CN105800952A - 一种CdSe纳米晶光电材料的制备方法 - Google Patents
一种CdSe纳米晶光电材料的制备方法 Download PDFInfo
- Publication number
- CN105800952A CN105800952A CN201610106967.7A CN201610106967A CN105800952A CN 105800952 A CN105800952 A CN 105800952A CN 201610106967 A CN201610106967 A CN 201610106967A CN 105800952 A CN105800952 A CN 105800952A
- Authority
- CN
- China
- Prior art keywords
- solution
- concentration
- photoelectric material
- preparation
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
- C03C17/3429—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
- C03C17/3464—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a chalcogenide
- C03C17/3476—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a chalcogenide comprising a selenide or telluride
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种CdSe纳米晶光电材料的制备方法。(1)在氩气保护下,将0.7896 g硒粉和7.5624g无水亚硫酸钠加入装有100mL二次蒸馏水的三口烧瓶中,回流2小时,冷却,得Na2SeSO3溶胶。(2)将15mL~45mL浓度为0.1mol/L的Cd(NO3)2·4H2O溶液和1mL~9mL分析纯甲酸溶液混合。(3)在步骤(2)所得溶液中加入10mL分析纯NMP、5mL~15mL浓度为0.1mol/L的Na2EDTA和5mL浓度为0.01mol/L的SDBS。(4)将步骤(3)所得溶液置于水浴中加热,至60℃~100℃后,加入15mL~45mL步骤(1)所得的Na2SeSO3溶胶和1mL~19mL的H2O,在氩气保护下恒温反应回流20~60分钟,冷却。本发明制备工艺简单,样品分散性好,易存储,无污染,并具有较好的光电性能等特点。
Description
技术领域
本发明涉及一种CdSe纳米晶光电材料的制备方法。
背景技术
CdSe纳米材料是Ⅱ-Ⅵ族直接带隙的典型代表,其禁带宽度为1.74eV,具有窄的发射光谱,平均原子序数较大,对高能射线阻止能力强,施加高电场时漏电小,稳定性高,是制备室温核辐射探测器的重要材料;而且通过改变纳米晶的尺寸可以调节其发射波长范围,因此,CdSe纳米晶可应用于生物标记和荧光显示领域,并在光电器件、生物传感、太阳能电池、发光二极管、压电材料和激光材料等方面也得到了广泛的应用。Heinz和Banks在1956年对CdSe性质加以系统的阐述;Dhere和Paeikh分析了CdSe纳米材料的晶体结构,指出CdSe纳米晶体具有立方和六方晶型两种结构;到70年代初,T.P.Brody等人成功的研制成CdSe-TFT有源矩阵选址的液晶和电致发光显示器,使CdSe在薄膜晶体管方面也呈现出广阔的应用前景。这标志着CdSe纳米材料进入了应用领域,成为了研究的热点。1993年,Bawendi小组首次在反应体系中引入三氧辛基磷(TOPO)和三正辛基磷(TOP),制备出高结晶度、单分散、尺寸可控的CdSe纳米晶。但这种方法,存在难储存、毒性大、价格昂贵等缺点。本发明以液相法合成纳米CdSe,具有分散性好,工艺简单,易存储,毒性小等优点。
发明内容
本发明的目的是提供一种液相法制备CdSe纳米晶光电材料的方法。
具体步骤为:
(1)在氩气保护(无氧)条件下,将0.7896g硒粉和7.5624g无水亚硫酸钠加入装有100mL二次蒸馏水的三口烧瓶中,沸腾下反应回流2小时,冷却,即得浓度为0.1mol/L的Na2SeSO3溶胶。
(2)将15mL~45mL浓度为0.1mol/L的Cd(NO3)2·4H2O溶液和1mL~9mL分析纯甲酸溶液混合。
(3)在步骤(2)所得溶液中加入10mL分析纯N-甲基吡咯烷酮溶液(NMP)、5mL~15mL浓度为0.1mol/L的乙二胺四乙酸二钠溶液(Na2EDTA)和5mL浓度为0.01mol/L的十二烷基苯磺酸钠溶液(SDBS),混合均匀,得到溶液A。
(4)将步骤(3)所得A溶液置于水浴中加热,待温度升至60℃~100℃后,缓慢加入15mL~45mL步骤(1)所得的浓度为0.1mol/L的Na2SeSO3溶胶和1mL~19mL的H2O(使总体积恒定),在氩气保护(无氧)条件下恒温反应回流20~60分钟,冷却,即得分散度较好的CdSe纳米晶光电材料,对其进行离心沉淀分离后用分散剂分散,涂布在ITO导电玻璃上。测试其光电压值为0.134V~0.381V。
本发明与其他相关技术相比,最显著的特点是液相法合成CdSe纳米晶光电材料,具有分散性好、工艺简单、易存储、无污染、光电性能较高等特点。
具体实施方式
实施例1:
(1)在氩气保护(无氧)条件下,将0.7896g硒粉和7.5624g无水亚硫酸钠加入装有100mL二次蒸馏水的三口烧瓶中,沸腾下反应回流2小时,冷却,即得浓度为0.1mol/L的Na2SeSO3溶胶。
(2)将45mL浓度为0.1mol/L的Cd(NO3)2·4H2O溶液和9mL分析纯甲酸溶液混合。
(3)在步骤(2)所得溶液中加入10mL分析纯N-甲基吡咯烷酮溶液(NMP)、15mL浓度为0.1mol/L的乙二胺四乙酸二钠溶液(Na2EDTA)和5mL浓度为0.01mol/L的十二烷基苯磺酸钠溶液(SDBS),混合均匀,得到溶液A。
(4)将步骤(3)所得A溶液置于水浴中加热,待温度升至100℃后,缓慢加入15mL步骤(1)所得的浓度为0.1mol/L的Na2SeSO3溶胶和1mL的H2O(使总体积恒定),在氩气保护(无氧)条件下恒温100℃反应回流60分钟,冷却,即得分散度较好的CdSe纳米晶光电材料,对其进行离心沉淀分离后用分散剂分散,涂布在ITO导电玻璃上。测试其光电压值为0.228V。
实施例2:
(1)在氩气保护(无氧)条件下,将0.7896g硒粉和7.5624g无水亚硫酸钠加入装有100mL二次蒸馏水的三口烧瓶中,沸腾下反应回流2小时,冷却,即得浓度为0.1mol/L的Na2SeSO3溶胶。
(2)将15mL浓度为0.1mol/L的Cd(NO3)2·4H2O溶液和1mL分析纯甲酸溶液混合。
(3)在步骤(2)所得溶液中加入10mL分析纯N-甲基吡咯烷酮溶液(NMP)、5mL浓度为0.1mol/L的乙二胺四乙酸二钠溶液(Na2EDTA)和5mL浓度为0.01mol/L的十二烷基苯磺酸钠溶液(SDBS),混合均匀,得到溶液A。
(1)(4)将步骤(3)所得A溶液置于水浴中加热,待温度升至60℃后,缓慢加入45mL步骤(1)所得的浓度为0.1mol/L的Na2SeSO3溶胶和19mL的H2O(使总体积恒定),在氩气保护(无氧)条件下恒温60℃反应回流20分钟,冷却,即得分散度较好的CdSe纳米晶光电材料,对其进行离心沉淀分离后用分散剂分散,涂布在ITO导电玻璃上。测试其光电压值为0.134V。
实施例3:
(1)在氩气保护(无氧)条件下,将0.7896g硒粉和7.5624g无水亚硫酸钠加入装有100mL二次蒸馏水的三口烧瓶中,沸腾下反应回流2小时,冷却,即得浓度为0.1mol/L的Na2SeSO3溶胶。
(2)将30mL浓度为0.1mol/L的Cd(NO3)2·4H2O溶液和5mL分析纯甲酸溶液混合。
(3)在步骤(2)所得溶液中加入10mL分析纯N-甲基吡咯烷酮溶液(NMP)、10mL浓度为0.1mol/L的乙二胺四乙酸二钠溶液(Na2EDTA)和5mL浓度为0.01mol/L的十二烷基苯磺酸钠溶液(SDBS),混合均匀,得到溶液A。
(4)将步骤(3)所得A溶液置于水浴中加热,待温度升至80℃后,缓慢加入30mL步骤(1)所得的浓度为0.1mol/L的Na2SeSO3溶胶和10mL的H2O(使总体积恒定),在氩气保护(无氧)条件下恒温80℃反应回流40分钟,冷却,即得分散度较好的CdSe纳米晶光电材料,对其进行离心沉淀分离后用分散剂分散,涂布在ITO导电玻璃上。测试其光电压值为0.322V。
实施例4:
(1)在氩气保护(无氧)条件下,将0.7896g硒粉和7.5624g无水亚硫酸钠加入装有100mL二次蒸馏水的三口烧瓶中,沸腾下反应回流2小时,冷却,即得浓度为0.1mol/L的Na2SeSO3溶胶。
(2)将40mL浓度为0.1mol/L的Cd(NO3)2·4H2O溶液和5mL分析纯甲酸溶液混合。
(3)在步骤(2)所得溶液中加入10mL分析纯N-甲基吡咯烷酮溶液(NMP)、10mL浓度为0.1mol/L的乙二胺四乙酸二钠溶液(Na2EDTA)和5mL浓度为0.01mol/L的十二烷基苯磺酸钠溶液(SDBS),混合均匀,得到溶液A。
(4)将步骤(3)所得A溶液置于水浴中加热,待温度升至80℃后,缓慢加入20mL步骤(1)所得的浓度为0.1mol/L的Na2SeSO3溶胶和10mL的H2O(使总体积恒定),在氩气保护(无氧)条件下恒温80℃反应回流40分钟,冷却,即得分散度较好的CdSe纳米晶光电材料,对其进行离心沉淀分离后用分散剂分散,涂布在ITO导电玻璃上。测试其光电压值为0.381V。
Claims (1)
1.一种CdSe纳米晶光电材料的制备方法,其特征在于具体步骤为:
在氩气保护条件下,将0.7896g硒粉和7.5624g无水亚硫酸钠加入装有100mL二次蒸馏水的三口烧瓶中,沸腾下反应回流2小时,冷却,即得浓度为0.1mol/L的Na2SeSO3溶胶;
将15mL~45mL浓度为0.1mol/L的Cd(NO3)2·4H2O溶液和1mL~9mL分析纯甲酸溶液混合;
在步骤(2)所得溶液中加入10mL分析纯N-甲基吡咯烷酮溶液、5mL~15mL浓度为0.1mol/L的乙二胺四乙酸二钠溶液和5mL浓度为0.01mol/L的十二烷基苯磺酸钠溶液,混合均匀,得到溶液A;
将步骤(3)所得A溶液置于水浴中加热,待温度升至60℃~100℃后,缓慢加入15mL~45mL步骤(1)所得的浓度为0.1mol/L的Na2SeSO3溶胶和1mL~19mL的H2O,在氩气保护条件下恒温反应回流20~60分钟,冷却,即得CdSe纳米晶光电材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610106967.7A CN105800952A (zh) | 2016-02-28 | 2016-02-28 | 一种CdSe纳米晶光电材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610106967.7A CN105800952A (zh) | 2016-02-28 | 2016-02-28 | 一种CdSe纳米晶光电材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105800952A true CN105800952A (zh) | 2016-07-27 |
Family
ID=56465916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610106967.7A Pending CN105800952A (zh) | 2016-02-28 | 2016-02-28 | 一种CdSe纳米晶光电材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105800952A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109160494A (zh) * | 2018-09-13 | 2019-01-08 | 东华大学 | 一种毛球状CdSe纳米材料的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1666562A2 (en) * | 2004-11-11 | 2006-06-07 | Samsung Electronics Co., Ltd. | Interfused nanocrystals and method of preparing the same |
US20120031490A1 (en) * | 2010-08-03 | 2012-02-09 | Honeywell International Inc. | Quantum dot solar cells and methods for manufacturing such solar cells |
WO2012112899A1 (en) * | 2011-02-17 | 2012-08-23 | Vanderbilt University | Enhancement of light emission quantum yield in treated broad spectrum nanocrystals |
CN104974759A (zh) * | 2014-04-11 | 2015-10-14 | 韩国机械研究院 | 由卤素盐稳定化的量子点及其制造方法 |
CN105154086A (zh) * | 2015-09-29 | 2015-12-16 | 复旦大学 | 一种常温下制备CdSe/CdS核壳半导体量子点的方法 |
-
2016
- 2016-02-28 CN CN201610106967.7A patent/CN105800952A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1666562A2 (en) * | 2004-11-11 | 2006-06-07 | Samsung Electronics Co., Ltd. | Interfused nanocrystals and method of preparing the same |
US20120031490A1 (en) * | 2010-08-03 | 2012-02-09 | Honeywell International Inc. | Quantum dot solar cells and methods for manufacturing such solar cells |
WO2012112899A1 (en) * | 2011-02-17 | 2012-08-23 | Vanderbilt University | Enhancement of light emission quantum yield in treated broad spectrum nanocrystals |
CN104974759A (zh) * | 2014-04-11 | 2015-10-14 | 韩国机械研究院 | 由卤素盐稳定化的量子点及其制造方法 |
CN105154086A (zh) * | 2015-09-29 | 2015-12-16 | 复旦大学 | 一种常温下制备CdSe/CdS核壳半导体量子点的方法 |
Non-Patent Citations (1)
Title |
---|
王晶晶等: ""CdSe量子点尺寸的可控制备"", 《2015年中西部地区无机化学化工学术研讨会论文集》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109160494A (zh) * | 2018-09-13 | 2019-01-08 | 东华大学 | 一种毛球状CdSe纳米材料的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
He et al. | Highly stable organic antimony halide crystals for X-ray scintillation | |
Swabeck et al. | Broadband sensitization of lanthanide emission with indium phosphide quantum dots for visible to near-infrared downshifting | |
Knowles et al. | Luminescent colloidal semiconductor nanocrystals containing copper: synthesis, photophysics, and applications | |
Teitelboim et al. | Broadband near-infrared to visible upconversion in quantum dot–quantum well heterostructures | |
Shen et al. | Quantum yield regeneration: influence of neutral ligand binding on photophysical properties in colloidal core/shell quantum dots | |
Chen et al. | Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal | |
Aitasalo et al. | Thermoluminescence study of persistent luminescence materials: Eu2+-and R3+-doped calcium aluminates, CaAl2O4: Eu2+, R3+ | |
Sohn et al. | Combinatorial search for new red phosphors of high efficiency at VUV excitation based on the YRO4 (R= As, Nb, P, V) system | |
Zhang et al. | Facile synthesis of highly luminescent Mn-doped ZnS nanocrystals | |
Quan et al. | Multicolor tuning of manganese-doped ZnS colloidal nanocrystals | |
Müller et al. | Photoluminescence quantum yield and matrix-induced luminescence enhancement of colloidal quantum dots embedded in ionic crystals | |
Wang et al. | Highly luminescent silica-coated CdS/CdSe/CdS nanoparticles with strong chemical robustness and excellent thermal stability | |
Xu et al. | CsPbBr3 quantum dot films with high luminescence efficiency and irradiation stability for radioluminescent nuclear battery application | |
Eagle et al. | Surface chemistry and quantum dot luminescence: Shell growth, atomistic modification, and beyond | |
Justice Babu et al. | Concurrent energy-and electron-transfer dynamics in photoexcited Mn-doped CsPbBr3 perovskite nanoplatelet architecture | |
Pan et al. | Synthesis and characterization of quantum dots: A case study using PbS | |
Lethiec et al. | Polarimetry-based analysis of dipolar transitions of single colloidal CdSe/CdS dot-in-rods | |
Li et al. | Tunable dual visible and near-infrared persistent luminescence in doped zinc gallogermanate nanoparticles for simultaneous photosensitization and bioimaging | |
Feng et al. | Eu2+/Eu3+-based smart duplicate responsive stimuli and time-gated nanohybrid for optical recording and encryption | |
Li et al. | Enhanced luminescence with fast nanosecond lifetime in In2S3: Tb3+ nanophosphors | |
Silver et al. | Yttrium oxide upconverting phosphors. Part 2: temperature dependent upconversion luminescence properties of erbium in yttrium oxide | |
Pal et al. | Evaluation of kinetics parameters in the X-irradiated TSL studies of RE3+-doped (RE= Eu, Tb) ZnO nanorods for dosimetric applications | |
Anantachaisilp et al. | Nature of red luminescence in oxygen treated hydrothermally grown zinc oxide nanorods | |
Watanabe et al. | Silicon quantum dots for light-emitting diodes extending to the NIR-II window | |
Zhang et al. | Controllable growth of high quality MAPbX3 perovskite single crystals for X-ray detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160727 |
|
WD01 | Invention patent application deemed withdrawn after publication |