,1,2)-2-R 5’-gcgcactgatgagcttgtta-3’。野生型猪的PCR产物大小约为1008bp。若新生猪来自5#克隆点,则PCR产物大小约为643bp。若新生猪来自31#克隆点,则PCR产物大小约为1331bp。
如图4A和图4B所示,可知编号为(7802#、7803#、7804#、7901#、9402#)的新生公猪来自5#克隆点,编号为(7801#)的新生公猪来自31#克隆点。
3、Fbxo40基因敲除猪的蛋白水平检测:
取7801#、7802#、7803#、7804#四头Fbxo40基因双敲以及304#、6#、254#、364#、11#等野生型同日龄对照猪的心肌及背最长肌组织100mg,提取总蛋白,进行Western blot检测Fbxo40的表达水平。
Western blot实验中,蛋白上样量为50μg。SDS-PAGE分离胶浓度为10%。60V电泳30min,90V电泳1h。电泳结束后,使用Bio-Rad转膜仪进行转膜,300mA恒流,1h。5%的脱脂奶粉封闭过夜,Fbxo40一抗(1:1000稀释)室温孵育1h。TBST洗膜6×5min。山羊抗兔二抗(1:10000稀释)室温孵育1h。TBST洗膜6×5min。进行显影。由结果可知,在双敲猪的背最长肌及心肌组织中均未法检测到Fbxo40蛋白的表达,而同日龄的野生型对照个体均可检测到Fbxo40蛋白的表达。如图5,图6所示。结果说明,本发明构建的CRSIPR/Cas9打靶载体pX3301-8能够高效、准确地敲除Fbxo40基因,从而成功得到Fbxo40基因敲除猪。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (7)

1.猪Fbxo40基因第三外显子在制备Fbxo40基因敲除猪中的用途,所述猪Fbxo40基因第三外显子的核苷酸序列如SEQ ID NO.1所示。
2.特异性靶向猪Fbxo40基因第三外显子的sgRNA,其特征在于,其DNA序列如SEQ IDNO.2所示或如SEQ ID NO.3所示。
3.权利要求2所述sgRNA在制备Fbxo40基因敲除猪中的应用。
4.权利要求2所述sgRNA在动物种质资源改良中的应用。
5.含有权利要求2所述sgRNA的DNA序列的CRISPR/Cas9打靶载体。
6.权利要求5所述的CRISPR/Cas9打靶载体在猪育种中的应用。
7.一种制备Fbxo40基因敲除猪的方法,其特征在于,将权利要求5所述的CRISPR/Cas9打靶载体与PGK-Neo基因线性载体共转入猪胎儿成纤维细胞中,G418筛选获得具有抗性的阳性细胞克隆;以阳性细胞克隆为核移植供体细胞,卵母细胞为核移植受体细胞,通过体细胞核移植技术获得克隆胚胎;将克隆胚胎移入猪输卵管内妊娠获得Fbxo40基因敲除的克隆猪。
CN201610285534.2A 2016-04-29 2016-04-29 一种Fbxo40基因敲除猪的制备方法 Expired - Fee Related CN105821049B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610285534.2A CN105821049B (zh) 2016-04-29 2016-04-29 一种Fbxo40基因敲除猪的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610285534.2A CN105821049B (zh) 2016-04-29 2016-04-29 一种Fbxo40基因敲除猪的制备方法

Publications (2)

Publication Number Publication Date
CN105821049A CN105821049A (zh) 2016-08-03
CN105821049B true CN105821049B (zh) 2019-06-04

Family

ID=56528016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610285534.2A Expired - Fee Related CN105821049B (zh) 2016-04-29 2016-04-29 一种Fbxo40基因敲除猪的制备方法

Country Status (1)

Country Link
CN (1) CN105821049B (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013066438A2 (en) 2011-07-22 2013-05-10 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US20150044192A1 (en) 2013-08-09 2015-02-12 President And Fellows Of Harvard College Methods for identifying a target site of a cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
EP3177718B1 (en) 2014-07-30 2022-03-16 President and Fellows of Harvard College Cas9 proteins including ligand-dependent inteins
EP3365356B1 (en) 2015-10-23 2023-06-28 President and Fellows of Harvard College Nucleobase editors and uses thereof
CN110214183A (zh) 2016-08-03 2019-09-06 哈佛大学的校长及成员们 腺苷核碱基编辑器及其用途
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
CA3039928A1 (en) 2016-10-14 2018-04-19 President And Fellows Of Harvard College Aav delivery of nucleobase editors
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
CN110914310A (zh) 2017-03-10 2020-03-24 哈佛大学的校长及成员们 胞嘧啶至鸟嘌呤碱基编辑器
IL269458B2 (en) 2017-03-23 2024-02-01 Harvard College Nucleic base editors that include nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
EP3676376A2 (en) 2017-08-30 2020-07-08 President and Fellows of Harvard College High efficiency base editors comprising gam
CN108165580A (zh) * 2017-10-16 2018-06-15 中国医学科学院基础医学研究所 Nok基因及其表达产物在构建慢性b淋巴细胞白血病动物模型中的用途
WO2019079347A1 (en) 2017-10-16 2019-04-25 The Broad Institute, Inc. USES OF BASIC EDITORS ADENOSINE
WO2020191248A1 (en) 2019-03-19 2020-09-24 The Broad Institute, Inc. Method and compositions for editing nucleotide sequences
CN111363743B (zh) * 2020-02-20 2022-02-25 中国农业科学院北京畜牧兽医研究所 Scd基因敲除的猪胎儿成纤维细胞系及其构建方法
WO2021226558A1 (en) 2020-05-08 2021-11-11 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN111733159B (zh) * 2020-06-01 2022-09-27 五邑大学 用于猪MBP基因敲除的sgRNA组合物及用途
CN114990121B (zh) * 2022-06-29 2024-01-12 浙江大学 靶向敲除KCNH2基因的sgRNA及其用途
CN116179543B (zh) * 2022-07-06 2024-08-13 四川农业大学 基于CRISPR特异性靶向猪Cavin-1基因的sgRNA及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102770767A (zh) * 2010-02-10 2012-11-07 诺瓦提斯公司 用于肌肉生长的方法和组合物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102770767A (zh) * 2010-02-10 2012-11-07 诺瓦提斯公司 用于肌肉生长的方法和组合物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Molecular characterization and association analysis of FBXO40 with partial hematological indexes in pig;Wang ZW等;《Molecular Biology Reports》;20091127;第37卷(第7期);第3393-3400页
利用CRISPR/Cas9技术敲除Fbxo40杜洛克猪的研制;邹云龙等;《第十七次全国动物遗传育种学术讨论会论文集》;20141212
登录号:ACE96048.1;Wang ZW等;《GenBank》;20100920;第1-548位
登录号:CU861646.2;McLaren S.;《ENA》;20091002;第1-177209位
登录号:EU743742.1;Wang ZW等;《GenBank》;20100920;第1-1647位

Also Published As

Publication number Publication date
CN105821049A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
CN105821049B (zh) 一种Fbxo40基因敲除猪的制备方法
CN106191064B (zh) 一种制备mc4r基因敲除猪的方法
CN108949824A (zh) 基于HMEJ的方法介导Ipr1定点插入获取转基因牛胎儿成纤维细胞的方法
CN107937345B (zh) 一种制备同时敲除cd163基因和cd13基因的猪成纤维细胞的方法
CN105463027A (zh) 一种高肌肉量及肥厚型心肌病模型克隆猪的制备方法
CN113957069B (zh) 用于pAPN基因第736位和第738位氨基酸同时修饰的组合物及其应用
CN107893088A (zh) 一种制备cd13基因敲除的猪成纤维细胞和基因编辑猪的方法
CN107354170A (zh) 一种基因敲除载体以及制备cd163基因敲除猪成纤维细胞的方法
CN113957093B (zh) 用于pAPN基因定点修饰的系统及其应用
CN104293833B (zh) 一种基于TALEN介导的Sp110巨噬细胞特异打靶载体及重组细胞
CN113604504A (zh) 用于pAPN基因16外显子定点修饰的组合物及其应用
CN104059877B (zh) 一种“仿比利时蓝牛”mstn基因型的基因编辑猪的制备方法
CN103993027B (zh) 一种转基因猪筛选标记基因敲除的方法
CN113403337A (zh) 一种载体系统、制备猪成纤维细胞和基因编辑猪的方法
CN116445454B (zh) 一种用于培育抗tgev感染的猪品种的成套系统及其应用
CN110938629B (zh) 特异性识别猪Wip1基因的成套sgRNA及其应用和产品
CN102260711B (zh) 利用锌指核酸酶敲除牛肌肉抑制素基因的方法
CN106591364B (zh) 一种获取转基因牛胎儿成纤维细胞的方法
CN110257434A (zh) 利用Crispr/Cas9技术制备MyoG基因敲入和MSTN基因敲除的细胞克隆
CN109679998A (zh) 一种定点突变MSTN并同时定点整合PPARγ的载体
CN103952424B (zh) 生产mstn双侧基因敲除的双肌性状体细胞克隆猪的方法
CN115948465A (zh) 猪hat1基因修饰系统及应用
CN113604502A (zh) pAPN基因第16外显子的基因编辑系统及其应用
CN101412999A (zh) 一种基因打靶定点转基因方法及其应用
CN107760720A (zh) 严重联合免疫缺陷动物模型的构建以及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190604

Termination date: 20200429

CF01 Termination of patent right due to non-payment of annual fee