[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN105814787A - 车辆的电源装置及用于控制所述电源装置的方法 - Google Patents

车辆的电源装置及用于控制所述电源装置的方法 Download PDF

Info

Publication number
CN105814787A
CN105814787A CN201480067074.5A CN201480067074A CN105814787A CN 105814787 A CN105814787 A CN 105814787A CN 201480067074 A CN201480067074 A CN 201480067074A CN 105814787 A CN105814787 A CN 105814787A
Authority
CN
China
Prior art keywords
boost mode
control
boost
motor
boost converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480067074.5A
Other languages
English (en)
Other versions
CN105814787B (zh
Inventor
熊泽卓
镰谷英辉
佐藤亮次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN105814787A publication Critical patent/CN105814787A/zh
Application granted granted Critical
Publication of CN105814787B publication Critical patent/CN105814787B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • H02M1/0035Control circuits allowing low power mode operation, e.g. in standby mode using burst mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)

Abstract

提供具备电池(150)、转换器(200)、以及控制器(500)的车辆的电源装置,以及用于控制所述电源装置的方法。所述控制器(500)在连续升压模式和间歇升压模式下控制所述转换器(200),所述转换器(200)在所述连续升压模式下连续地工作,所述转换器(200)在所述间歇升压模式下间歇地工作。当正在实施调整电动发电机(110、120)的解算器(25、125)的基准点的控制时,所述控制器(500)不在所述间歇升压模式下控制所述转换器(200)。

Description

车辆的电源装置及用于控制所述电源装置的方法
技术领域
本发明涉及车辆的电源装置及用于控制所述电源装置的方法。
背景技术
第2004-266935(JP2004-266935A)号日本专利申请公开披露一种用于校正由检测装置(旋转角度传感器)检测到的电动机的旋转位置与电动机的实际旋转位置之间的偏差的技术。
在其中电动发电机中的电流消耗很少的情况下,可以有效地通过间歇地使升压转换器工作和停止,执行间歇升压控制以便降低电力损失。
但是,当停止升压时,升压转换器的输出电压随着时间的推移偏离指令电压,从而变成合成电压(resultantvoltage)。当没有根据指令电压适当地控制升压转换器的输出电压时,不能如JP2004-266935A中那样适当地校正由检测装置检测到的电动机的旋转位置与电动机的实际旋转位置之间的偏差。
发明内容
鉴于上述问题,本发明提供一种用于车辆的电源装置以及用于控制所述电源装置的方法,所述电源装置能够在具有间歇升压控制功能的车辆中,适当地校正由旋转角度传感器检测到的电动机的旋转位置与所述电动机的实际旋转位置之间的偏差。
根据本发明的一个方面,提供一种用于车辆的电源装置。所述电源装置包括蓄电装置、升压转换器、以及控制器。所述升压转换器被配置为升高所述蓄电装置的电压,并且所述升压转换器被配置为向所述车辆的电气负载供应升高后的电压。所述控制器被配置为在连续升压模式和间歇升压模式下控制所述升压转换器。所述控制器被配置为在所述连续升压模式下使所述升压转换器连续地工作。所述控制器在所述间歇升压模式下使所述升压转换器间歇地工作。所述控制器被配置为当正在实施调整电动机的旋转位置传感器的基准点的控制时,不在所述间歇升压模式下控制所述升压转换器。(以下,调整基准点的控制也称为“基准点调整控制”)。
在上述用于车辆的电源装置中,所述控制器可以被配置为当并非正在实施所述电动机的所述旋转位置传感器的所述基准点调整控制时,在所述间歇升压模式下控制所述升压转换器。
根据上述电源装置,当正在实施其中需要以高精度控制所述电动机的所述旋转位置传感器的所述基准点调整控制时,不在所述间歇升压模式下控制所述升压转换器,并且因此可以正确地执行所述基准点调整控制。因此,能够适当地校正所述电动机的旋转位置与所述电动机的实际旋转位置之间的偏差。并且,能够抑制由检测装置检测到的所述电动机的所述旋转位置与所述电动机的所述实际旋转位置之间的所述偏差。
在上述电源装置中,所述控制器可以被配置为在所述电动机的初始操作期间,执行所述电动机的所述旋转位置传感器的所述基准点调整控制。
根据上述用于车辆的电源装置,能够在所述电动机的所述初始操作期间正确地执行所述基准点调整控制。
根据本发明的另一个方面,提供一种用于控制车辆的电源装置的方法。在此,所述车辆包括电动机、旋转位置传感器、蓄电装置以及升压转换器。所述旋转位置传感器被配置为检测所述电动机的旋转位置。所述升压转换器被配置为升高所述蓄电装置的电压,并且所述升压转换器被配置为向所述车辆的电气负载供应升高后的电压。所述方法包括:
在连续升压模式和间歇升压模式下控制所述升压转换器。所述升压转换器在所述连续升压模式下连续地工作,并且所述升压转换器在所述间歇升压模式下间歇地工作;以及
当正在实施调整所述电动机的所述旋转位置传感器的基准点的控制时,不在所述间歇升压模式下控制所述升压转换器,并且当并非正在实施调整所述电动机的所述旋转位置传感器的所述基准点的所述控制时,在所述间歇升压模式下控制所述升压转换器。
根据上述用于控制车辆的电源装置的方法,在其中需要以高精度控制所述电动机的所述旋转位置传感器的所述基准点调整控制期间,不在所述间歇升压模式下控制所述升压转换器。并且,当并非正在实施所述电动机的所述旋转位置传感器的所述基准点调整控制时,在所述间歇升压模式下控制所述升压转换器,并且因此可以正确地执行所述基准点调整控制。因此,能够适当地校正所述电动机的旋转位置与所述电动机的实际旋转位置之间的偏差。并且,能够抑制由检测装置检测到的所述电动机的所述旋转位置与所述电动机的所述实际旋转位置之间的所述偏差。
根据本发明的用于车辆的电源装置以及用于控制所述电源装置的方法,能够在具有间歇升压控制功能的车辆中,适当地校正由旋转角度传感器检测到的电动机的旋转位置与所述电动机的实际旋转位置之间的偏差。
附图说明
下面将参考附图描述本发明的示例性实施例的特性、优点以及技术和工业意义,其中相同标号表示相同元素,这些附图是:
图1是示出混合动力车辆的配置实例的框图,该混合动力车辆被示为在其上安装根据本发明的一个实施例的电源装置的电动车辆的一个实例;
图2是示出混合动力车辆的电气系统的图;
图3是示出设置在电气系统中的转换器的正常升压控制的过程的流程图;
图4中的上图是示出在连续升压模式和间歇升压模式下转换器200的输出电压(系统电压)VH的图,图4中的中图是示出在连续升压模式和间歇升压模式下电抗器电流IL的图,并且图4中的下图是示出在连续升压模式和间歇升压模式下升压损失电力量LP的图;
图5是由设置在电气系统中的MG-ECU执行的PWM控制方案的控制框图;
图6中的上坐标是示出在其中实际坐标d-q与指令轴坐标dc-qc彼此匹配的情况下,0电流状态(当Id为0并且Iq为0时)下的坐标的图,并且图6的下坐标是示出在其中实际坐标d-q与指令轴坐标dc-qc彼此不同的情况下,0电流状态(当Id为0并且Iq为0时)下的坐标的图;
图7是示出根据该实施例的转换器的升压控制过程的流程图;以及
图8是示出图7中的步骤STA的过程的流程图。
具体实施方式
图1是示出混合动力车辆的配置实例的框图,该混合动力车辆被示为根据本发明的一个实施例的电动车辆的一个代表性实例。
参考图1,混合动力车辆具备对应于“内燃机”的发动机100、第一电动发电机(MG)110、第二MG120、动力分割机构130、减速器140、电池150、驱动轮160、以及控制器500。控制器500具有电力管理-电子控制单元(PM-ECU)170和电动发电机-ECU(MG-ECU)172。
混合动力车辆通过使用来自发动机100和第二MG120的至少一个的驱动力而行驶。发动机100、第一MG110和第二MG120经由动力分割机构130连接。
动力分割机构130代表性地被配置为行星齿轮机构。动力分割机构130包括外部太阳齿轮131;内部环形齿轮132,其被布置为与太阳齿轮131同心;多个小齿轮133,它们与太阳齿轮131啮合并且与环形齿轮132啮合;以及载体134。载体134被配置为保持多个小齿轮133可自转和可公转。
动力分割机构130将由发动机100产生的动力分割成两个路径。一个是其中驱动轮160经由减速器140驱动的路径。另一个是其中驱动第一MG110以便发电的路径。
第一MG110和第二MG120的代表性实例是由永磁电动机构成的三相交流旋转电机。
第一MG110主要作为“发电机”操作,并且能够使用来自由动力分割机构130分割的发动机100的驱动力产生电力。根据车辆的行驶状态和电池150的充电状态(SOC)适当地使用由第一MG110产生的电力。然后,将电力储存在电池150中,其中通过转换器(随后描述)调整电压。在发动机启动期间监视发动机100之类的情况下,作为转矩控制的结果,第一MG110还可以作为电动机操作。
第二MG120主要作为“电动机”操作,并且由储存在电池150中的电力和由第一MG110产生的电力中的至少一个驱动。由第二MG120产生的动力被传输到驱动轴135,并且然后经由减速器140被传输到驱动轮160。以这种方式,第二MG120帮助发动机100,或者通过使用来自第二MG120的驱动力允许车辆行驶。
在混合动力车辆的再生制动期间,驱动轮160经由减速器140驱动第二MG120。在这种情况下,第二MG120作为发电机操作。以这种方式,第二MG120用作将制动能量转换成电力的再生制动器。由第二MG120产生的电力被储存在电池150中。
电池150是被配置为具有多个串联电池模块的电池组,并且在每个电池模块中集成多个电池单元。电池150的电压例如大约为200V。可以使用由第一MG110或第二MG120产生的电力对电池150充电。电池传感器152检测电池150的温度、电压和电流。电池传感器152是温度传感器、电压传感器和电流传感器的综合设计。
PM-ECU170和MG-ECU172被配置为具有内置于其中的中央处理单元(CPU,未示出)和存储器(未示出),并且被配置为根据存储在存储器中的映射和程序,通过软件处理基于由相应传感器检测到的值执行算术处理。备选地,PM-ECU170和MG-ECU172的至少一部分可以被配置为由专用电子电路等,通过硬件处理执行预定数学运算处理和/或逻辑运算处理。
根据来自PM-ECU170的操作指令值控制发动机100。MG-ECU172控制第一MG110、第二MG120、转换器200以及逆变器210、220。(参考图2)连接PM-ECU170和MG-ECU172以便能够双向通信。
在该实施例中,PM-ECU170和MG-ECU172被配置为单独的ECU。但是,可以改为布置执行PM-ECU170和MG-ECU172两者的功能的单个ECU。
图2是示出图1中所示混合动力车辆的电气系统的一个配置实例的电路图。
参考图2,在混合动力车辆的电气系统中布置转换器200、对应于第一MG110的逆变器210、对应于第二MG120的逆变器220、系统主继电器(SMR)230、以及电容器C1、C2。
转换器200包括两个串联的电力半导体开关元件Q1、Q2(以下,也简称为“开关元件”)、被布置为对应于相应开关元件Q1、Q2的二极管D1、D2、以及电抗器L。
开关元件Q1、Q2串联在正极线PL2与接地线GL之间,接地线GL连接到电池150的负极。开关元件Q1的集电极连接到正极线PL2,并且开关元件Q2的发射极连接到接地线GL。二极管D1、D2反并联到相应开关元件Q1、Q2。开关元件Q1和二极管D1构成转换器200的上臂,并且开关元件Q2和二极管D2构成转换器200的下臂。
可以适当地采用绝缘栅双极晶体管(IGBT)、电力金属氧化物半导体(MOS)晶体管、电力双极晶体管等作为电力半导体开关元件Q1、Q2。每个开关元件Q1、Q2的接通/关断由来自MG-ECU172的开关控制信号控制。
电抗器L的一端连接到正极线PL1(其连接到电池150的正极),并且电抗器L的另一端连接到开关元件Q1、Q2的连接节点,即开关元件Q1的发射极与开关元件Q2的集电极之间的连接点。
电容器C2连接在正极线PL2与接地线GL之间。电容器C2平滑正极线PL2与接地线GL之间的电压变化的交流成分。电容器C1连接在正极线PL1与接地线GL之间。电容器C1平滑正极线PL1与接地线GL之间的电压变化的交流成分。
电流传感器SEIL检测流入电抗器L的电流IL(以下,称为电抗器电流)。电压传感器180检测电容器C2的端子间电压(这是转换器200的输出电压),即正极线PL2与接地线GL之间的电压VH(系统电压)。将检测到的值输出到MG-ECU172的转换器200经由正极线PL2和接地线GL被电连接到逆变器210和逆变器220。
在升压操作期间,转换器200升高从电池150供应的直流电压VB(电容器C1两端处的电压),并且向逆变器210、220供应升高后的系统电压VH。更具体地说,响应于来自MG-ECU172的开关控制信号,开关元件Q1的接通时段与开关元件Q2的接通时段交替。升压比对应于接通时段之间的比率。
在降压操作中,转换器200降低经由电容器C2从逆变器210、220供应的系统电压VH,并且对电池150充电。更具体地说,响应于来自MG-ECU172的开关控制信号,仅开关元件Q1接通时的时段与当开关元件Q1、Q2均关断时的时段交替。降压比对应于接通时段的占空比。
当停止转换器200的升压/降压时,将开关元件Q1固定设置为接通,并且将开关元件Q2固定设置为关断。
逆变器210被配置为一般三相逆变器。逆变器210具有U相臂15、V相臂16和W相臂17,它们平行布置在正极线PL2与接地线GL之间。每个相臂被配置为具有开关元件,它们串联在正极线PL2与接地线GL之间。例如,U相臂15具有开关元件Q3、Q4,V相臂16具有开关元件Q5、Q6,并且W相臂17具有开关元件Q7、Q8。反并联的二极管D3至D8被连接到相应开关元件Q3至Q8。开关元件Q3至Q8的接通/关断由来自MG-ECU172的开关控制信号控制。
第一MG110具有星形连接的U相、V相和W相线圈作为定子绕组。相应相的线圈的一端在中性点112处彼此连接。相应相的线圈的另一端连接到逆变器210的相应相臂的开关元件之间的相应连接点。
当车辆行驶时,逆变器210控制第一MG110的每个相的线圈的电流或电压,以使得根据操作指令值(代表性地,转矩指令值)操作第一MG110,设置该操作指令值以便产生车辆行驶需要的驱动力(车辆驱动转矩、发电转矩等)。换言之,逆变器210在正极线PL2与第一MG110之间执行双向直流/交流电力转换。
逆变器220被配置为一般三相逆变器,与逆变器210相同。第二MG120具有星形连接的U相、V相和W相线圈作为定子绕组,与第一MG110相同。相应相的线圈的一端在中性点122处彼此连接。相应相的线圈的另一端连接到逆变器220的相应相臂的开关元件之间的相应连接点。
当车辆行驶时,逆变器220控制第二MG120的每个相的线圈的电流或电压,以使得根据操作指令值(代表性地,转矩指令值)操作第二MG120,设置该操作指令值以便产生车辆行驶需要的驱动力(车辆驱动转矩、再生制动转矩等)。换言之,逆变器220在正极线PL2与第二MG120之间执行双向直流/交流电力转换。
解算器(也称为旋转角度传感器或旋转位置传感器)25检测第一MG110的旋转角θ1。解算器125检测第二MG120的旋转角θ2。电流传感器24v检测流入第一MG110的V相电流Iv。电流传感器24w检测流入第一MG110的W相电流Iw。电流传感器124v检测流入第二MG120的V相电流Iv。电流传感器124w检测流入第二MG120的W相电流Iw。
MG-ECU172根据PWM控制,产生开关控制信号,其控制构成逆变器210、220的开关元件的接通/关断。
PM-ECU170基于加速器开度Acc和混合动力车辆的车辆速度V,计算第一MG110的转矩指令值TR1和第二MG120的转矩指令值TR2。
MG-ECU172基于由PM-ECU170计算的第一MG110的转矩指令值TR1和第二MG120的转矩指令值TR2、第一MG110的电动机旋转数MRN1以及第二MG120的电动机旋转数MRN2,计算转换器200的输出电压(系统电压)VH的最佳值(目标值),即指令电压VH*。MG-ECU172基于由电压传感器180检测到的转换器200的输出电压VH和指令电压VH*,计算占空比,以便将输出电压VH控制到指令电压VH*,并且控制转换器200。
MG-ECU172通过在连续升压模式和间歇升压模式之一下设置转换器200来控制转换器200。连续升压模式是这样的模式:其中转换器200执行升压操作而不停止升压操作。在连续升压模式下,经由转换器200向逆变器210、220供应从电池150供应的电压。因此,连续升压模式包括这样的情况:其中经由转换器200向逆变器210、220按原样(不升压)供应电池150的电压(即,在占空比为1时)。
间歇升压模式是这样的模式:其中转换器200间歇地重复升压操作和升压操作的停止。当转换器200执行升压操作时,切换开关元件Q1、Q2的接通/关断。当转换器200停止升压操作时,将开关元件Q1固定设置为接通,并且将开关元件Q2固定设置为关断。当转换器200停止升压操作时,不经由转换器200向逆变器210、220供应电池150的电压。
图3是示出转换器200的正常升压控制的过程的流程图。随后将描述根据该实施例的升压控制。图4中的上图是示出在连续升压模式和间歇升压模式下转换器200的输出电压(系统电压)VH的图。图4中的中图是示出在连续升压模式和间歇升压模式下电抗器电流IL的图。实际上,电抗器电流IL根据转换器200的开关而变化。但是,在图4中的中图内使基于开关的变化成分平滑化。图4中的下图是示出在连续升压模式和间歇升压模式下基于切换的升压损失电力量LP的图。
参考图2、3和4,在步骤ST1,控制器500将转换器200设置处于连续升压模式。转换器200执行升压操作而不停止升压操作。
然后,在步骤ST2,当在过去预定时段内电抗器电流IL的平均值ILM低于阈值TH1时,控制器500允许过程继续到步骤ST3。
在步骤ST3,控制器500将转换器200设置处于间歇升压模式。此外,控制器500停止转换器200的升压操作(例如,参考图4中的时间点(1))。在此,在设置间歇升压模式之后,可以立即停止转换器200的升压操作,或者可以在预定时间长度之后停止转换器200的升压操作。在该实施例中,将其中重复升压允许状态和升压禁用状态的操作定义为间歇升压模式。
当停止转换器200的升压操作时,不输出来自电池150的电流,并且因此电抗器电流IL变成0,升压损失电力量LP变成0。当停止转换器200的升压操作时,由储存在电容器C2中的电力驱动第一MG110和/或第二MG120。电容器C2的电荷释放将降低系统电压VH。
然后,在步骤ST4,当系统电压VH与指令电压VH*之间的偏离量|VH*-VH|等于或高于限制值ΔVH时,控制器500允许过程继续到步骤ST5。在步骤ST5,控制器500恢复转换器200的升压操作(例如,参考图4中的时间点(2))。
当恢复转换器200的升压操作时,从电池150供应对电容器C2充电时驱动第一MG110和/或第二MG120需要的电流(返回电流),并且因此电抗器电流IL增加,升压损失电力量LP增加。
然后,在步骤ST6,当系统电压VH等于指令电压VH*时,控制器500允许过程继续到步骤ST7。在步骤ST7,控制器500停止转换器200的升压操作(例如,参考图4中的时间点(3))。
在步骤ST8,当在过去预定时段内电抗器电流IL的平均值ILM超过阈值TH2时,控制器500将转换器200设置处于连续升压模式(步骤ST9)。转换器200执行升压操作而不停止升压操作(例如,参考图4中的时间点(4))。在图4中示出在时间点(4)指令电压VH*增加,并且电抗器电流IL增加。
图4中的下图示出当间歇升压模式的一个升压停止时段和随后升压时段是一组时,升压损失电力量LP下降了多少。在示出升压损失电力量LP高于基准损失电力量BS的线与示出基准损失电力量BS的线之间的区域的面积P3显示与在连续升压模式下的操作相比增加的升压损失电力量LP的总和。在示出升压损失电力量LP低于基准损失电力量BS的线与示出基准损失电力量BS的线之间的区域的面积P0显示与连续升压模式下的操作相比减少的升压损失电力量的总和。在一组升压停止时段和后续升压时段中,通过从P0中减去P2(=P3)获得的值P1是与在连续升压模式下的操作相比,由于在间歇升压模式下的操作而减少的升压损失电力量的总和。
如图4中的下图中所示,设置处于间歇升压模式允许减少升压损失电力量。升压停止时段越长,损失降低效果越大。
接下来,将描述调整解算器25、125的基准点的控制。(以下,调整基准点的控制也称为“基准点调整控制”。)图5是由MG-ECU172执行的PWM控制方案的控制框图。如图5中所示,PWM控制方框300包括电流指令产生单元310、坐标变换单元250、320、旋转数计算单元330、PI计算单元240、PWM信号产生单元260、以及校正单元262。在图5中仅示出用于描述第一MG110的控制的配置。但是,MG-ECU172具有类似的PWM控制方框以便控制第二MG120。
解算器25检测第一MG110的旋转角θ1。电流传感器24v检测流入第一MG110的V相电流Iv,并且向PWM控制方框300输出检测到的V相电流Iv。电流传感器24w检测流入第一MG110的W相电流Iw,并且向PWM控制方框300输出检测到的W相电流Iw。三相电流Iu、Iv、Iw的瞬时值的总和为0,并且因此如图1中所示的用于检测两相电动机电流(例如,V相电流Iv和W相电流Iw)的布置已足够。
电流指令产生单元310根据预先产生的表,产生生成转矩需要的d轴电流指令值Idc和q轴电流指令值Iqc,该转矩对应于第一MG110中由PM-ECU170设置的第一MG110的转矩指令值TR1。
校正单元262输出旋转角θ1’,旋转角θ1’通过从由解算器25检测到的第一MG110的旋转角θ1中减去偏移角δ而被校正。随后将描述用于计算偏移角δ的方法。
坐标变换单元320使用从由解算器25检测到的第一MG110的旋转角θ1校正的旋转角θ1’,通过坐标变换(三相到两相),在三相交流坐标(它是由电流传感器24v、24w检测到的静止坐标)上针对V相电流Iv和W相电流Iw执行坐标变换,并且在指令轴坐标dc-qc上计算d轴电流Id和q轴电流Iq。
旋转数计算单元330基于旋转角θ1’,计算第一MG110的旋转角速度ω。
减法单元311输出关于d轴电流的指令值的偏差ΔId(ΔId=Idc-Id)。减法单元312输出关于q轴电流的指令值的偏差ΔIq(ΔIq=Iqc-Iq)。
将关于d轴电流的指令值的偏差ΔId(ΔId=Idc-Id)和关于q轴电流的指令值的偏差ΔIq(ΔIq=Iqc-Iq)输入到PI计算单元240中。PI计算单元240使用旋转角速度ω,以关于d轴电流偏差ΔId和q轴电流偏差ΔIq的预定增益执行比例积分(PI)计算,获得控制偏差,并且根据控制偏差计算d轴电压指令值Vdc和q轴电压指令值Vqc,它们是在指令轴坐标dc-qc上沿着相应轴向的外加电压的指令值。
坐标变换单元250使用第一MG110的旋转角θ1’,通过坐标变换(两相到三相),将d轴电压指令值Vdc和q轴电压指令值Vqc转换成三相交流坐标(它是静止坐标)上的U相、V相和W相的相应电压指令值Vuc、Vvc、Vwc。
PWM信号产生单元260基于相应相的电压指令值Vuc、Vvc、Vwc与预定载波之间的比较,产生开关控制信号。根据由PWM控制方框300产生的开关控制信号,对逆变器210进行开关控制,以使得施加交流电压以便根据输入到电流指令产生单元310中的转矩指令值TR1来输出转矩。
以这种方式配置根据转矩指令值TR1将电动机电流控制到电流指令值(Idc、Iqc)的闭环,并且因此根据转矩指令值TR1控制第一MG110的输出转矩。
接下来,将描述用于使用校正单元262获得偏移角δ的方法。实际坐标d-q是这样的坐标:在其上转子的实际场方向是d轴,并且与d轴正交的方向是q轴。指令轴坐标dc-qc是这样的坐标:其由解算器25检测到的旋转角θ1限定。实际坐标d-q上的电动机电压等式可以被示为以下等式(1)和(2)。
Vd=R×Id-ω×Lq×Iq(1)
Vq=R×Iq+ω×Ld×Id+ω×Φ(2)
在此,Vd是d轴电压,Vq是q轴电压,R是1相电阻值,Id是d轴电流,Iq是q轴电流,Ld是d轴电感,Lq是q轴电感,ω是旋转角速度,并且Φ是永久磁铁或磁场绕组中的磁通。
如图6中的上坐标上所示,在其中实际坐标d-q与指令轴坐标dc-qc匹配的情况下,在0电流状态(当Id为0并且Iq为0时)下,上面等式(1)和(2)中的Vdc和Vd等于0,并且Vqc和Vq等于ω×Φ。
假设在0电流状态(当Id为0并且Iq为0时)下,磁极检测位置相对于真正磁极位置具有误差。例如,假设指令轴坐标dc-qc相对于实际坐标d-q具有角度偏移ρ,如图6中的下坐标上所示。在这种情况下,Vdc等于ω×Φ×sinδ,Vqc等于ω×Φ×cosδ,并且Vdc不为0。因此,需要校正从解算器25的输出获得的第一MG110的旋转位置与第一MG110的实际旋转位置之间的偏差。
在解算器25、125的基准点调整控制期间,校正单元262获得0电流状态(Id=0并且Iq=0)下的d轴电压指令值Vdc和q轴电压指令值Vqc,并且通过以下等式(3)计算偏移角δ。
δ=tan-1(Vdc/Vqc)(3)
在此,当偏移角δ有误差时,未适当地执行第一MG110和第二MG120的控制。因此,需要以高精度获得偏移角δ。
在初始电动机操作期间,执行解算器25、125的基准点调整控制,即计算偏移角δ。初始电动机操作包括在车辆的工厂出货期间、在经销商更换第一MG110或第二MG120期间,以及在经销商更换包括转换器200和逆变器210、220的电力控制单元(PCU)之后。在解算器25、125的基准点调整控制期间,校正单元262获得0电流状态(Id=0并且Iq=0)下的d轴电压指令值Vdc和q轴电压指令值Vqc。但是,当在间歇升压模式下未在升压停止时段内控制作为逆变器210的输入电压的系统电压VH时,从逆变器210输出的电动机电流(Iu、Iv、Iw)改变而不变成由d轴电压指令值Vdc和q轴电压指令值Vqc指定的值。因此,d轴电流Id和q轴电流Iq不变成由d轴电压指令值Vdc和q轴电压指令值Vqc指定的值,变得不可能给出正确值作为等式(3)的Vdc和Vqc,并且获得的偏移角δ变成错误值。在该实施例中,为了避免该问题,在解算器25、125的基准点调整控制期间,控制器500不在间歇升压模式下控制转换器200。
图7是示出根据该实施例的转换器200的升压控制过程的流程图。图7中的流程图不同于图3中的流程图,因为在图7中的流程图中,在步骤ST2与步骤ST3之间设置步骤STA。图8是示出图7中的步骤STA的过程的流程图。
参考图8,在其中正在实施解算器25或解算器125的基准点调整控制的情况下(步骤S101中的是),控制器500将转换器200的间歇升压控制设置为禁用并允许过程继续到步骤ST1。在其中并非正在实施解算器25或解算器125的基准点调整控制的情况下(步骤S101中的否),控制器500将转换器200的间歇升压控制设置为允许并允许过程继续到步骤ST3。
根据该实施例,如上所述,在具有间歇升压控制功能的车辆中,在解算器的基准点调整控制期间,不在间歇升压模式下控制转换器。因此,能够精确地计算偏移角δ,并且能够适当地控制第一MG和第二MG。
本发明并不限于上述实施例。例如,根据本发明的一个实施例,在其中将间歇升压模式控制设置为禁用的情况下,执行连续升压模式下的操作,但本发明并不限于此。即使在其中禁用间歇升压模式控制的情况下,如果不需要升压但需要降压,也能够执行转换器的降压。此外,当不需要升压/降压时,能够停止转换器的升压/降压。

Claims (4)

1.一种用于车辆的电源装置,所述电源装置包括:
蓄电装置;
升压转换器,其被配置为升高所述蓄电装置的电压,所述升压转换器被配置为向所述车辆的电气负载供应升高后的电压;以及
控制器,其被配置为在连续升压模式和间歇升压模式下控制所述升压转换器,所述控制器被配置为在所述连续升压模式下使所述升压转换器连续地工作,所述控制器被配置为在所述间歇升压模式下使所述升压转换器间歇地工作,并且所述控制器被配置为当正在实施调整电动机的旋转位置传感器的基准点的控制时,不在所述间歇升压模式下控制所述升压转换器。
2.根据权利要求1所述的电源装置,其中
所述控制器被配置为当并非正在实施调整所述电动机的所述旋转位置传感器的所述基准点的所述控制时,在所述间歇升压模式下控制所述升压转换器。
3.根据权利要求1所述的电源装置,其中
所述控制器被配置为在所述电动机的初始操作期间,执行调整所述电动机的所述旋转位置传感器的所述基准点的所述控制。
4.一种用于控制车辆的电源装置的方法,所述车辆包括:
电动机;
旋转位置传感器,其被配置为检测所述电动机的旋转位置;
蓄电装置;以及
升压转换器,其被配置为升高所述蓄电装置的电压并且被配置为向所述车辆的电气负载供应升高后的电压,
所述方法包括:
在连续升压模式和间歇升压模式下控制所述升压转换器,所述升压转换器在所述连续升压模式下连续地工作,并且所述升压转换器在所述间歇升压模式下间歇地工作;以及
当正在实施调整所述电动机的所述旋转位置传感器的基准点的控制时,不在所述间歇升压模式下控制所述升压转换器,并且当并非正在实施调整所述电动机的所述旋转位置传感器的所述基准点的所述控制时,在所述间歇升压模式下控制所述升压转换器。
CN201480067074.5A 2013-12-12 2014-12-04 车辆的电源装置及用于控制所述电源装置的方法 Active CN105814787B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013-257036 2013-12-12
JP2013257036A JP5920327B2 (ja) 2013-12-12 2013-12-12 車両の電源装置
PCT/IB2014/002645 WO2015087123A2 (en) 2013-12-12 2014-12-04 Power supply device for vehicle and method for controlling the same

Publications (2)

Publication Number Publication Date
CN105814787A true CN105814787A (zh) 2016-07-27
CN105814787B CN105814787B (zh) 2018-09-11

Family

ID=52144763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480067074.5A Active CN105814787B (zh) 2013-12-12 2014-12-04 车辆的电源装置及用于控制所述电源装置的方法

Country Status (4)

Country Link
US (1) US10099563B2 (zh)
JP (1) JP5920327B2 (zh)
CN (1) CN105814787B (zh)
WO (1) WO2015087123A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108306488A (zh) * 2017-01-12 2018-07-20 福特全球技术公司 获得较低的最小升压比的可变电压转换器调制

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101755922B1 (ko) * 2015-12-09 2017-07-10 현대자동차주식회사 레졸버 옵셋 측정 방법
JP6451692B2 (ja) * 2016-05-13 2019-01-16 トヨタ自動車株式会社 自動車
JP2018182939A (ja) * 2017-04-17 2018-11-15 東芝キヤリア株式会社 電源装置
EP3764535B1 (en) * 2018-03-07 2021-11-17 Nissan Motor Co., Ltd. Power conversion control method and power conversion control device
JP6638173B2 (ja) * 2018-03-30 2020-01-29 本田技研工業株式会社 電力変換装置
US10790763B2 (en) * 2018-06-12 2020-09-29 Ford Global Technologies, Llc HEV e-drives with HV boost ratio and wide DC bus voltage range

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050104551A1 (en) * 2003-02-28 2005-05-19 Mitsubishi Denki Kabushiki Kaisha Synchronous motor control device and method of correcting deviation in rotational position of synchronous motor
EP2200171A1 (en) * 2008-12-19 2010-06-23 Honda Motor Co., Ltd Apparatus for controlling permanent-magnet rotary electric machine
CN102460925A (zh) * 2009-06-10 2012-05-16 本田技研工业株式会社 变压器的控制装置
CN102602299A (zh) * 2011-01-21 2012-07-25 本田技研工业株式会社 电动车辆用电源装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433525B2 (en) * 2000-05-03 2002-08-13 Intersil Americas Inc. Dc to DC converter method and circuitry
JP4452519B2 (ja) * 2004-01-20 2010-04-21 本田技研工業株式会社 車両推進用のdcブラシレスモータ駆動制御装置及び方法
JP4474939B2 (ja) * 2004-02-20 2010-06-09 トヨタ自動車株式会社 車両用電源装置
US7659688B2 (en) * 2007-05-03 2010-02-09 Gm Global Technology Operations, Inc. Method and system for resolver alignment in electric motor system
JP2009027774A (ja) * 2007-07-17 2009-02-05 Toyota Motor Corp 車両
JP5126630B2 (ja) 2009-06-02 2013-01-23 本田技研工業株式会社 負荷駆動システムの制御装置
KR20130026873A (ko) * 2011-09-06 2013-03-14 현대자동차주식회사 하이브리드 차량의 제어방법
JP2014023403A (ja) 2012-07-24 2014-02-03 Toyota Motor Corp モータ制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050104551A1 (en) * 2003-02-28 2005-05-19 Mitsubishi Denki Kabushiki Kaisha Synchronous motor control device and method of correcting deviation in rotational position of synchronous motor
EP2200171A1 (en) * 2008-12-19 2010-06-23 Honda Motor Co., Ltd Apparatus for controlling permanent-magnet rotary electric machine
US20100156330A1 (en) * 2008-12-19 2010-06-24 Honda Motor Co., Ltd. Apparatus for controlling permanent-magnet rotary electric machine
CN102460925A (zh) * 2009-06-10 2012-05-16 本田技研工业株式会社 变压器的控制装置
CN102602299A (zh) * 2011-01-21 2012-07-25 本田技研工业株式会社 电动车辆用电源装置
US20120187887A1 (en) * 2011-01-21 2012-07-26 Honda Motor Co., Ltd. Power unit for electric vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108306488A (zh) * 2017-01-12 2018-07-20 福特全球技术公司 获得较低的最小升压比的可变电压转换器调制
CN108306488B (zh) * 2017-01-12 2021-10-26 福特全球技术公司 获得较低的最小升压比的可变电压转换器

Also Published As

Publication number Publication date
JP5920327B2 (ja) 2016-05-18
JP2015116061A (ja) 2015-06-22
WO2015087123A2 (en) 2015-06-18
US20160318404A1 (en) 2016-11-03
CN105814787B (zh) 2018-09-11
US10099563B2 (en) 2018-10-16
WO2015087123A3 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
CN105814787A (zh) 车辆的电源装置及用于控制所述电源装置的方法
US9903931B2 (en) Diagnostic device for voltage sensors
US7822535B2 (en) Internal combustion engine stop controller and stop control method
US8497646B2 (en) Controller for AC electric motor and electric powered vehicle
US20170313197A1 (en) Vehicle
US10103656B2 (en) Vehicle with controller for performing pulse width modulation control
US10086706B2 (en) Vehicle
CN108736791B (zh) 车辆及其控制方法及系统
CN102959855A (zh) 马达驱动装置和搭载该马达驱动装置的车辆
US20100001671A1 (en) Motor drive control apparatus and method
US10081256B2 (en) Vehicle comprising electronic control unit configured to control inverter by switching PWM control
JP2015133770A (ja) 車両の電源装置
JP2011109851A (ja) 電源システムの制御装置およびそれを搭載する車両
US9623757B2 (en) Vehicle and electric power supply device for vehicle
JP5780197B2 (ja) 電圧変換装置
CN103684166B (zh) 包括马达控制装置的车辆以及用于车辆的控制方法
CN103904982A (zh) 车辆和用于车辆的控制装置
CN103904980B (zh) 车辆和用于车辆的控制装置
US10348188B2 (en) Vehicle and control method therefor
JP2011109850A (ja) 電源システムの制御装置およびそれを搭載する車両
EP2808989B1 (en) Control apparatus for voltage conversion apparatus
JP2011109852A (ja) 電源システムの制御装置およびそれを搭載する車両
JP5928442B2 (ja) 車両の電源装置
JP7516828B2 (ja) モータ駆動システム
JP6708843B2 (ja) 駆動装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200409

Address after: Aichi Prefecture, Japan

Patentee after: DENSO Corp.

Address before: Aichi Prefecture, Japan

Patentee before: Toyota Motor Corp.

TR01 Transfer of patent right