CN105785281A - Photovoltaic grid-connected inverter MPPT (maximum power point tracking) efficiency test method and device - Google Patents
Photovoltaic grid-connected inverter MPPT (maximum power point tracking) efficiency test method and device Download PDFInfo
- Publication number
- CN105785281A CN105785281A CN201410795352.0A CN201410795352A CN105785281A CN 105785281 A CN105785281 A CN 105785281A CN 201410795352 A CN201410795352 A CN 201410795352A CN 105785281 A CN105785281 A CN 105785281A
- Authority
- CN
- China
- Prior art keywords
- connected inverter
- photovoltaic grid
- current
- power supply
- programmable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010998 test method Methods 0.000 title 1
- 238000012360 testing method Methods 0.000 claims abstract description 106
- 238000005070 sampling Methods 0.000 claims abstract description 72
- 238000000034 method Methods 0.000 claims abstract description 33
- 238000012544 monitoring process Methods 0.000 claims description 5
- 230000003068 static effect Effects 0.000 abstract description 22
- 238000010248 power generation Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 9
- 238000004590 computer program Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Landscapes
- Photovoltaic Devices (AREA)
- Control Of Electrical Variables (AREA)
Abstract
本发明提供了一种光伏并网逆变器MPPT效率的测试方法及装置,涉及光伏发电技术领域。方法包括:根据一预先设置的辐照度变化策略,确定一可编程直流电源的电压和电流的输出策略;控制可编程直流电源根据电压和电流的输出策略向待测的光伏并网逆变器输出电压和电流,并确定各时间采样点的光伏方阵理论最大输出功率值;监测各时间采样点的光伏并网逆变器的输入电压和光伏并网逆变器的输入电流;根据各时间采样点的光伏方阵理论最大输出功率值,各时间采样点的光伏并网逆变器的输入电压和输入电流确定光伏并网逆变器最大功率点跟踪效率。本发明能够解决现有技术中测试过程冗长,且难以综合静态和动态最大功率点跟踪效率测试的问题。
The invention provides a method and device for testing the MPPT efficiency of a photovoltaic grid-connected inverter, and relates to the technical field of photovoltaic power generation. The method includes: determining a voltage and current output strategy of a programmable DC power supply according to a preset irradiance change strategy; controlling the programmable DC power supply to the photovoltaic grid-connected inverter to be tested Output voltage and current, and determine the theoretical maximum output power value of the photovoltaic array at each time sampling point; monitor the input voltage of the photovoltaic grid-connected inverter and the input current of the photovoltaic grid-connected inverter at each time sampling point; The theoretical maximum output power value of the photovoltaic array at the sampling point, the input voltage and input current of the photovoltaic grid-connected inverter at each sampling point determine the maximum power point tracking efficiency of the photovoltaic grid-connected inverter. The invention can solve the problems in the prior art that the test process is lengthy and it is difficult to synthesize static and dynamic maximum power point tracking efficiency tests.
Description
技术领域technical field
本发明涉及光伏发电技术领域,尤其涉及一种光伏并网逆变器MPPT效率的测试方法及装置。The invention relates to the technical field of photovoltaic power generation, in particular to a method and device for testing MPPT efficiency of a photovoltaic grid-connected inverter.
背景技术Background technique
目前,随着全球气候问题日益严重、能源供需矛盾不断加剧,世界各国从可持续发展和保障能源供给安全的角度,调整能源政策,将新能源发展纳入国家发展战略。太阳能因资源丰富、永不枯竭、清洁安全成为可再生能源发电方式。当前,大规模和分布式并网光伏电站已被广泛应用。At present, as the global climate problem is getting worse and the contradiction between energy supply and demand is intensifying, countries around the world are adjusting energy policies from the perspective of sustainable development and ensuring energy supply security, and incorporating new energy development into national development strategies. Solar energy has become a renewable energy power generation method because of its abundant resources, inexhaustibility, cleanness and safety. At present, large-scale and distributed grid-connected photovoltaic power plants have been widely used.
在光伏电站中,光伏并网逆变器是将太阳能电池发出的直流电变换成交流电后馈入电网的重要设备。光伏并网逆变器极少数在稳定的环境下运行,因为太阳的辐射照度受天气影响而发生变化,并且一天中的不同时间段也不同,所以对光伏并网逆变器最大功率点跟踪(MaximumPowerPointTracking,简称MPPT)效率难度较大。光伏并网逆变器最大功率点跟踪是对因光伏组件表面温度变化和太阳辐照度变化而产生的输出电压与电流的变化进行跟踪控制,使太阳能电池方阵一直保持在最大输出的工作状态,以获得最大的功率输出的自动调整行为。光伏并网逆变器最大功率点跟踪效率即为在规定的测量周期时间内,被测逆变器获得的直流电能与理论上太阳能电池阵列模拟器在该段时间内工作在最大功率点提供的电能的比值。In a photovoltaic power station, the photovoltaic grid-connected inverter is an important device that converts the direct current generated by the solar cell into alternating current and then feeds it into the grid. Photovoltaic grid-connected inverters rarely operate in a stable environment, because the sun's irradiance changes due to the weather, and it is also different in different time periods of the day, so the maximum power point tracking of photovoltaic grid-connected inverters ( MaximumPowerPointTracking, referred to as MPPT) efficiency is more difficult. The maximum power point tracking of the photovoltaic grid-connected inverter is to track and control the changes of the output voltage and current due to the changes of the surface temperature of the photovoltaic modules and the change of the solar irradiance, so that the solar cell array can always maintain the working state of the maximum output , to obtain automatic tuning behavior for maximum power output. The maximum power point tracking efficiency of a photovoltaic grid-connected inverter is the difference between the DC power obtained by the tested inverter and the theoretical solar array simulator working at the maximum power point within the specified period of time. power ratio.
当前对光伏并网逆变器最大功率点跟踪效率进行测试时,大多需要人为调节向并网逆变器输入的电压电流,并人为调节所模拟的电压电流的时间,造成整个测试过程冗长。且当前对并网逆变器最大功率点跟踪效率测试仅是针对静态最大功率点跟踪效率的测试,难以综合静态和动态最大功率点跟踪效率测试。At present, when testing the maximum power point tracking efficiency of photovoltaic grid-connected inverters, most of them need to manually adjust the voltage and current input to the grid-connected inverter, and artificially adjust the time of the simulated voltage and current, resulting in a lengthy test process. Moreover, the current maximum power point tracking efficiency test for grid-connected inverters is only for the static maximum power point tracking efficiency test, and it is difficult to integrate static and dynamic maximum power point tracking efficiency tests.
发明内容Contents of the invention
本发明实施例提供一种光伏并网逆变器MPPT效率的测试方法及装置,以解决现有技术中测试过程冗长,且对并网逆变器最大功率点跟踪效率测试仅是针对静态最大功率点跟踪效率的测试,难以综合静态和动态最大功率点跟踪效率测试的问题。Embodiments of the present invention provide a method and device for testing the MPPT efficiency of photovoltaic grid-connected inverters, so as to solve the tedious test process in the prior art, and the maximum power point tracking efficiency test of grid-connected inverters is only for static maximum power Point tracking efficiency test, it is difficult to synthesize static and dynamic maximum power point tracking efficiency test problems.
为了达到上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts following technical scheme:
一种光伏并网逆变器MPPT效率的测试方法,包括:A method for testing the MPPT efficiency of a photovoltaic grid-connected inverter, comprising:
根据一预先设置的辐照度变化策略,确定一可编程直流电源的电压和电流的输出策略;Determine a voltage and current output strategy of a programmable DC power supply according to a preset irradiance change strategy;
控制所述可编程直流电源根据所述电压和电流的输出策略向待测的光伏并网逆变器输出电压和电流;Controlling the programmable DC power supply to output voltage and current to the photovoltaic grid-connected inverter to be tested according to the output strategy of the voltage and current;
根据所述可编程直流电源的电压和电流的输出策略确定各时间采样点的光伏方阵理论最大输出功率值;Determine the theoretical maximum output power value of the photovoltaic array at each time sampling point according to the voltage and current output strategy of the programmable DC power supply;
监测各时间采样点的光伏并网逆变器的输入电压和光伏并网逆变器的输入电流;Monitor the input voltage of the photovoltaic grid-connected inverter and the input current of the photovoltaic grid-connected inverter at each time sampling point;
根据所述各时间采样点的光伏方阵理论最大输出功率值,所述各时间采样点的光伏并网逆变器的输入电压和输入电流确定所述光伏并网逆变器最大功率点跟踪效率。According to the theoretical maximum output power value of the photovoltaic array at each time sampling point, the input voltage and input current of the photovoltaic grid-connected inverter at each time sampling point determine the maximum power point tracking efficiency of the photovoltaic grid-connected inverter .
具体的,所述根据所述各时间采样点的光伏方阵理论最大输出功率值,所述各时间采样点的光伏并网逆变器的输入电压和输入电流确定所述光伏并网逆变器最大功率点跟踪效率,包括:Specifically, according to the theoretical maximum output power value of the photovoltaic array at each time sampling point, the input voltage and input current of the photovoltaic grid-connected inverter at each time sampling point determine the photovoltaic grid-connected inverter Maximum power point tracking efficiency, including:
通过如下公式确定所述光伏并网逆变器最大功率点跟踪效率ηMPPT:The maximum power point tracking efficiency η MPPT of the photovoltaic grid-connected inverter is determined by the following formula:
其中,UDC,i为各时间采样点的光伏并网逆变器的输入电压;IDC,i为各时间采样点的光伏并网逆变器的输入电流;ΔTi为各时间采样点的时间间隔;Ppvmax,i为各时间采样点的光伏方阵理论最大输出功率值。Among them, U DC,i is the input voltage of the photovoltaic grid-connected inverter at each time sampling point; I DC,i is the input current of the photovoltaic grid-connected inverter at each time sampling point; ΔT i is the input current of each time sampling point Time interval; P pvmax,i is the theoretical maximum output power value of the photovoltaic array at each time sampling point.
另外,所述控制所述可编程直流电源根据所述电压和电流的输出策略向待测的光伏并网逆变器输出电压和电流,包括:In addition, the controlling the programmable DC power supply to output voltage and current to the photovoltaic grid-connected inverter to be tested according to the output strategy of the voltage and current includes:
控制可编程直流电源的输出电压不变,并根据所述辐照度变化策略,实时控制可编程直流电源的输出电流。The output voltage of the programmable DC power supply is controlled to be constant, and the output current of the programmable DC power supply is controlled in real time according to the irradiance change strategy.
此外,所述控制所述可编程直流电源根据所述电压和电流的输出策略向待测的光伏并网逆变器输出电压和电流,包括:In addition, the controlling the programmable DC power supply to output voltage and current to the photovoltaic grid-connected inverter to be tested according to the voltage and current output strategy includes:
控制可编程直流电源的输出电流不变,并根据所述辐照度变化策略,实时控制可编程直流电源的输出电压。The output current of the programmable DC power supply is controlled to be constant, and the output voltage of the programmable DC power supply is controlled in real time according to the irradiance change strategy.
此外,所述控制所述可编程直流电源根据所述电压和电流的输出策略向待测的光伏并网逆变器输出电压和电流,包括:In addition, the controlling the programmable DC power supply to output voltage and current to the photovoltaic grid-connected inverter to be tested according to the voltage and current output strategy includes:
控制可编程直流电源的输出功率不变,并根据所述辐照度变化策略,实时控制可编程直流电源的输出电压和输出电流。The output power of the programmable DC power supply is controlled to be constant, and the output voltage and output current of the programmable DC power supply are controlled in real time according to the irradiance change strategy.
具体的,所述辐照度变化策略包括多个测试时间段、各测试时间段对应的测试辐照度以及相邻测试时间段之间辐照度的变化率。Specifically, the irradiance change strategy includes multiple test time periods, the test irradiance corresponding to each test time period, and the change rate of irradiance between adjacent test time periods.
此外,所述测试辐照度包括:1000W/m2、500W/m2、300W/m2、200W/m2和100W/m2;In addition, the test irradiance includes: 1000W/m 2 , 500W/m 2 , 300W/m 2 , 200W/m 2 and 100W/m 2 ;
所述辐照度的变化率包括:100W/m2s和10W/m2s。The change rate of the irradiance includes: 100W/m 2 s and 10W/m 2 s.
一种光伏并网逆变器MPPT效率的测试装置,包括:A test device for MPPT efficiency of a photovoltaic grid-connected inverter, comprising:
电压电流输出策略确定单元,用于根据一预先设置的辐照度变化策略,确定一可编程直流电源的电压和电流的输出策略;A voltage and current output strategy determining unit, configured to determine a voltage and current output strategy of a programmable DC power supply according to a preset irradiance change strategy;
可编程直流电源控制单元,用于控制所述可编程直流电源根据所述电压和电流的输出策略向待测的光伏并网逆变器输出电压和电流;A programmable DC power supply control unit, configured to control the programmable DC power supply to output voltage and current to the photovoltaic grid-connected inverter to be tested according to the output strategy of the voltage and current;
理论最大输出功率值确定单元,用于根据所述可编程直流电源的电压和电流的输出策略确定各时间采样点的光伏方阵理论最大输出功率值;The theoretical maximum output power value determination unit is used to determine the theoretical maximum output power value of the photovoltaic array at each time sampling point according to the output strategy of the voltage and current of the programmable DC power supply;
监测单元,用于监测各时间采样点的光伏并网逆变器的输入电压和光伏并网逆变器的输入电流;The monitoring unit is used to monitor the input voltage of the photovoltaic grid-connected inverter and the input current of the photovoltaic grid-connected inverter at each time sampling point;
最大功率点跟踪效率确定单元,用于根据所述各时间采样点的光伏方阵理论最大输出功率值,所述各时间采样点的光伏并网逆变器的输入电压和输入电流确定所述光伏并网逆变器最大功率点跟踪效率。The maximum power point tracking efficiency determination unit is used to determine the photovoltaic grid-connected inverter input voltage and input current according to the theoretical maximum output power value of the photovoltaic array at each sampling point at each time and the input current of the photovoltaic grid-connected inverter at each sampling point at each time. Grid-connected inverter maximum power point tracking efficiency.
另外所述最大功率点跟踪效率确定单元,具体用于:In addition, the maximum power point tracking efficiency determination unit is specifically used for:
通过如下公式确定所述光伏并网逆变器最大功率点跟踪效率ηMPPT:The maximum power point tracking efficiency η MPPT of the photovoltaic grid-connected inverter is determined by the following formula:
其中,UDC,i为各时间采样点的光伏并网逆变器的输入电压;IDC,i为各时间采样点的光伏并网逆变器的输入电流;ΔTi为各时间采样点的时间间隔;Ppvmax,i为各时间采样点的光伏方阵理论最大输出功率值。Among them, U DC,i is the input voltage of the photovoltaic grid-connected inverter at each time sampling point; I DC,i is the input current of the photovoltaic grid-connected inverter at each time sampling point; ΔT i is the input current of each time sampling point Time interval; P pvmax,i is the theoretical maximum output power value of the photovoltaic array at each time sampling point.
另外,所述可编程直流电源控制单元,具体用于:In addition, the programmable DC power supply control unit is specifically used for:
控制可编程直流电源的输出电压不变,并根据所述辐照度变化策略,实时控制可编程直流电源的输出电流。The output voltage of the programmable DC power supply is controlled to be constant, and the output current of the programmable DC power supply is controlled in real time according to the irradiance change strategy.
或者,所述可编程直流电源控制单元,具体用于:Alternatively, the programmable DC power supply control unit is specifically used for:
控制可编程直流电源的输出电流不变,并根据所述辐照度变化策略,实时控制可编程直流电源的输出电压。The output current of the programmable DC power supply is controlled to be constant, and the output voltage of the programmable DC power supply is controlled in real time according to the irradiance change strategy.
或者,所述可编程直流电源控制单元,具体用于:Alternatively, the programmable DC power supply control unit is specifically used for:
控制可编程直流电源的输出功率不变,并根据所述辐照度变化策略,实时控制可编程直流电源的输出电压和输出电流。The output power of the programmable DC power supply is controlled to be constant, and the output voltage and output current of the programmable DC power supply are controlled in real time according to the irradiance change strategy.
此外,所述辐照度变化策略包括多个测试时间段、各测试时间段对应的测试辐照度以及相邻测试时间段之间辐照度的变化率。In addition, the irradiance change strategy includes a plurality of test time periods, test irradiance corresponding to each test time period, and a change rate of irradiance between adjacent test time periods.
具体的,所述测试辐照度包括:1000W/m2、500W/m2、300W/m2、200W/m2和100W/m2;Specifically, the test irradiance includes: 1000W/m 2 , 500W/m 2 , 300W/m 2 , 200W/m 2 and 100W/m 2 ;
所述辐照度的变化率包括:100W/m2s和10W/m2s。The change rate of the irradiance includes: 100W/m 2 s and 10W/m 2 s.
本发明实施例提供的光伏并网逆变器MPPT效率的测试方法及装置,能够根据一预先设置的辐照度变化策略,确定一可编程直流电源的电压和电流的输出策略,并控制所述可编程直流电源根据所述电压和电流的输出策略向待测的光伏并网逆变器输出电压和电流;根据所述可编程直流电源的电压和电流的输出策略确定各时间采样点的光伏方阵理论最大输出功率值;监测各时间采样点的光伏并网逆变器的输入电压和光伏并网逆变器的输入电流;根据所述各时间采样点的光伏方阵理论最大输出功率值,所述各时间采样点的光伏并网逆变器的输入电压和输入电流确定所述光伏并网逆变器最大功率点跟踪效率。这样,本发明无需人为调节即可完成光伏并网逆变器MPPT效率的测试,过程较为快捷,且通过模拟不同辐照度的变化,来进行光伏并网逆变器MPPT效率的测试,能够综合静态和动态最大功率点跟踪效率的测试,避免了当前对并网逆变器最大功率点跟踪效率测试仅是针对静态最大功率点跟踪效率的测试,测试结果不精确的问题。The method and device for testing the MPPT efficiency of a photovoltaic grid-connected inverter provided by the embodiments of the present invention can determine a voltage and current output strategy of a programmable DC power supply according to a preset irradiance change strategy, and control the The programmable DC power supply outputs voltage and current to the photovoltaic grid-connected inverter to be tested according to the output strategy of the voltage and current; the photovoltaic square at each time sampling point is determined according to the output strategy of the voltage and current of the programmable DC power supply The theoretical maximum output power value of the photovoltaic array; monitor the input voltage of the photovoltaic grid-connected inverter and the input current of the photovoltaic grid-connected inverter at each time sampling point; according to the theoretical maximum output power value of the photovoltaic square array at each time sampling point, The input voltage and input current of the photovoltaic grid-connected inverter at each time sampling point determine the maximum power point tracking efficiency of the photovoltaic grid-connected inverter. In this way, the present invention can complete the test of the MPPT efficiency of the photovoltaic grid-connected inverter without manual adjustment. The test of static and dynamic maximum power point tracking efficiency avoids the problem that the current test of maximum power point tracking efficiency of grid-connected inverters is only for static maximum power point tracking efficiency, and the test results are not accurate.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本发明实施例提供的光伏并网逆变器MPPT效率的测试方法的流程图;Fig. 1 is the flow chart of the testing method of MPPT efficiency of photovoltaic grid-connected inverter provided by the embodiment of the present invention;
图2为本发明实施例中的辐照度变化策略的曲线示意图;Fig. 2 is a schematic curve diagram of an irradiance change strategy in an embodiment of the present invention;
图3为本发明实施例中的OELMAIERPAC55kW并网逆变器的综合静态和动态MPPT效率第一次测试曲线;Fig. 3 is the comprehensive static and dynamic MPPT efficiency test curve for the first time of the OELMAIERPAC55kW grid-connected inverter in the embodiment of the present invention;
图4为本发明实施例中的OELMAIERPAC55kW并网逆变器的综合静态和动态MPPT效率第二次测试曲线;Fig. 4 is the comprehensive static and dynamic MPPT efficiency test curve for the second time of OELMAIERPAC55kW grid-connected inverter in the embodiment of the present invention;
图5为本发明实施例中的OELMAIERPAC55kW并网逆变器的综合静态和动态MPPT电压和电流第一次测试曲线;Fig. 5 is the comprehensive static and dynamic MPPT voltage and current test curve for the first time of the OELMAIERPAC55kW grid-connected inverter in the embodiment of the present invention;
图6为本发明实施例中的OELMAIERPAC55kW并网逆变器的综合静态和动态MPPT电压和电流第二次测试曲线;Fig. 6 is the comprehensive static and dynamic MPPT voltage and electric current second test curve of OELMAIERPAC55kW grid-connected inverter in the embodiment of the present invention;
图7为本发明实施例中的EHE-N5KS5kW并网逆变器的综合静态和动态MPPT效率第一次测试曲线;Fig. 7 is the comprehensive static and dynamic MPPT efficiency first test curve of the EHE-N5KS5kW grid-connected inverter in the embodiment of the present invention;
图8为本发明实施例中的EHE-N5KS5kW并网逆变器的综合静态和动态MPPT效率第二次测试曲线;Fig. 8 is the comprehensive static and dynamic MPPT efficiency second test curve of the EHE-N5KS5kW grid-connected inverter in the embodiment of the present invention;
图9为本发明实施例中的EHE-N5KS5kW并网逆变器的综合静态和动态MPPT电压和电流第一次测试曲线;Fig. 9 is the comprehensive static and dynamic MPPT voltage and current first test curve of the EHE-N5KS5kW grid-connected inverter in the embodiment of the present invention;
图10为本发明实施例中的EHE-N5KS5kW并网逆变器的综合静态和动态MPPT电压和电流第二次测试曲线;Figure 10 is the second test curve of the comprehensive static and dynamic MPPT voltage and current of the EHE-N5KS5kW grid-connected inverter in the embodiment of the present invention;
图11为本发明实施例中的光伏并网逆变器MPPT效率的测试系统的结构示意图;11 is a schematic structural diagram of a test system for the MPPT efficiency of a photovoltaic grid-connected inverter in an embodiment of the present invention;
图12为本发明实施例提供的光伏并网逆变器MPPT效率的测试装置的结构示意图。Fig. 12 is a schematic structural diagram of a test device for MPPT efficiency of a photovoltaic grid-connected inverter provided by an embodiment of the present invention.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
如图1所示,本发明实施例提供的一种光伏并网逆变器MPPT效率的测试方法,包括:As shown in Figure 1, a method for testing MPPT efficiency of a photovoltaic grid-connected inverter provided by an embodiment of the present invention includes:
步骤101、根据一预先设置的辐照度变化策略,确定一可编程直流电源的电压和电流的输出策略。Step 101. Determine a voltage and current output strategy of a programmable DC power supply according to a preset irradiance change strategy.
步骤102、控制可编程直流电源根据电压和电流的输出策略向待测的光伏并网逆变器输出电压和电流。Step 102, controlling the programmable DC power supply to output voltage and current to the photovoltaic grid-connected inverter to be tested according to the output strategy of voltage and current.
步骤103、根据可编程直流电源的电压和电流的输出策略确定各时间采样点的光伏方阵理论最大输出功率值。Step 103: Determine the theoretical maximum output power value of the photovoltaic array at each time sampling point according to the voltage and current output strategy of the programmable DC power supply.
步骤104、监测各时间采样点的光伏并网逆变器的输入电压和光伏并网逆变器的输入电流。Step 104, monitoring the input voltage of the photovoltaic grid-connected inverter and the input current of the photovoltaic grid-connected inverter at each time sampling point.
步骤105、根据各时间采样点的光伏方阵理论最大输出功率值,各时间采样点的光伏并网逆变器的输入电压和输入电流确定光伏并网逆变器最大功率点跟踪效率。Step 105. Determine the maximum power point tracking efficiency of the photovoltaic grid-connected inverter according to the theoretical maximum output power value of the photovoltaic array at each time sampling point, and the input voltage and input current of the photovoltaic grid-connected inverter at each time sampling point.
本发明实施例提供的光伏并网逆变器MPPT效率的测试方法,能够根据一预先设置的辐照度变化策略,确定一可编程直流电源的电压和电流的输出策略,并控制可编程直流电源根据电压和电流的输出策略向待测的光伏并网逆变器输出电压和电流;根据可编程直流电源的电压和电流的输出策略确定各时间采样点的光伏方阵理论最大输出功率值;监测各时间采样点的光伏并网逆变器的输入电压和光伏并网逆变器的输入电流;根据各时间采样点的光伏方阵理论最大输出功率值,各时间采样点的光伏并网逆变器的输入电压和输入电流确定光伏并网逆变器最大功率点跟踪效率。这样,本发明无需人为调节即可完成光伏并网逆变器MPPT效率的测试,过程较为快捷,且通过模拟不同辐照度的变化,来进行光伏并网逆变器MPPT效率的测试,能够综合静态和动态最大功率点跟踪效率的测试,避免了当前对并网逆变器最大功率点跟踪效率测试仅是针对静态最大功率点跟踪效率的测试,测试结果不精确的问题。The method for testing the efficiency of the photovoltaic grid-connected inverter MPPT provided by the embodiment of the present invention can determine the output strategy of the voltage and current of a programmable DC power supply according to a preset irradiance change strategy, and control the programmable DC power supply Output voltage and current to the photovoltaic grid-connected inverter to be tested according to the output strategy of voltage and current; determine the theoretical maximum output power value of the photovoltaic array at each time sampling point according to the output strategy of programmable DC power supply voltage and current; monitor The input voltage of the photovoltaic grid-connected inverter and the input current of the photovoltaic grid-connected inverter at each time sampling point; according to the theoretical maximum output power value of the photovoltaic square array at each time sampling point, the photovoltaic grid-connected inverter at each time sampling point The input voltage and input current of the inverter determine the maximum power point tracking efficiency of the photovoltaic grid-connected inverter. In this way, the present invention can complete the test of the MPPT efficiency of the photovoltaic grid-connected inverter without manual adjustment. The test of static and dynamic maximum power point tracking efficiency avoids the problem that the current test of maximum power point tracking efficiency of grid-connected inverters is only for static maximum power point tracking efficiency, and the test results are not accurate.
上述步骤105中的根据各时间采样点的光伏方阵理论最大输出功率值,各时间采样点的光伏并网逆变器的输入电压和输入电流确定光伏并网逆变器最大功率点跟踪效率,可以通过如下公式确定光伏并网逆变器最大功率点跟踪效率ηMPPT:In the above step 105, the maximum power point tracking efficiency of the photovoltaic grid-connected inverter is determined according to the theoretical maximum output power value of the photovoltaic square array at each time sampling point, and the input voltage and input current of the photovoltaic grid-connected inverter at each time sampling point, The maximum power point tracking efficiency η MPPT of the photovoltaic grid-connected inverter can be determined by the following formula:
其中,UDC,i为各时间采样点的光伏并网逆变器的输入电压;IDC,i为各时间采样点的光伏并网逆变器的输入电流;ΔTi为各时间采样点的时间间隔,一般为1秒;Ppvmax,i为各时间采样点的光伏方阵理论最大输出功率值。Among them, U DC,i is the input voltage of the photovoltaic grid-connected inverter at each time sampling point; I DC,i is the input current of the photovoltaic grid-connected inverter at each time sampling point; ΔT i is the input current of each time sampling point The time interval is generally 1 second; P pvmax,i is the theoretical maximum output power value of the photovoltaic array at each time sampling point.
上述步骤102中的控制可编程直流电源根据电压和电流的输出策略向待测的光伏并网逆变器输出电压和电流,可以是控制可编程直流电源的输出电压不变,并根据辐照度变化策略,实时控制可编程直流电源的输出电流。The control programmable DC power supply in the above step 102 outputs voltage and current to the photovoltaic grid-connected inverter to be tested according to the output strategy of voltage and current. Change strategy to control the output current of programmable DC power supply in real time.
或者可以是控制可编程直流电源的输出电流不变,并根据辐照度变化策略,实时控制可编程直流电源的输出电压。Alternatively, the output current of the programmable DC power supply can be controlled to be constant, and the output voltage of the programmable DC power supply can be controlled in real time according to the irradiance change strategy.
或者可以是控制可编程直流电源的输出功率不变,并根据辐照度变化策略,实时控制可编程直流电源的输出电压和输出电流。Alternatively, the output power of the programmable DC power supply can be controlled to be constant, and the output voltage and output current of the programmable DC power supply can be controlled in real time according to the irradiance change strategy.
另外,上述的辐照度变化策略可以包括多个测试时间段、各测试时间段对应的测试辐照度以及相邻测试时间段之间辐照度的变化率。In addition, the above-mentioned irradiance change strategy may include multiple test time periods, the test irradiance corresponding to each test time period, and the change rate of irradiance between adjacent test time periods.
例如,上述的测试辐照度可以包括:1000W/m2、500W/m2、300W/m2、200W/m2和100W/m2。For example, the above test irradiance may include: 1000W/m 2 , 500W/m 2 , 300W/m 2 , 200W/m 2 and 100W/m 2 .
上述的辐照度的变化率可以包括:100W/m2s和10W/m2s。The aforementioned rate of change of irradiance may include: 100W/m 2 s and 10W/m 2 s.
例如,该辐照度变化策略可以如图2以及下表1所示:For example, the irradiance change strategy can be shown in Figure 2 and Table 1 below:
表1:Table 1:
可见,通过表1和图2所示,该辐照度变化策略为并网逆变器启机进入稳态运行在300秒内的辐照度为100W/m2,然后以10W/m2s的变化率在90秒内辐照度缓慢上升为1000W/m2,并持续运行180秒……,这样,直到将上述19个序号的步骤完成,累积持续4282秒。其中,在步骤18中,可以对表1中的关键步骤进行重复测试,以使得后续的测试结果的准确性和稳定性更高。例如,在100W/m2的辐照度条件下持续运行300s,待并网逆变器进入稳定运行状态后,改变辐照度测试逆变器MPPT跟踪性能能够保证测试的稳定性,另外选取1000W/m2、500W/m2、300W/m2、200W/m2和100W/m2等5种典型高、中、低典型辐照度工况,且进行一次重复测试,并结合并网逆变器通常的MPPT响应时间,利用远程控制和监测系统,预先编辑设置模拟的辐照度变化率,使得可编程直流电源能够以规定辐照度分别为100W/m2s和10W/m2s两种变化率突变,保证数据的准确性。It can be seen that, as shown in Table 1 and Figure 2, the irradiance change strategy is that the grid-connected inverter starts up and enters steady-state operation. The irradiance within 300 seconds is 100W/m 2 , and then the irradiance is 10W/m 2 s The rate of change of the irradiance slowly rises to 1000W/m 2 within 90 seconds, and continues to run for 180 seconds... In this way, until the above 19 steps of serial numbers are completed, the accumulation lasts for 4282 seconds. Among them, in step 18, the key steps in Table 1 can be repeatedly tested, so that the accuracy and stability of subsequent test results are higher. For example, continuously run for 300s under the condition of 100W/ m2 irradiance, after the grid-connected inverter enters a stable operation state, changing the irradiance to test the MPPT tracking performance of the inverter can ensure the stability of the test, and select 1000W /m 2 , 500W/m 2 , 300W/m 2 , 200W/m 2 and 100W/m 2 typical high, medium and low typical irradiance working conditions, and a repeated test, combined with grid-connected inverter The usual MPPT response time of the inverter, using the remote control and monitoring system, pre-edited and set the simulated irradiance change rate, so that the programmable DC power supply can be 100W/m 2 s and 10W/m 2 s with the specified irradiance Two kinds of change rate mutations to ensure the accuracy of the data.
通过上述步骤101-105可以进行如下两个并网逆变器的测试:Through the above steps 101-105, the following two grid-connected inverters can be tested:
首先是对德国的OELMAIERPAC55kW并网逆变器进行的测试:The first is the test of OELMAIERPAC 55kW grid-connected inverter in Germany:
如图3至图6分别是该并网逆变器对应于不同辐照度时的MPPT效率曲线、直流输入电压和电流变化曲线。Figures 3 to 6 are the MPPT efficiency curves, DC input voltage and current variation curves of the grid-connected inverter corresponding to different irradiances.
根据上述步骤105中对应的公式,计入记录的逆变器直流输入电压、电流值和采样时间,以及相应时刻光伏方阵理论最大输出功率值,平均连续两次的MPPT效率测试结果,可以得到OELMAIERPAC5逆变器的MPPT效率值。According to the corresponding formula in the above step 105, taking into account the recorded inverter DC input voltage, current value and sampling time, and the theoretical maximum output power value of the photovoltaic array at the corresponding time, and averaging two consecutive MPPT efficiency test results, it can be obtained MPPT efficiency values of the OELMAIERPAC5 inverter.
另外是对中国的EHE-N5KS5kW的并网逆变器进行的测试:In addition, the test of China's EHE-N5KS5kW grid-connected inverter:
根据上述步骤105中的公式,计入记录的逆变器直流输入电压、电流值和采样时间,以及相应时刻理论的光伏方阵最大功率点功率值,可以得到EHE-N5KS5kW逆变器的MPPT效率值为下面公式所示的96.31%,两次并网逆变器静态和动态综合MPPT效率测试结果如图7至图10所示,重复两次静态和动态综合MPPT效率值平均值即为EHE-N5KS5kW逆变器的静态和动态综合MPPT效率测试结果。According to the formula in the above step 105, the MPPT efficiency of the EHE-N5KS5kW inverter can be obtained by including the recorded inverter DC input voltage, current value and sampling time, and the theoretical maximum power point power value of the photovoltaic array at the corresponding time The value is 96.31% as shown in the following formula. The test results of the static and dynamic comprehensive MPPT efficiency of the grid-connected inverter twice are shown in Figure 7 to Figure 10. The average value of the static and dynamic comprehensive MPPT efficiency value repeated twice is EHE- Static and dynamic combined MPPT efficiency test results for N5KS 5kW inverter.
值得说明的是,本发明实施例的光伏并网逆变器MPPT效率的测试方法可以通过如图11所示的一光伏并网逆变器MPPT效率的测试系统来实现:It is worth noting that the method for testing the MPPT efficiency of a photovoltaic grid-connected inverter according to the embodiment of the present invention can be realized by a testing system for the MPPT efficiency of a photovoltaic grid-connected inverter as shown in FIG. 11 :
该光伏并网逆变器MPPT效率的测试系统包括可编程直流电源21、功率分析仪22、开关柜23、示波器24、测试平台远程控制系统25。其中,测试平台远程控制系统25与可编程直流电源21和开关柜23通讯连接,可编程直流电源21连接有待测的光伏并网逆变器26,一端,待测的光伏并网逆变器26的另一端与功率分析仪22,开关柜23和示波器24串接。另外,该开关柜23还可连接有用于供电的交流模拟电网27。The MPPT efficiency test system of the photovoltaic grid-connected inverter includes a programmable DC power supply 21 , a power analyzer 22 , a switch cabinet 23 , an oscilloscope 24 , and a test platform remote control system 25 . Among them, the test platform remote control system 25 communicates with the programmable DC power supply 21 and the switch cabinet 23. The programmable DC power supply 21 is connected to the photovoltaic grid-connected inverter 26 to be tested. The other end of 26 is connected in series with power analyzer 22, switch cabinet 23 and oscilloscope 24. In addition, the switch cabinet 23 may also be connected with an AC analog grid 27 for power supply.
本实施例中的可编程直流电源21能够模拟各种天气情况下的辐照度变化,例如晴天、雨天、多云等复杂多变天气情况,和阴影遮挡、覆尘、覆雪等环境情况下的辐照度变化,通过辐照度的变化模拟了太阳能电池方阵的I/V输出特性的功能,能够实现恒定电压、恒定电流和恒定功率的运行模式,并能够按照预先设置的辐照度变化策略,执行电压、电流以及功率的控制与调节。通过上述的测试平台远程控制系统25可以在逆变器允许的电压和电流限制范围内,实时传送参数指令,对当前输出的电气参数进行调节已进行整个测试过程。The programmable DC power supply 21 in this embodiment can simulate irradiance changes under various weather conditions, such as complex and changeable weather conditions such as sunny days, rainy days, and cloudy, and environmental conditions such as shadows, dust, and snow. Irradiance change, the function of simulating the I/V output characteristics of the solar cell square array through the change of irradiance, can realize the operation mode of constant voltage, constant current and constant power, and can change according to the preset irradiance strategies to implement voltage, current, and power control and regulation. Through the above-mentioned test platform remote control system 25, within the allowable voltage and current limit range of the inverter, the parameter command can be transmitted in real time, and the current output electrical parameters can be adjusted to carry out the whole test process.
该功率分析仪22能够对光伏并网逆变器26的输出功率进行监测分析。该开关柜23能够控制整个光伏并网逆变器MPPT效率的测试系统的电路通断。该示波器24可以显示光伏并网逆变器26输出的电流和电压参数进行展示。The power analyzer 22 can monitor and analyze the output power of the photovoltaic grid-connected inverter 26 . The switchgear 23 can control the circuit on-off of the MPPT efficiency test system of the entire photovoltaic grid-connected inverter. The oscilloscope 24 can display the current and voltage parameters output by the photovoltaic grid-connected inverter 26 for presentation.
对应于上述图1中的方法实施例,本发明实施例提供一种光伏并网逆变器MPPT效率的测试装置,如图12所示,包括:Corresponding to the above-mentioned method embodiment in FIG. 1 , the embodiment of the present invention provides a test device for MPPT efficiency of a photovoltaic grid-connected inverter, as shown in FIG. 12 , including:
电压电流输出策略确定单元31,可以根据一预先设置的辐照度变化策略,确定一可编程直流电源的电压和电流的输出策略。The voltage and current output strategy determining unit 31 can determine a voltage and current output strategy of a programmable DC power supply according to a preset irradiance change strategy.
可编程直流电源控制单元32,可以控制可编程直流电源根据电压和电流的输出策略向待测的光伏并网逆变器输出电压和电流。The programmable DC power supply control unit 32 can control the programmable DC power supply to output voltage and current to the photovoltaic grid-connected inverter to be tested according to the output strategy of voltage and current.
理论最大输出功率值确定单元33,可以根据可编程直流电源的电压和电流的输出策略确定各时间采样点的光伏方阵理论最大输出功率值。The theoretical maximum output power value determination unit 33 can determine the theoretical maximum output power value of the photovoltaic array at each time sampling point according to the voltage and current output strategy of the programmable DC power supply.
监测单元34,可以监测各时间采样点的光伏并网逆变器的输入电压和光伏并网逆变器的输入电流。The monitoring unit 34 can monitor the input voltage of the photovoltaic grid-connected inverter and the input current of the photovoltaic grid-connected inverter at each time sampling point.
最大功率点跟踪效率确定单元35,可以根据各时间采样点的光伏方阵理论最大输出功率值,各时间采样点的光伏并网逆变器的输入电压和输入电流确定光伏并网逆变器最大功率点跟踪效率。The maximum power point tracking efficiency determination unit 35 can determine the maximum value of the photovoltaic grid-connected inverter according to the theoretical maximum output power value of the photovoltaic square array at each time sampling point, and the input voltage and input current of the photovoltaic grid-connected inverter at each time sampling point. Power point tracking efficiency.
另外最大功率点跟踪效率确定单元35,具体可以通过如下公式确定光伏并网逆变器最大功率点跟踪效率ηMPPT:In addition, the maximum power point tracking efficiency determination unit 35 can specifically determine the maximum power point tracking efficiency η MPPT of the photovoltaic grid-connected inverter through the following formula:
其中,UDC,i为各时间采样点的光伏并网逆变器的输入电压;IDC,i为各时间采样点的光伏并网逆变器的输入电流;ΔTi为各时间采样点的时间间隔;Ppvmax,i为各时间采样点的光伏方阵理论最大输出功率值。Among them, U DC,i is the input voltage of the photovoltaic grid-connected inverter at each time sampling point; I DC,i is the input current of the photovoltaic grid-connected inverter at each time sampling point; ΔT i is the input current of each time sampling point Time interval; P pvmax,i is the theoretical maximum output power value of the photovoltaic array at each time sampling point.
另外,可编程直流电源控制单元32,可以控制可编程直流电源的输出电压不变,并根据辐照度变化策略,实时控制可编程直流电源的输出电流。或者控制可编程直流电源的输出电流不变,并根据辐照度变化策略,实时控制可编程直流电源的输出电压。或者控制可编程直流电源的输出功率不变,并根据辐照度变化策略,实时控制可编程直流电源的输出电压和输出电流。In addition, the programmable DC power supply control unit 32 can control the output voltage of the programmable DC power supply to be constant, and control the output current of the programmable DC power supply in real time according to the irradiance change strategy. Or control the output current of the programmable DC power supply to be constant, and control the output voltage of the programmable DC power supply in real time according to the irradiance change strategy. Or control the output power of the programmable DC power supply to be constant, and control the output voltage and output current of the programmable DC power supply in real time according to the irradiance change strategy.
此外,辐照度变化策略包括多个测试时间段、各测试时间段对应的测试辐照度以及相邻测试时间段之间辐照度的变化率。In addition, the irradiance change strategy includes multiple test time periods, the test irradiance corresponding to each test time period, and the change rate of irradiance between adjacent test time periods.
具体的,测试辐照度包括:1000W/m2、500W/m2、300W/m2、200W/m2和100W/m2。该辐照度的变化率包括:100W/m2s和10W/m2s。Specifically, the test irradiance includes: 1000W/m 2 , 500W/m 2 , 300W/m 2 , 200W/m 2 and 100W/m 2 . The rate of change of the irradiance includes: 100W/m 2 s and 10W/m 2 s.
值得说明的是,本发明实施例提供的光伏并网逆变器MPPT效率的测试装置的具体实现方式可以参见上述图1所示的方法实施例,此处不再赘述。It is worth noting that, the specific implementation manner of the test device for the MPPT efficiency of the photovoltaic grid-connected inverter provided by the embodiment of the present invention may refer to the method embodiment shown in FIG. 1 above, and will not be repeated here.
本发明实施例提供的光伏并网逆变器MPPT效率的测试装置,能够根据一预先设置的辐照度变化策略,确定一可编程直流电源的电压和电流的输出策略,并控制可编程直流电源根据电压和电流的输出策略向待测的光伏并网逆变器输出电压和电流;根据可编程直流电源的电压和电流的输出策略确定各时间采样点的光伏方阵理论最大输出功率值;监测各时间采样点的光伏并网逆变器的输入电压和光伏并网逆变器的输入电流;根据各时间采样点的光伏方阵理论最大输出功率值,各时间采样点的光伏并网逆变器的输入电压和输入电流确定光伏并网逆变器最大功率点跟踪效率。这样,本发明无需人为调节即可完成光伏并网逆变器MPPT效率的测试,过程较为快捷,且通过模拟不同辐照度的变化,来进行光伏并网逆变器MPPT效率的测试,能够综合静态和动态最大功率点跟踪效率的测试,避免了当前对并网逆变器最大功率点跟踪效率测试仅是针对静态最大功率点跟踪效率的测试,测试结果不精确的问题。The test device for the MPPT efficiency of the photovoltaic grid-connected inverter provided by the embodiment of the present invention can determine the output strategy of the voltage and current of a programmable DC power supply according to a preset irradiance change strategy, and control the programmable DC power supply Output voltage and current to the photovoltaic grid-connected inverter to be tested according to the output strategy of voltage and current; determine the theoretical maximum output power value of the photovoltaic array at each time sampling point according to the output strategy of programmable DC power supply voltage and current; monitor The input voltage of the photovoltaic grid-connected inverter and the input current of the photovoltaic grid-connected inverter at each time sampling point; according to the theoretical maximum output power value of the photovoltaic square array at each time sampling point, the photovoltaic grid-connected inverter at each time sampling point The input voltage and input current of the inverter determine the maximum power point tracking efficiency of the photovoltaic grid-connected inverter. In this way, the present invention can complete the test of the MPPT efficiency of the photovoltaic grid-connected inverter without manual adjustment. The test of static and dynamic maximum power point tracking efficiency avoids the problem that the current test of maximum power point tracking efficiency of grid-connected inverters is only for static maximum power point tracking efficiency, and the test results are not accurate.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present invention may be provided as methods, systems, or computer program products. Accordingly, the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processor of other programmable data processing equipment to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby The instructions provide steps for implementing the functions specified in the flow chart or blocks of the flowchart and/or the block or blocks of the block diagrams.
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。In the present invention, specific examples have been applied to explain the principles and implementation methods of the present invention, and the descriptions of the above examples are only used to help understand the method of the present invention and its core idea; meanwhile, for those of ordinary skill in the art, according to this The idea of the invention will have changes in the specific implementation and scope of application. To sum up, the contents of this specification should not be construed as limiting the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410795352.0A CN105785281A (en) | 2014-12-18 | 2014-12-18 | Photovoltaic grid-connected inverter MPPT (maximum power point tracking) efficiency test method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410795352.0A CN105785281A (en) | 2014-12-18 | 2014-12-18 | Photovoltaic grid-connected inverter MPPT (maximum power point tracking) efficiency test method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105785281A true CN105785281A (en) | 2016-07-20 |
Family
ID=56385842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410795352.0A Pending CN105785281A (en) | 2014-12-18 | 2014-12-18 | Photovoltaic grid-connected inverter MPPT (maximum power point tracking) efficiency test method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105785281A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106597151A (en) * | 2016-12-02 | 2017-04-26 | 中国电力科学研究院 | Method and system for testing photovoltaic plant already-operating inverter tracking efficiency |
CN109088598A (en) * | 2018-06-29 | 2018-12-25 | 汉能移动能源控股集团有限公司 | Method, device and equipment for testing maximum power point tracking efficiency of mobile energy |
CN110095736A (en) * | 2019-06-11 | 2019-08-06 | 青海黄河上游水电开发有限责任公司光伏产业技术分公司 | A kind of inverter MPPT tracking efficiency outdoor test method |
CN112611935A (en) * | 2020-12-30 | 2021-04-06 | 国网上海市电力公司 | New energy grid-connected dynamic characteristic simulation test system |
CN115453253A (en) * | 2022-11-09 | 2022-12-09 | 深圳市鼎泰佳创科技有限公司 | Light stores up dc-to-ac converter aging testing system |
CN116593748A (en) * | 2023-05-23 | 2023-08-15 | 深圳市费思泰克科技有限公司 | High-power programmable direct-current power supply for testing new energy solar inverter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102411075A (en) * | 2011-11-29 | 2012-04-11 | 宁波高新区新诚电子有限公司 | Solar photovoltaic cell simulation system and simulation method for same |
JP2012113639A (en) * | 2010-11-26 | 2012-06-14 | Japan Radio Co Ltd | Maximum power point follow-up method for solar battery |
CN103323719A (en) * | 2013-07-03 | 2013-09-25 | 深圳市晶福源电子技术有限公司 | Test method of photovoltaic inverter single-path MPPT |
-
2014
- 2014-12-18 CN CN201410795352.0A patent/CN105785281A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012113639A (en) * | 2010-11-26 | 2012-06-14 | Japan Radio Co Ltd | Maximum power point follow-up method for solar battery |
CN102411075A (en) * | 2011-11-29 | 2012-04-11 | 宁波高新区新诚电子有限公司 | Solar photovoltaic cell simulation system and simulation method for same |
CN103323719A (en) * | 2013-07-03 | 2013-09-25 | 深圳市晶福源电子技术有限公司 | Test method of photovoltaic inverter single-path MPPT |
Non-Patent Citations (3)
Title |
---|
MASSIMO VALENTINI等: "PV Inverter Test Setup for European Efficiency,Static and Dynamic MPPT Efficiency Evaluation", 《11TH INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT》 * |
徐涛等: "光伏并网型逆变器MPPT曲线跟踪测试方法研究", 《电工电气》 * |
王玲玲等: "光伏并网逆变器效率评价方法研究", 《大功率变流技术》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106597151A (en) * | 2016-12-02 | 2017-04-26 | 中国电力科学研究院 | Method and system for testing photovoltaic plant already-operating inverter tracking efficiency |
CN106597151B (en) * | 2016-12-02 | 2021-01-15 | 中国电力科学研究院有限公司 | Photovoltaic power station switched inverter tracking efficiency testing method and system |
CN109088598A (en) * | 2018-06-29 | 2018-12-25 | 汉能移动能源控股集团有限公司 | Method, device and equipment for testing maximum power point tracking efficiency of mobile energy |
CN110095736A (en) * | 2019-06-11 | 2019-08-06 | 青海黄河上游水电开发有限责任公司光伏产业技术分公司 | A kind of inverter MPPT tracking efficiency outdoor test method |
CN112611935A (en) * | 2020-12-30 | 2021-04-06 | 国网上海市电力公司 | New energy grid-connected dynamic characteristic simulation test system |
CN115453253A (en) * | 2022-11-09 | 2022-12-09 | 深圳市鼎泰佳创科技有限公司 | Light stores up dc-to-ac converter aging testing system |
CN115453253B (en) * | 2022-11-09 | 2023-02-10 | 深圳市鼎泰佳创科技有限公司 | Light stores up dc-to-ac converter aging testing system |
CN116593748A (en) * | 2023-05-23 | 2023-08-15 | 深圳市费思泰克科技有限公司 | High-power programmable direct-current power supply for testing new energy solar inverter |
CN116593748B (en) * | 2023-05-23 | 2023-11-28 | 深圳市费思泰克科技有限公司 | High-power programmable direct-current power supply for testing new energy solar inverter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rampinelli et al. | Mathematical models for efficiency of inverters used in grid connected photovoltaic systems | |
CN105785281A (en) | Photovoltaic grid-connected inverter MPPT (maximum power point tracking) efficiency test method and device | |
Andrejasic et al. | Comparison of direct maximum power point tracking algorithms using EN 50530 dynamic test procedure | |
Arribas et al. | PV–wind hybrid system performance: A new approach and a case study | |
CN204758716U (en) | Dc -to -ac converter is at ring testing arrangement | |
CN107229824B (en) | Photovoltaic power station power generation unit power curve modeling method and device | |
Abbes et al. | Real time supervision for a hybrid renewable power system emulator | |
CN104638668B (en) | A kind of photovoltaic power generation grid-connecting control method and system | |
CN103823183A (en) | Method for measuring stator open circuit transient time-constant of synchronous generator | |
CN103124080B (en) | Modeling method for photovoltaic power generation system model | |
Koch-Ciobotaru et al. | Simulation model developed for a small-scale PV system in distribution networks | |
CN104156542A (en) | Implicit-projection-based method for simulating stability of active power distribution system | |
Illanes et al. | Dynamic simulation and modelling of stand-alone PV systems by using state equations and numerical integration methods | |
CN204789831U (en) | Little electric wire netting simulation experiment platform | |
Zielińska et al. | Modelling of photovoltaic cells in variable conditions of temperature and intensity of solar insolation as a method of mapping the operation of the installation in real conditions | |
CN109490773A (en) | A kind of virtual synchronous machine low voltage crossing characteristic test method, apparatus and system | |
WO2021017234A1 (en) | Method and system for monitoring attenuation of performance of photovoltaic assembly | |
CN105514975B (en) | A kind of efficiency Forecasting Methodology of photovoltaic generating system | |
CN115204048A (en) | A system and method for model identification of photovoltaic power generation system | |
CN104333326B (en) | A kind of test method of photovoltaic DC-to-AC converter controller external characteristics test | |
WO2019051696A1 (en) | Method and apparatus for controlling photovoltaic power station, and storage medium | |
Yu et al. | Design and experimental results of improved dynamic MPPT performance by EN50530 | |
Starčević et al. | PV system integration assessment by automated Monte Carlo simulation in DIgSILENT PowerFactory | |
Williams et al. | Monitoring solar home systems with pulse width modulation charge control | |
CN107271916B (en) | Battery plate group string health state detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160720 |