CN105703006B - 电解质和负极结构 - Google Patents
电解质和负极结构 Download PDFInfo
- Publication number
- CN105703006B CN105703006B CN201510910065.4A CN201510910065A CN105703006B CN 105703006 B CN105703006 B CN 105703006B CN 201510910065 A CN201510910065 A CN 201510910065A CN 105703006 B CN105703006 B CN 105703006B
- Authority
- CN
- China
- Prior art keywords
- carbonate
- electrolyte
- lithium
- anion
- ethane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/045—Electrochemical coating; Electrochemical impregnation
- H01M4/0452—Electrochemical coating; Electrochemical impregnation from solutions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了了电解质和负极结构。示例性电解质包含溶剂、锂盐和选自具有至少一个Si‑H基团的硅烷;氟化甲氧基硅烷;氟化氯硅烷;及其组合的添加剂。该电解质可以用于在锂电极的表面上制造固体电解质界面(SEI)层的方法中。可以由所述方法形成负极结构。
Description
相关申请的交叉引用
本申请要求2014年12月10日提交的美国临时申请系列号62/090,192的权益,通过引用将其全部并入本文。
技术领域
本发明涉及电解质和负极结构。具体而言,本发明涉及电解质、用于在锂电极的表面上制造固体电解质界面(SEI)层的方法和由所述方法形成的负极结构。
背景技术
二次或可再充电的锂离子电池或锂硫电池经常用于许多固定和便携设备,例如在消费型电子产品、汽车和航空航天工业中遇到的那些。由于各种原因,包括相对高的能量密度、与其它类型的可再充电的电池相比时一般不出现任何记忆效应、相对低的内电阻以及不使用时的低自放电率,锂类电池已经获得普及。锂电池在其整个有效寿命期间经历反复的功率循环的能力使其成为有吸引力的和可靠的电源。
发明内容
示例性电解质包含溶剂、锂盐和选自具有至少一个Si-H基团的硅烷;氟化甲氧基硅烷;氟化氯硅烷;及其组合的添加剂。该电解质可以用于在锂电极的表面上制造固体电解质界面(SEI)层的方法中。可以由所述方法形成负极结构。
因此,本发明公开了以下技术方案:
方案1. 电解质,其包含:
溶剂;
锂盐;和
添加剂,其选自具有至少一个Si-H基团的硅烷;氟化甲氧基硅烷;氟化氯硅烷;及其组合。
方案2. 如方案1中所述的电解质,其中:
具有至少一个Si-H基团的硅烷选自H-Si((CH2)xCH3)2-R;H-Si((CH2)xCH3)2-O-R;H-Si((CH2)xCH3)2-R-阴离子- Li+和H-Si((CH2)xCH3)2-O-R-阴离子- Li+;
x的范围为0至2,并且R为任意元素或有机基团;和
在任意的H-Si((CH2)xCH3)2-R-阴离子- Li+和H-Si((CH2)xCH3)2-O-R-阴离子- Li+中,所述阴离子选自PF5 -、BF3 -、双(三氟甲磺酰)亚胺阴离子(TFSI-)、双(氟磺酰)亚胺阴离子(FSI-)和氟-丙二酸根合(二氟)硼酸根((F)MDFB-)。
方案3. 如方案1中所述的电解质,其中所述氟化甲氧基硅烷具有式(CH3O)2RSi-(CH2)x-(CF2)y-CF3,其中R为-OCH3或-CH3,并且其中x的范围为0至2,且y的范围为1至20。
方案4. 如方案3中所述的电解质,其中所述氟化甲氧基硅烷选自:
、、
和。
方案5. 如方案1中所述的电解质,其中所述氟化氯硅烷具有式 (CH3)xSiCly-(CH2)m-(CF2)n-CF3,其中x为1且y为2,或者x为2且y为1,其中m的范围为0至2,并且其中n的范围为1至20。
方案6. 如方案5中所述的电解质,其中所述氟化氯硅烷选自:
和。
方案7. 如方案1中所述的电解质,其中:
所述溶剂选自碳酸亚乙酯、碳酸亚丙酯、碳酸亚丁酯、碳酸氟代亚乙酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、甲酸甲酯、乙酸甲酯、丙酸甲酯、γ-丁内酯、γ-戊内酯、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、四氢呋喃、2-甲基四氢呋喃、1,3-二氧戊环、二甲氧基乙烷、四乙二醇二甲醚(TEGDME)、聚乙二醇二甲醚(PEGDME)及其混合物;和
所述锂盐选自双(三氟甲磺酰)亚胺锂(LiN(CF3SO2)2 或LiTFSI)、LiNO3、LiPF6、LiBF4、LiI、LiBr、LiSCN、LiClO4、LiAlCl4、LiB(C2O4)2 (LiBOB)、LiB(C6H5)4、LiBF2(C2O4)(LiODFB)、LiN(SO2F)2 (LiFSI)、LiPF3(C2F5)3 (LiFAP)、LiPF4(CF3)2、LiPF4(C2O4) (LiFOP)、LiPF3(CF3)3、LiSO3CF3、LiCF3SO3、LiAsF6、及其组合。
方案8. 负极结构,其包含:
包含锂作为活性材料的负极;和
在所述负极表面上形成的固体电解质界面(SEI)层,所述SEI层由具有至少一个Si-H基团的硅烷;氟化甲氧基硅烷;氟化氯硅烷;及其组合形成。
方案9.如方案8中所述的负极结构,其中:
具有至少一个Si-H基团的硅烷选自H-Si((CH2)xCH3)2-R、H-Si((CH2)xCH3)2-O-R、H-Si((CH2)xCH3)2-R-阴离子- Li+和H-Si((CH2)xCH3)2-O-R-阴离子- Li+;
x的范围为0至2,并且R为任意元素或有机基团;和
在任意的H-Si((CH2)xCH3)2-R-阴离子- Li+和H-Si((CH2)xCH3)2-O-R-阴离子- Li+中,所述阴离子选自PF5 -、BF3 -、双(三氟甲磺酰)亚胺阴离子(TFSI-)、双(氟磺酰)亚胺阴离子(FSI-)和氟-丙二酸根合(二氟)硼酸根((F)MDFB-)。
方案10. 如方案8中所述的负极结构,其中所述氟化甲氧基硅烷具有式(CH3O)2RSi-(CH2)x-(CF2)y-CF3,其中R为-OCH3或-CH3,并且其中x的范围为0至2,并且y的范围为1至20。
方案11. 如方案10中所述的负极结构,其中所述氟化甲氧基硅烷选自:
、、
和。
方案12. 如方案8中所述的负极结构,其中所述氟化氯硅烷具有式 (CH3)xSiCly-(CH2)m-(CF2)n-CF3,其中x为1且y为2,或者x为2且y为1,其中m的范围为0至2,并且其中n的范围为1至20。
方案13. 如方案12中所述的负极结构,其中所述氟化氯硅烷选自:
和。
方案14. 用于在锂电极表面上制造固体电解质界面(SEI)层的方法,所述方法包括:
使所述锂电极暴露于包含以下物质的电解质:
溶剂;
锂盐;和
添加剂,其选自具有至少一个Si-H基团的硅烷;氟化甲氧基硅烷;氟化氯硅烷;及其组合。
方案15. 如方案14中所述的方法,其中在电化学电池中使锂电极暴露于电解质,并且其中所述方法还包括对所述电化学电池施加电压。
方案16. 如方案15中所述的方法,其中所述电化学电池是Li-Li对称电化学电池,并且所述电解质溶剂选自1,3-二氧戊环(DOL或DIOX)、二甲氧基乙烷(DME)、四氢呋喃、2-甲基四氢呋喃、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、四乙二醇二甲醚(TEGDME)、聚乙二醇二甲醚(PEGDME)、碳酸亚乙酯(EC)、碳酸亚丙酯、碳酸亚丁酯、碳酸氟代亚乙酯、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、甲酸甲酯、乙酸甲酯、丙酸甲酯、γ-丁内酯、γ-戊内酯、及其混合物。
方案17. 如方案15中所述的方法,其中所述电化学电池是Li-S电化学电池,并且所述电解质溶剂选自1,3-二氧戊环(DOL)、二甲氧基乙烷(DME)、四氢呋喃、2-甲基四氢呋喃、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、四乙二醇二甲醚(TEGDME)、聚乙二醇二甲醚(PEGDME)及其混合物。
方案18. 如方案15中所述的方法,其中所述电化学电池是锂离子电池,并且所述电解质溶剂选自碳酸亚乙酯(EC)、碳酸亚丙酯、碳酸亚丁酯、碳酸氟代亚乙酯、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、甲酸甲酯、乙酸甲酯、丙酸甲酯、γ-丁内酯、γ-戊内酯、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、四氢呋喃、2-甲基四氢呋喃及其混合物。
方案19. 如方案14中所述的方法,其中在电化学电池外使锂电极暴露于电解质,并且其中所述电解质溶剂选自1,3-二氧戊环(DOL或DIOX)、二甲氧基乙烷(DME)、四氢呋喃、2-甲基四氢呋喃、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、四乙二醇二甲醚(TEGDME)、聚乙二醇二甲醚(PEGDME)、碳酸亚乙酯(EC)、碳酸亚丙酯、碳酸亚丁酯、碳酸氟代亚乙酯、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、甲酸甲酯、乙酸甲酯、丙酸甲酯、γ-丁内酯、γ-戊内酯及其混合物。
方案20. 如方案14中所述的方法,其中所述锂盐选自LiClO4、LiAlCl4、LiI、LiBr、LiSCN、LiBF4、LiB(C6H5)4、LiAsF6、LiCF3SO3、LiN(FSO2)2 (LIFSI)、LiN(CF3SO2)2 (LITFSI或双(三氟甲磺酰)亚胺锂)、LiPF6、LiB(C2O4)2 (LiBOB)、LiBF2(C2O4) (LiODFB)、LiPF3(C2F5)3 (LiFAP)、LiPF4(CF3)2、LiPF4(C2O4) (LiFOP)、LiPF3(CF3)3、LiSO3CF3、LiNO3及其混合物。
附图说明
通过参考以下具体实施方式和附图,本公开内容的实例的特性将变得明显。
图1是图解比较例电池和包含本文公开的不同电解质的两个不同实施例电池的库伦效率的图。
具体实施方式
锂基电池通常通过在负极(有时称为阳极)与正极(有时称为阴极)之间可逆地传递锂离子来运行。负极和正极位于用适合传导锂离子的电解质溶液浸泡的多孔聚合物隔膜的相对两侧。在充电过程中,锂离子嵌入(例如插入、合金化等)到负极中,并且在放电过程中,锂离子从负极抽出。各个电极还与各自的集流体相关联,所述集流体通过可断开的外电路连接,外电路允许电流在负极与正极之间传递。锂金属基电池的实例包括具有锂金属负极的那些。锂金属负极可以在锂硫电池中与硫基正极配对或者在锂离子电池的一个实例中与传统的锂基正极(例如LiCoO2、LiFePO4、Li(NixMnyCoz)O2 (NMC)等)配对。
对称锂-锂(Li-Li)电化学电池可用于测试锂金属的库伦效率。已经发现当使用传统的基于LiNO3的电解质时,锂金属在对称Li-Li电池中具有大约99%的库伦效率。该效率是相对较低的。此外,如果负极容量与正极容量比率(N/P)等于2,则任何锂金属基电池将具有低于200个循环的循环寿命,部分是由于活性锂离子在电池的锂金属侧的快速损失。为了对抗循环期间活性锂的损失,可以在电极中使用大量的锂。然而,额外的锂对电池增加额外的材料,并由此增加重量、成本等。
在本文公开的实例中,形成负极结构,其包含在锂负极的表面上形成的固体电解质界面(SEI)层。使用该负极结构有效地提高锂金属的库伦效率。
由存在于电解质溶液中的添加剂形成SEI层。由于添加剂存在于电解质溶液中,当将锂金属与电解质接触放置时,原位形成SEI层。SEI层的形成可以发生在电化学电池内。如本文所用的,电化学电池可以表示先前提及的任何锂金属基电池。也可以使用不需要用到电化学电池的其它技术来形成SEI层。这是由于以下事实:即使在不存在施加电压的情况下,也会发生一种或多种添加剂与锂金属之间的化学反应。然后可以将通过不涉及电化学电池的技术形成的负极结构的实例并入锂金属基电池的任何实例。
本文公开的添加剂是硅基添加剂,其与锂金属负极具有强相互作用。不受任何理论所束缚,据信硅基添加剂倾向于在锂金属负极的表面上形成基于Si-O-Si的低聚物或聚合物(即SEI层)。基于Si-O-Si的低聚物或聚合物在循环期间对适应Li的巨大体积变化而言具有足够的柔性。例如,如果已经从集流体剥离所有的Li,则Si承受Si与Li3.75Si之间约350%的体积变化,而Li承受无穷大的体积变化。换言之,纯Li金属具有体积,并且当使其放电时,不再存在固体,因此体积变化百分数(Vol_最终 - Vol_初始)/ Vol_最终是无穷大的。Si-O-Si键角可以从140o变化至180o,具有仅0.3 kcal/mol的能量位垒(典型的氢键为>5 kcal/mol,并且典型的化学键> 100 kcal/mol),这使得基于Si-O-Si的低聚物/聚合物对抵抗巨大的体积波动而言具有足够的柔性。因此,本文公开的硅基添加剂和由此形成的SEI层可以优于其它电解质添加剂和SEI层。
添加剂的实例包括具有至少一个Si-H基团的硅烷、氟化甲氧基硅烷、氟化氯硅烷或其组合。
具有至少一个Si-H基团的硅烷的实例包括H-Si((CH2)xCH3)2-R、H-Si((CH2)xCH3)2-O-R、H-Si((CH2)xCH3)2-R-阴离子- Li+和H-Si((CH2)xCH3)2-O-R-阴离子- Li+。在任意的这些式中,x的范围为0至2,并且R是任意元素或有机基团。合适的R元素的实例包括-Si、-C或-F。包含-Si、-C或-F的任意有机基团也可以用作R。有机基团(其是合适的R基团)的一个实例包括 H-Si((CH2)xCH3)2-CH2-CH2-。具有该R基团的添加剂的实例是1,2-双(二甲基硅烷基)乙烷(1,1,4,4-tetramethyl-disilethane),具有结构:
。
在式H-Si((CH2)xCH3)2-R-阴离子- Li+和H-Si((CH2)xCH3)2-O-R-阴离子- Li+中,该阴离子可以是任意阴离子。一些阴离子实例包括PF5 -、BF3 -、双(三氟甲磺酰)亚胺阴离子(TFSI-)、双(氟磺酰)亚胺阴离子(FSI-)和氟-丙二酸根合(二氟)硼酸根((F)MDFB-)。当使用氟-丙二酸根合(二氟)硼酸根((F)MDFB-)时,结构可以是:
或。
在这两个实例中,x的范围为0至2(如前所述),并且R可以是先前描述的任意基团。例如,R可以是-(CH2)2-Si((CH2)xCH3)2-。
氟化甲氧基硅烷的实例具有式(CH3O)2RSi-(CH2)x-(CF2)y-CF3,其中R是-OCH3 or -CH3,x的范围为0至2,并且y的范围为1至20。氟化甲氧基硅烷的一些具体实例包括:
、、
和。
氟化氯硅烷的实例具有式(CH3)xSiCly-(CH2)m-(CF2)n-CF3,其中x为1并且y为2,或者x为2并且y为1,m的范围为0至2,并且n的范围为1至20。氟化氯硅烷的一些具体实例包括:
和。
如本文提及的,在电解质中包含一种或多种添加剂。可以以任何合适的量包含添加剂。例如,可以以电解质的总重量%的约0.1重量%至约10重量%的量包含添加剂。
电解质还包含溶剂和锂盐。当将要在电化学电池外形成SEI层时,电解质溶剂可以选自1,3-二氧戊环(DOL或DIOX)、二甲氧基乙烷(DME)、四氢呋喃、2-甲基四氢呋喃、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、四乙二醇二甲醚(TEGDME)、聚乙二醇二甲醚(PEGDME)、环状碳酸酯(碳酸亚乙酯(EC)、碳酸亚丙酯、碳酸亚丁酯、碳酸氟代亚乙酯)、直链碳酸酯(碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC))、脂族羧酸酯(甲酸甲酯、乙酸甲酯、丙酸甲酯)、γ-内酯(γ-丁内酯、γ-戊内酯)及其混合物。
当将要在电化学电池内形成SEI层时,取决于所使用的电化学电池的种类,溶剂的选择可以改变。如果该电池是Li-Li对称电化学电池,则可以使用任意先前列出的溶剂。如果该电池是Li-S电化学电池,则溶剂可以选自1,3-二氧戊环(DOL)、二甲氧基乙烷(DME)、四氢呋喃、2-甲基四氢呋喃、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、四乙二醇二甲醚(TEGDME)、聚乙二醇二甲醚(PEGDME)及其混合物。如果该电池是锂离子电池,则电解质溶剂可以选自环状碳酸酯(碳酸亚乙酯(EC)、碳酸亚丙酯、碳酸亚丁酯、碳酸氟代亚乙酯)、直链碳酸酯(碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC))、脂族羧酸酯(甲酸甲酯、乙酸甲酯、丙酸甲酯)、γ-内酯(γ-丁内酯、γ-戊内酯)、链结构醚(1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷)、环状醚(四氢呋喃、2-甲基四氢呋喃)及其混合物。
锂盐的实例包括LiClO4、LiAlCl4、LiI、LiBr、LiSCN、LiBF4、LiB(C6H5)4、LiAsF6、LiCF3SO3、LiN(FSO2)2 (LIFSI)、LiN(CF3SO2) 2 (LITFSI或双(三氟甲磺酰)亚胺锂)、LiPF6、LiB(C2O4)2 (LiBOB)、LiBF2(C2O4) (LiODFB)、LiPF3(C2F5)3 (LiFAP)、LiPF4(CF3)2、LiPF4(C2O4) (LiFOP)、LiPF3(CF3)3、LiSO3CF3、LiNO3及其混合物。在一个实例中,所述盐在电解质中的浓度为约1 mol/L。
在其上形成SEI的电极是锂金属电极。锂金属电极的一个实例是锂箔。
为了在电化学电池外在锂金属上形成SEI层,可以制备本文公开的电解质的任何实例,随后可以使锂金属暴露于该电解质。当在电化学电池外在锂金属上形成SEI层时,要理解的是可以将锂盐从电解质排除。可以通过浸涂或一些其它合适的涂布技术完成使锂金属暴露于电解质。锂金属是高度反应性的,并且涂布有LiOH层。LiOH的H原子可以与可连接至添加剂的Si的各种基团反应,使得添加剂连接至锂。例如,-H可以与H-Si反应以形成H2并且Si将连接至Li;-H可以与CH3O-Si反应以形成甲醇并且Si将连接至Li;或者-H可以与Cl-Si反应以形成HCl并且Si将连接至Li。这些连接可以通过氧原子实现。因此,锂金属与添加剂强烈地相互作用(即使不施加电压)以在锂金属的表面上形成SEI层。在这些实例中,可以使锂金属暴露于电解质一段时间,所述时间足够使添加剂与锂金属表面处的基团之间发生化学反应。例如,暴露时间可以为约2秒至约1周。
通过先前描述的技术(即在电化学电池外)形成的锂金属结构包含锂金属和在其上形成的SEI层。当SEI层的形成完成时,可以冲洗具有在其上形成的SEI层的锂金属以除去任何残余的电解质溶液。该方法形成负极结构,所述负极结构随后可以在锂金属电池的任何实例中用作负极。
在锂金属电池中,通过先前描述的技术形成的负极结构可以与负极侧集流体结合并与传统的锂基正极(例如LiCoO2、NMC、LiFePO4等),或与硫基正极,或与介孔碳正极(其含有金属催化剂)一起使用。要理解的是由于已经形成SEI层,在电化学电池/电池组的这些具体实例中使用的电解质可以包含或不包含电解质中的添加剂。
为了在电化学电池内在锂金属上原位形成SEI层,使用包含锂金属作为负极的任何合适的电化学电池。在电化学电池制造过程中,将本文公开的Si添加剂直接添加至其它的电解质组分(即溶剂和锂盐)中,并将其注入电池(例如Li-LiFePO4电池、Li-S电池等)中。
由于锂金属的高度反应性质,即使在不存在施加电压或负载下,SEI也将会在电池内在锂金属负极表面上原位形成。在电池/电池组循环期间,添加剂与锂在锂电极的一个或多个暴露的表面处反应以进一步形成SEI层的实例。不受任何理论所束缚,据信在该实例中,在氢原子与如本文所述的添加剂上的基团反应之后,添加剂的硅原子通过锂电极上的氧原子(来自LiOH)键合至锂金属。
在本文公开的锂离子电池的实例中,负极是锂金属,并且锂基正极可以是能够与充当锂离子电池正极端子的铝或另一合适的集流体充分进行锂的嵌入和脱嵌的任何锂基活性材料。适于该正极实例的一类常见的已知锂基活性材料包括层状锂过渡金属氧化物。例如,锂基活性材料可以是LiNiO2、尖晶石锂锰氧化物(LiMn2O4)、锂钴氧化物(LiCoO2)、锰-镍氧化物尖晶石[Li(Mn1.5Ni0.5)O2]或层状镍-锰-钴氧化物(具有通式xLi2MnO3·(1-x)LiMO2,其中M由任意比率的Ni、Mn和/或Co组成)。层状镍-锰-钴氧化物的具体实例包括(xLi2MnO3·(1-x)Li(Ni1/3Mn1/3Co1/3)O2)。其它合适的锂基活性材料包括Li(Ni1/3Mn1/3Co1/3)O2、Lix+yMn2-yO4(LMO,0 < x < 1并且0 < y <0.1)或锂铁多阴离子氧化物,例如磷酸铁锂(LiFePO4)或氟磷酸铁锂(Li2FePO4F),或富锂的层结构。还可以使用其它锂基活性材料,例如LiNi1-xCo1-yMx+yO2或LiMn1.5-xNi0.5-yMx+yO4(M由任意比率的Al、Ti、Cr和/或Mg组成)、稳定化的锂锰氧化物尖晶石(LixMn2-yMyO4,其中M由任意比率的Al、Ti、Cr和/或Mg组成)、锂镍钴铝氧化物(例如LiNi0.8Co0.15Al0.05O2或NCA)、铝稳定化的锂锰氧化物尖晶石(例如LixAl0.05Mn0.95O2)、锂钒氧化物(LiV2O5)、Li2MSiO4 (其中M由任意比率的Co、Fe和/或Mn组成)、和任何其它的高能镍-锰-钴材料(HE-NMC、NMC或LiNiMnCoO2)。“任意比率”表示任意元素可以以任意量存在。因此,在一些实例中,M可以是Al,含有或不含有Cr、Ti和/或Mg,或者是所列元素的任意其它组合。在另一实例中,可以在基于锂过渡金属的活性材料的任意实例的晶格中进行阴离子取代以稳定晶体结构。例如,可以用F原子取代任意O原子。
在本文公开的锂硫电池的实例中,负极是锂金属,并且硫基正极是硫-碳复合材料。在一个实例中,正极中S对C的重量比为1:9至8:1。
要理解的是本文公开的任意正极还可以包含粘合剂材料和导电填料。粘合剂材料可用于使正极活性材料在结构上固定在一起。粘合剂材料的实例包括聚偏二氟乙烯(PVdF)、聚环氧乙烷(PEO)、三元乙丙(EPDM)橡胶、羧甲基纤维素(CMC)、丁苯橡胶(SBR)、丁苯橡胶-羧甲基纤维素(SBR-CMC)、聚丙烯酸(PAA)、交联的聚丙烯酸-聚乙烯亚胺、聚酰亚胺、或任何其它合适的粘合剂材料。其它合适的粘合剂包括聚乙烯醇(PVA)、海藻酸钠或其它水溶性粘合剂。导电填料可以是导电碳材料。导电碳材料可以是高表面积碳,例如乙炔黑(例如来自TIMCAL的SUPER P®导电炭黑)。包含导电填料材料以确保活性材料与正极侧集流体之间的电子传导。
锂金属负极与负极侧集流体(例如铜)结合,并且所使用的特定电化学电池的合适的正极与正极侧集流体(例如铝)结合。
分隔锂金属负极与正极的隔膜可以是任何合适的多孔聚合物隔膜。可以例如由聚烯烃形成该多孔聚合物隔膜。所述聚烯烃可以是均聚物(衍生自单一单体成分)或杂聚物(衍生自多于一种单体成分),并且可以是直链或支链的。如果使用衍生自两种单体成分的杂聚物,则聚烯烃可以呈现任何共聚物链排列,其包括嵌段共聚物或无规共聚物的链排列。如果该聚烯烃是衍生自多于两种单体成分的杂聚物,这也同样适用。例如,该聚烯烃可以是聚乙烯(PE)、聚丙烯(PP)、PE和PP的共混物、或PE和/或PP的多层结构化多孔薄膜。市售的多孔隔膜16包括单层聚丙烯膜,例如来自Celgard,LLC (Charlotte,NC)的CELGARD 2400和CELGARD 2500。要理解的是多孔隔膜可以是经涂布或处理的,或未涂布或未处理的。例如,多孔隔膜可以是经涂布或未涂布的,或者可以包括或不包括在其上的任何表面活性剂处理。
在其它实例中,可以由选自以下的另一聚合物形成多孔隔膜:聚对苯二甲酸乙二醇酯(PET)、聚偏二氟乙烯(PVdF)、聚酰胺(Nylon)、聚氨酯、聚碳酸酯、聚酯、聚醚醚酮(PEEK)、聚醚砜(PES)、聚酰亚胺(PI)、聚酰胺-酰亚胺、聚醚、聚甲醛(例如缩醛(acetal))、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯(polyethylenenaphthenate)、聚丁烯、聚烯烃共聚物、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚苯乙烯共聚物、聚甲基丙烯酸甲酯(PMMA)、聚氯乙烯(PVC)、聚硅氧烷聚合物(例如聚二甲基硅氧烷(PDMS))、聚苯并咪唑(PBI)、聚苯并噁唑(PBO)、聚亚苯基类(polyphenylenes)(例如PARMAXTM (MississippiPolymer Technologies,Inc.,Bay Saint Louis,Mississippi))、聚亚芳基醚酮、聚全氟环丁烷、聚四氟乙烯(PTFE)、聚偏二氟乙烯共聚物和三元共聚物、聚偏二氯乙烯、聚氟乙烯、液晶聚合物(例如VECTRANTM (Hoechst AG,德国)和ZENITE®(DuPont,Wilmington,DE))、聚芳酰胺、聚苯醚和/或其组合。据信可以用于多孔隔膜的液晶聚合物的另一实例是聚(对羟基苯甲酸)。在又一实例中,多孔隔膜可以选自聚烯烃(例如PE和/或PP)与一种或多种以上列出的其它聚合物的组合。
多孔隔膜可以是单层或可以是由干法或湿法制造的多层(例如双层、三层等)层叠件。该多孔隔膜用作电绝缘体(防止发生短路)、机械载体和防止两个电极之间的物理接触的阻隔物。多孔隔膜还确保了锂离子穿过填充其孔隙的电解质溶液的通道。
在电化学电池/电池组中,用本文公开的电解质浸泡锂金属负极、正极和多孔隔膜,所述电解质包含添加剂、锂盐、和适于电池/电池组的类型的溶剂。
该电池组/电化学电池还包含外电路和负载。对电化学电池施加负载闭合了外电路并连接负极和正极。闭合的外电路能够跨电化学电池施加工作电压。
当电极初始暴露于电解质时,添加剂可以开始与锂金属负极反应以形成SEI层。本文公开的SEI层是保护性涂层,因为其保护锂金属负极免于与电解质的附加反应。该SEI层还表现出均匀性(在组成和厚度方面)以及对锂金属负极的附着性。
为了进一步举例说明本公开内容,本文给出了实施例。要理解的是出于举例说明的目的提供本实施例,并且不应解释为限制本公开内容的范围。
实施例
用锂箔对电极和铜工作电极(通过在Cu上镀敷1 mAh Li)制备Li-Li对称电池。比较例电池包含比较例电解质,其包含在DME/DIOX(1:1体积比)中的0.4M LiTFSI和0.6MLiNO3。第一实施例电池包含第一实施例电解质,其包含在DME/DIOX(1:1体积比)中的0.4MLiTFSI和0.6M LiNO3,与1%的3,3,3-三氟丙基甲基二甲氧基硅烷 ()。第二实施例电池包含第二实施例电解质,其包含在DME/DIOX(1:1体积比)中的0.4M LiTFSI和0.6M LiNO3,与1%的如在方案中列出的氢化甲硅烷基(silylhydride)相关的添加剂:()。
比较例和实施例电池的测试条件为:室温;电流=250 μA;面积=1.23 cm2;电荷=1mA h;和100%放电深度(DOD)。库伦效率结果示于图1中。在图1中,Y轴(标记为CE)表示库伦效率(×100=百分数)并且X轴(标记为“#”)表示循环数。如图1中所示,比较例电池(标记为“3”)在经过35个循环后具有约98%至约99%的循环效率。相比之下,添加有3,3,3-三氟丙基甲基二甲氧基硅烷(第一实施例电池,标记为“1”)的情况下,循环效率增加至约99.6%,并且循环寿命延长至约50个循环。另外,添加有氢化甲硅烷基相关的添加剂(第二实施例电池,标记为“2”)的情况下,循环效率增加至约99%,并且循环寿命延长至90个循环。
要理解的是,本文提供的范围包括了所述范围和所述范围内的任意值或子范围。例如,约0.1重量%至约10重量%的范围应当解释为不仅包括明确列举的约0.1重量%至约10重量%的界限,还包括个别的值,例如1.25重量%、5重量%等,以及子范围,例如约2重量%至约8.5重量%等。此外,当使用“约”描述一个值时,这表示涵盖了自所述值的少量偏差(至多+/-10%)。
在整个说明书中提到的“一个实例”、“另一实例”、“实例”等表示与实例关联描述的具体要素(例如特征、结构和/或特征)被包括在本文描述的至少一个实例中,并且可以存在或不存在于其它实例中。此外,要理解的是,针对任何实例描述的要素可以以任何合适的方式结合到不同的实例中,除非上下文明确另外指明。
在描述和要求保护本文公开的实例时,单数形式“一个”、“一种”和“所述/该”包括复数对象,除非上下文明确另外指明。
尽管已经详细描述了多个实例,但要理解的是,可以对所公开的实例加以修改。因此,前文的描述应视为是非限制性的。
Claims (10)
1.电解质,其包含:
溶剂;
锂盐;和
添加剂,其选自具有至少一个Si-H基团的硅烷;氟化甲氧基硅烷;及其组合,其中具有至少一个Si-H基团的硅烷选自H-Si((CH2)xCH3)2-R-阴离子- Li+和H-Si((CH2)xCH3)2-O-R-阴离子- Li+;其中x的范围为0至2,并且R为任意元素或有机基团;和所述阴离子选自PF5 -、BF3 -、双(三氟甲磺酰)亚胺阴离子、双(氟磺酰)亚胺阴离子(FSI-)和氟-丙二酸根合(二氟)硼酸根,和
其中所述氟化甲氧基硅烷选自:
、、
和。
2.如权利要求1中所述的电解质,其中:
所述溶剂选自碳酸亚乙酯、碳酸亚丙酯、碳酸亚丁酯、碳酸氟代亚乙酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、甲酸甲酯、乙酸甲酯、丙酸甲酯、γ-丁内酯、γ-戊内酯、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、四氢呋喃、2-甲基四氢呋喃、1,3-二氧戊环、二甲氧基乙烷、四乙二醇二甲醚、聚乙二醇二甲醚及其混合物;和
所述锂盐选自双(三氟甲磺酰)亚胺锂、LiNO3、LiPF6、LiBF4、LiI、LiBr、LiSCN、LiClO4、LiAlCl4、LiB(C2O4)2、LiB(C6H5)4、LiBF2(C2O4)、LiN(SO2F)2、LiPF3(C2F5)3、LiPF4(CF3)2、LiPF4(C2O4)、LiPF3(CF3)3、LiSO3CF3、LiCF3SO3、LiAsF6、及其组合。
3. 负极结构,其包含:
包含锂作为活性材料的负极;和
在所述负极表面上形成的固体电解质界面(SEI)层,所述SEI层由具有至少一个Si-H基团的硅烷;氟化甲氧基硅烷;及其组合形成,其中具有至少一个Si-H基团的硅烷选自H-Si((CH2)xCH3)2-R-阴离子- Li+和H-Si((CH2)xCH3)2-O-R-阴离子- Li+;其中x的范围为0至2,并且R为任意元素或有机基团;和所述阴离子选自PF5 -、BF3 -、双(三氟甲磺酰)亚胺阴离子、双(氟磺酰)亚胺阴离子和氟-丙二酸根合(二氟)硼酸根,和
其中所述氟化甲氧基硅烷选自:
、、
和。
4.用于在锂电极表面上制造固体电解质界面层的方法,所述方法包括:
使所述锂电极暴露于包含以下物质的电解质:
溶剂;
锂盐;和
添加剂,其选自具有至少一个Si-H基团的硅烷;氟化甲氧基硅烷;及其组合,
其中具有至少一个Si-H基团的硅烷选自H-Si((CH2)xCH3)2-R-阴离子- Li+和H-Si((CH2)xCH3)2-O-R-阴离子- Li+;其中x的范围为0至2,并且R为任意元素或有机基团;和所述阴离子选自PF5 -、BF3 -、双(三氟甲磺酰)亚胺阴离子、双(氟磺酰)亚胺阴离子和氟-丙二酸根合(二氟)硼酸根,和
其中所述氟化甲氧基硅烷选自:
、、
和。
5.如权利要求4中所述的方法,其中在电化学电池中使锂电极暴露于电解质,并且其中所述方法还包括对所述电化学电池施加电压。
6.如权利要求5中所述的方法,其中所述电化学电池是Li-Li对称电化学电池,并且所述电解质溶剂选自1,3-二氧戊环、二甲氧基乙烷、四氢呋喃、2-甲基四氢呋喃、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、四乙二醇二甲醚、聚乙二醇二甲醚、碳酸亚乙酯、碳酸亚丙酯、碳酸亚丁酯、碳酸氟代亚乙酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、甲酸甲酯、乙酸甲酯、丙酸甲酯、γ-丁内酯、γ-戊内酯、及其混合物。
7.如权利要求5中所述的方法,其中所述电化学电池是Li-S电化学电池,并且所述电解质溶剂选自1,3-二氧戊环、二甲氧基乙烷、四氢呋喃、2-甲基四氢呋喃、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、四乙二醇二甲醚、聚乙二醇二甲醚及其混合物。
8.如权利要求5中所述的方法,其中所述电化学电池是锂离子电池,并且所述电解质溶剂选自碳酸亚乙酯、碳酸亚丙酯、碳酸亚丁酯、碳酸氟代亚乙酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、甲酸甲酯、乙酸甲酯、丙酸甲酯、γ-丁内酯、γ-戊内酯、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、四氢呋喃、2-甲基四氢呋喃及其混合物。
9.如权利要求4中所述的方法,其中在电化学电池外使锂电极暴露于电解质,并且其中所述电解质溶剂选自1,3-二氧戊环、二甲氧基乙烷、四氢呋喃、2-甲基四氢呋喃、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、四乙二醇二甲醚、聚乙二醇二甲醚、碳酸亚乙酯、碳酸亚丙酯、碳酸亚丁酯、碳酸氟代亚乙酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、甲酸甲酯、乙酸甲酯、丙酸甲酯、γ-丁内酯、γ-戊内酯及其混合物。
10.如权利要求4中所述的方法,其中所述锂盐选自LiClO4、LiAlCl4、LiI、LiBr、LiSCN、LiBF4、LiB(C6H5)4、LiAsF6、LiCF3SO3、LiN(FSO2)2、LiN(CF3SO2)2 、LiPF6、LiB(C2O4)2、LiBF2(C2O4)、LiPF3(C2F5)3、LiPF4(CF3)2、LiPF4(C2O4)、LiPF3(CF3)3、LiSO3CF3、LiNO3及其混合物。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462090192P | 2014-12-10 | 2014-12-10 | |
US62/090192 | 2014-12-10 | ||
US14/954181 | 2015-11-30 | ||
US14/954,181 US10312501B2 (en) | 2014-12-10 | 2015-11-30 | Electrolyte and negative electrode structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105703006A CN105703006A (zh) | 2016-06-22 |
CN105703006B true CN105703006B (zh) | 2019-02-12 |
Family
ID=56082521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510910065.4A Active CN105703006B (zh) | 2014-12-10 | 2015-12-10 | 电解质和负极结构 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10312501B2 (zh) |
CN (1) | CN105703006B (zh) |
DE (1) | DE102015121342B4 (zh) |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10062898B2 (en) | 2013-07-10 | 2018-08-28 | GM Global Technology Operations LLC | Surface coating method and method for improving electrochemical performance of an electrode for a lithium based battery |
US10084204B2 (en) | 2014-07-21 | 2018-09-25 | GM Global Technology Operations LLC | Electrolyte solution and sulfur-based or selenium-based batteries including the electrolyte solution |
US10312501B2 (en) | 2014-12-10 | 2019-06-04 | GM Global Technology Operations LLC | Electrolyte and negative electrode structure |
US20160172710A1 (en) | 2014-12-10 | 2016-06-16 | The Regents Of The University Of California | Electrolyte and negative electrode structure |
US10367201B2 (en) | 2016-03-30 | 2019-07-30 | GM Global Technology Operations LLC | Negative electrode including a polymeric single-ion conductor coating |
CN107591564A (zh) * | 2016-07-06 | 2018-01-16 | 宁德时代新能源科技股份有限公司 | 电解液及锂离子电池 |
CN107732299A (zh) * | 2016-08-12 | 2018-02-23 | 宁德时代新能源科技股份有限公司 | 电解液及二次电池 |
KR102112207B1 (ko) * | 2017-01-26 | 2020-05-19 | 주식회사 엘지화학 | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 |
WO2018139808A1 (ko) * | 2017-01-26 | 2018-08-02 | 주식회사 엘지화학 | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 |
JP6662802B2 (ja) * | 2017-02-27 | 2020-03-11 | 国立大学法人北陸先端科学技術大学院大学 | 酸化物全固体電池 |
US10680281B2 (en) | 2017-04-06 | 2020-06-09 | GM Global Technology Operations LLC | Sulfide and oxy-sulfide glass and glass-ceramic films for batteries incorporating metallic anodes |
CN107293780B (zh) * | 2017-06-01 | 2019-08-02 | 北京理工大学 | 一种锂电池用基于离子液体的准固态电解质及其制备方法 |
CN109148961A (zh) * | 2017-06-28 | 2019-01-04 | 松下知识产权经营株式会社 | 锂二次电池 |
US10608249B2 (en) | 2017-08-01 | 2020-03-31 | GM Global Technology Operations LLC | Conformal coating of lithium anode via vapor deposition for rechargeable lithium ion batteries |
KR102479725B1 (ko) * | 2017-08-03 | 2022-12-21 | 삼성에스디아이 주식회사 | 리튬 전지용 전해액 및 이를 포함하는 리튬 전지 |
US10511049B2 (en) | 2017-08-15 | 2019-12-17 | GM Global Technology Operations LLC | Electrolyte system including alkali metal bis(fluorosulfonyl)imide and dimethyoxyethane for improving anodic stability of electrochemical cells |
US10566652B2 (en) | 2017-08-15 | 2020-02-18 | GM Global Technology Operations LLC | Lithium metal battery with hybrid electrolyte system |
US10707530B2 (en) | 2017-08-15 | 2020-07-07 | GM Global Technology Operations LLC | Carbonate-based electrolyte system improving or supporting efficiency of electrochemical cells having lithium-containing anodes |
US10497927B2 (en) | 2017-08-31 | 2019-12-03 | GM Global Technology Operations LLC | Methods of applying self-forming artificial solid electrolyte interface (SEI) layer to stabilize cycle stability of electrodes in lithium batteries |
US11183714B2 (en) | 2017-09-20 | 2021-11-23 | GM Global Technology Operations LLC | Hybrid metal-organic framework separators for electrochemical cells |
US11114696B2 (en) | 2017-12-28 | 2021-09-07 | GM Global Technology Operations LLC | Electrolyte system for lithium-chalcogen batteries |
DE102018201274A1 (de) | 2018-01-29 | 2019-08-01 | Robert Bosch Gmbh | Aktivmaterial mit kovalent gebundener Solid-Electrolyte-Interphase |
US11196045B2 (en) | 2018-02-01 | 2021-12-07 | GM Global Technology Operations LLC | Plasma pretreatment on current collectors for thin film lithium metallization |
US10903478B2 (en) | 2018-04-06 | 2021-01-26 | GM Global Technology Operations LLC | Protective coating for lithium-containing electrode and methods of making the same |
US10673046B2 (en) | 2018-04-13 | 2020-06-02 | GM Global Technology Operations LLC | Separator for lithium metal based batteries |
US10608241B2 (en) | 2018-04-17 | 2020-03-31 | GM Global Technology Operations LLC | Methods of preparing lithium metal anodes |
US11063248B2 (en) | 2018-05-24 | 2021-07-13 | GM Global Technology Operations LLC | Protective coating for lithium-containing electrode and methods of making the same |
US10749214B2 (en) | 2018-05-30 | 2020-08-18 | GM Global Technology Operations LLC | Sulfide and oxy-sulfide glass and glass-ceramic solid state electrolytes for electrochemical cells |
KR102244917B1 (ko) * | 2018-07-30 | 2021-04-27 | 주식회사 엘지화학 | 리튬 전극 및 이를 포함하는 리튬 이차전지 |
CN109088102A (zh) * | 2018-09-25 | 2018-12-25 | 桑德集团有限公司 | 一种锂电池电解液及包含该电解液的电池 |
US11239459B2 (en) | 2018-10-18 | 2022-02-01 | GM Global Technology Operations LLC | Low-expansion composite electrodes for all-solid-state batteries |
US11075371B2 (en) | 2018-12-21 | 2021-07-27 | GM Global Technology Operations LLC | Negative electrode for secondary lithium metal battery and method of making |
US11430994B2 (en) | 2018-12-28 | 2022-08-30 | GM Global Technology Operations LLC | Protective coatings for lithium metal electrodes |
US11217781B2 (en) | 2019-04-08 | 2022-01-04 | GM Global Technology Operations LLC | Methods for manufacturing electrodes including fluoropolymer-based solid electrolyte interface layers |
US11165052B2 (en) | 2019-07-17 | 2021-11-02 | GM Global Technology Operations LLC | Lithium alloy-based electrodes for electrochemical cells and methods for making the same |
US11094996B2 (en) | 2019-09-18 | 2021-08-17 | GM Global Technology Operations LLC | Additive to ceramic ion conducting material to mitigate the resistive effect of surface carbonates and hydroxides |
US11515538B2 (en) | 2019-10-11 | 2022-11-29 | GM Global Technology Operations LLC | In-situ polymerization to protect lithium metal electrodes |
US11404698B2 (en) | 2019-10-30 | 2022-08-02 | GM Global Technology Operations LLC | Liquid metal interfacial layers for solid electrolytes and methods thereof |
US11735725B2 (en) | 2019-11-27 | 2023-08-22 | GM Global Technology Operations LLC | Ceramic coating for lithium or sodium metal electrodes |
US11984599B2 (en) | 2019-11-27 | 2024-05-14 | GM Global Technology Operations LLC | Electrode components with laser induced surface modified current collectors and methods of making the same |
US11522221B2 (en) | 2019-12-23 | 2022-12-06 | GM Global Technology Operations LLC | Gelation reagent for forming gel electrolyte and methods relating thereto |
US11342549B2 (en) | 2020-01-15 | 2022-05-24 | GM Global Technology Operations LLC | Method for forming sulfur-containing electrode using salt additive |
US11557758B2 (en) | 2020-04-30 | 2023-01-17 | GM Global Technology Operations LLC | Solvent-free dry powder process to incorporate ceramic particles into electrochemical cell components |
US11600825B2 (en) | 2020-07-30 | 2023-03-07 | GM Global Technology Operations LLC | Positive electrode for secondary lithium metal battery and method of making |
US11688882B2 (en) | 2020-10-30 | 2023-06-27 | GM Global Technology Operations LLC | Electrolytes and separators for lithium metal batteries |
US12021221B2 (en) | 2020-11-13 | 2024-06-25 | GM Global Technology Operations LLC | Electrode architecture for fast charging |
US11728470B2 (en) | 2020-12-21 | 2023-08-15 | GM Global Technology Operations LLC | Lithium metal negative electrode and method of manufacturing the same |
US11682787B2 (en) | 2020-12-21 | 2023-06-20 | GM Global Technology Operations LLC | Lithium battery including composite particles with flame retardant material carried by particulate host material |
US11600814B2 (en) | 2021-01-26 | 2023-03-07 | GM Global Technology Operations LLC | Nickel-containing positive electrode slurries having reduced or eliminated gelation and high-energy-density positive electrodes for electrochemical cells |
US11637321B2 (en) | 2021-01-26 | 2023-04-25 | GM Global Technology Operations LLC | Ternary salts electrolyte for a phospho-olivine positive electrode |
US11637324B2 (en) | 2021-02-11 | 2023-04-25 | GM Global Technology Operations LLC | Lithium ion battery electrolytes and electrochemical cells including the same |
US11784349B2 (en) | 2021-04-01 | 2023-10-10 | GM Global Technology Operations LLC | Lithium metal battery electrolytes and electrochemical cells including the same |
US11728490B2 (en) | 2021-04-22 | 2023-08-15 | GM Global Technology Operations LLC | Current collectors having surface structures for controlling formation of solid-electrolyte interface layers |
US11955639B2 (en) | 2021-05-04 | 2024-04-09 | GM Global Technology Operations LLC | Composite interlayer for lithium metal based solid state batteries and the method of making the same |
US11799083B2 (en) | 2021-08-26 | 2023-10-24 | GM Global Technology Operations LLC | Lithiation additive for a positive electrode |
US12015178B2 (en) | 2021-08-27 | 2024-06-18 | GM Global Technology Operations LLC | Battery cell, battery pack, and method of making the same incorporating features that accelerate heat dissipation, improve uniformity of heat distribution, and reduce size |
US12119484B2 (en) | 2021-12-10 | 2024-10-15 | GM Global Technology Operations LLC | Lithium-containing coatings for cathode materials |
US12040505B2 (en) | 2022-08-03 | 2024-07-16 | GM Global Technology Operations LLC | Method for manufacturing an interfacial lithium fluoride layer for an electrochemical cell |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1328355A (zh) * | 2000-06-07 | 2001-12-26 | 默克专利股份有限公司 | 作为电化学电池电解质的添加剂的硅烷化合物 |
CN101471455A (zh) * | 2007-12-28 | 2009-07-01 | 张家港市国泰华荣化工新材料有限公司 | 用于锂离子电池非水电解质中的添加剂及用其制备的非水电解质 |
CN103038930A (zh) * | 2010-07-28 | 2013-04-10 | 株式会社Lg化学 | 锂二次电池用非水电解质溶液以及包含其的锂二次电池 |
Family Cites Families (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08321311A (ja) | 1995-05-24 | 1996-12-03 | Sanyo Electric Co Ltd | 非水電解液電池 |
JP3649996B2 (ja) | 2000-05-24 | 2005-05-18 | 三洋電機株式会社 | 非水電解質二次電池用正極活物質 |
JP4729716B2 (ja) | 2003-02-20 | 2011-07-20 | 三菱化学株式会社 | リチウム二次電池負極及びリチウム二次電池 |
EP1596451A4 (en) | 2003-02-20 | 2008-07-09 | Mitsubishi Chem Corp | ACTIVE SUBSTANCE FOR NEGATIVE ELECTRODE OF LITHIUM AUXILIARY BATTERY, NEGATIVE ELECTRODE OF LITHIUM R AUXILIARY BATTERY LITHIUM AUXILIARY BATTERY |
US7018607B2 (en) | 2003-06-25 | 2006-03-28 | General Motors Corporation | Cathode material for lithium battery |
US9786954B2 (en) * | 2004-02-04 | 2017-10-10 | Robert C. West | Electrolyte including silane for use in electrochemical devices |
US20050276910A1 (en) | 2004-06-09 | 2005-12-15 | Osram Opto Semiconductors Gmbh | Post processing of films to improve film quality |
JP4070793B2 (ja) | 2005-05-30 | 2008-04-02 | 株式会社デンソー | 非水電解液及び該電解液を用いた非水電解液二次電池 |
US7330328B2 (en) | 2006-02-17 | 2008-02-12 | Seagate Technology Llc | Random number generation using back electromotive force (BEMF) values |
JP2008192495A (ja) | 2007-02-06 | 2008-08-21 | Matsushita Electric Ind Co Ltd | 電池の内部短絡評価方法および内部短絡評価装置並びに電池及び電池パックおよびそれらの製造法 |
JP4364253B2 (ja) | 2007-04-05 | 2009-11-11 | 株式会社東芝 | 配線、電子装置及び電子装置の製造方法 |
WO2008128554A1 (en) | 2007-04-20 | 2008-10-30 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Highly conductive, transparent carbon films as electrode materials |
US8828481B2 (en) | 2007-04-23 | 2014-09-09 | Applied Sciences, Inc. | Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries |
US7736805B2 (en) | 2007-05-16 | 2010-06-15 | Gm Global Technology Operations, Inc. | Lithium hydride negative electrode for rechargeable lithium batteries |
US9356281B2 (en) | 2008-05-20 | 2016-05-31 | GM Global Technology Operations LLC | Intercalation electrode based on ordered graphene planes |
JP5231557B2 (ja) | 2009-02-27 | 2013-07-10 | パナソニック株式会社 | 非水電解質二次電池用負極及び非水電解質二次電池 |
JP5412937B2 (ja) | 2009-04-27 | 2014-02-12 | ソニー株式会社 | 非水電解質組成物及び非水電解質二次電池 |
US8399138B2 (en) | 2009-10-14 | 2013-03-19 | GM Global Technology Operations LLC | Liquid rechargeable lithium ion battery |
US8420259B2 (en) | 2009-10-14 | 2013-04-16 | GM Global Technology Operations LLC | Electrodes including an embedded compressible or shape changing component |
US8148455B2 (en) | 2009-11-20 | 2012-04-03 | GM Global Technology Operations LLC | Hybrid two- and three-component host-guest nanocomposites and method for manufacturing the same |
MX2012002899A (es) | 2009-11-27 | 2012-04-02 | Nissan Motor | Material activo del electrodo negativo, de aleacion de si, para dispositivos electricos. |
US8568930B2 (en) | 2009-12-18 | 2013-10-29 | GM Global Technology Operations LLC | Lithium ion battery |
US8785054B2 (en) | 2009-12-18 | 2014-07-22 | GM Global Technology Operations LLC | Lithium ion battery |
US8101152B1 (en) | 2010-08-18 | 2012-01-24 | GM Global Technology Operations LLC | Sonochemical synthesis of titanium-containing oxides |
US20120100403A1 (en) | 2010-10-26 | 2012-04-26 | Gm Global Technology Operations, Inc. | Electrolytic cell and method of estimating a state of charge thereof |
KR101195930B1 (ko) | 2011-01-10 | 2012-10-30 | 주식회사 엘지화학 | 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지 |
US9023520B2 (en) | 2011-01-12 | 2015-05-05 | GM Global Technology Operations LLC | Lithium ion battery |
US9077038B2 (en) | 2011-01-12 | 2015-07-07 | GM Global Technology Operations LLC | Lithium ion batteries |
US9153819B2 (en) | 2011-02-27 | 2015-10-06 | GM Global Technology Operations LLC | Negative electrode for a lithium ion battery |
US9281515B2 (en) | 2011-03-08 | 2016-03-08 | Gholam-Abbas Nazri | Lithium battery with silicon-based anode and silicate-based cathode |
US20120229096A1 (en) | 2011-03-08 | 2012-09-13 | GM Global Technology Operations LLC | Method of depositing silicon on carbon nanomaterials and forming an anode for use in lithium ion batteries |
US9362560B2 (en) | 2011-03-08 | 2016-06-07 | GM Global Technology Operations LLC | Silicate cathode for use in lithium ion batteries |
US20120231321A1 (en) | 2011-03-11 | 2012-09-13 | GM Global Technology Operations LLC | Integral bi-layer separator-electrode construction for lithium-ion batteries |
US8658295B2 (en) | 2011-03-25 | 2014-02-25 | GM Global Technology Operations LLC | Self healing lithium-ion battery negative electrodes, product including same, and methods of making and using same |
US8642201B2 (en) | 2011-03-25 | 2014-02-04 | GM Global Technology Operations LLC | Liquid-metal negative electrode for lithium-ion batteries |
DE102011016468B3 (de) | 2011-04-08 | 2012-02-23 | Heraeus Quarzglas Gmbh & Co. Kg | Poröses Kohlenstofferzeugnis mit Schichtverbundstrucktur, Verfahren für seine Herstellung und Verwendung desselben |
US8663840B2 (en) | 2011-04-12 | 2014-03-04 | GM Global Technology Operations LLC | Encapsulated sulfur cathode for lithium ion battery |
US8835056B2 (en) | 2011-05-24 | 2014-09-16 | GM Global Technology Operations LLC | Lithium ion secondary battery electrode and method of forming same |
US8679680B2 (en) | 2011-06-03 | 2014-03-25 | GM Global Technology Operations LLC | Mitigation of mechanical degradation in lithium battery materials using biconcave electrode particles |
US20120328927A1 (en) | 2011-06-24 | 2012-12-27 | GM Global Technology Operations LLC | Electrochemical devices and rechargeable lithium ion batteries |
US9142830B2 (en) | 2011-09-16 | 2015-09-22 | GM Global Technology Operations LLC | Phase separated silicon-tin composite as negative electrode material for lithium-ion batteries |
US9343732B2 (en) | 2011-09-23 | 2016-05-17 | Samsung Electronics Co., Ltd. | Electrode active material, electrode comprising the same, lithium battery comprising the electrode, and method of preparing the electrode active material |
US20130099159A1 (en) | 2011-10-25 | 2013-04-25 | GM Global Technology Operations LLC | Production of metal or metalloid nanoparticles |
US8440350B1 (en) | 2011-11-10 | 2013-05-14 | GM Global Technology Operations LLC | Lithium-ion battery electrodes with shape-memory-alloy current collecting substrates |
US9362551B2 (en) | 2011-12-20 | 2016-06-07 | GM Global Technology Operations LLC | Reinforced battery electrodes |
US9583767B2 (en) | 2012-01-05 | 2017-02-28 | GM Global Technology Operations LLC | Methods for making battery electrode systems |
US9012075B2 (en) | 2012-01-23 | 2015-04-21 | GM Global Technology Operations LLC | Fade-resistant high capacity electrodes for a lithium-ion battery |
US20130284338A1 (en) | 2012-04-26 | 2013-10-31 | Gm Global Technology Operations Llc. | Self assembly of graphene materials |
US9362552B2 (en) | 2012-06-01 | 2016-06-07 | GM Global Technology Operations LLC | Lithium ion battery electrode materials and methods of making the same |
US9350046B2 (en) | 2012-07-18 | 2016-05-24 | GM Global Technology Operations LLC | Physically cross-linked gel electrolyte |
US9028565B2 (en) | 2012-07-31 | 2015-05-12 | GM Global Technology Operations LLC | Composite separator for use in a lithium ion battery electrochemical cell |
WO2014022986A1 (en) | 2012-08-08 | 2014-02-13 | GM Global Technology Operations LLC | Composite cathode materials with controlled irreversible capacity loss for lithium ion batteries |
CN102924495B (zh) * | 2012-10-15 | 2015-10-28 | 中国科学院广州能源研究所 | 含聚醚链有机卤硅烷及其在非水系锂离子电池电解液中的应用 |
CN103050667A (zh) | 2012-12-13 | 2013-04-17 | 中南大学 | 一种用于锂硫二次电池的多层次结构复合正极及制备方法 |
US9123939B2 (en) | 2013-03-14 | 2015-09-01 | GM Global Technology Operations LLC | Anodes including mesoporous hollow silicon particles and a method for synthesizing mesoporous hollow silicon particles |
US20140272526A1 (en) | 2013-03-14 | 2014-09-18 | GM Global Technology Operations LLC | Porous separator for a lithium ion battery and a method of making the same |
US20140272558A1 (en) | 2013-03-14 | 2014-09-18 | GM Global Technology Operations LLC | Electrode for a lithium-based secondary electrochemical device and method of forming same |
US8974946B2 (en) | 2013-03-15 | 2015-03-10 | Gm Global Technology Operations | Coating for separator or cathode of lithium—sulfur or silicon—sulfur battery |
US8999584B2 (en) | 2013-03-15 | 2015-04-07 | GM Global Technology Operations LLC | Method for pre-lithiation of the negative electrode in lithium ion batteries |
US9537144B2 (en) | 2013-03-15 | 2017-01-03 | GM Global Technology Operations LLC | Single lithium ion conductor as binder in lithium-sulfur or silicon-sulfur battery |
US9160036B2 (en) | 2013-03-15 | 2015-10-13 | GM Global Technology Operations LLC | Electrolyte additives for lithium sulfur rechargeable batteries |
US9093705B2 (en) | 2013-03-15 | 2015-07-28 | GM Global Technology Operations LLC | Porous, amorphous lithium storage materials and a method for making the same |
CN105359305A (zh) | 2013-05-07 | 2016-02-24 | 通用汽车环球科技运作有限责任公司 | 用于锂-硫电池的电压响应涂层 |
US10062898B2 (en) | 2013-07-10 | 2018-08-28 | GM Global Technology Operations LLC | Surface coating method and method for improving electrochemical performance of an electrode for a lithium based battery |
DE102014109441B4 (de) | 2013-07-10 | 2023-10-12 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Oberflächenbeschichtungsverfahren und verfahren zur herstellung einer elektrode für eine lithium-basierte batterie |
US9412986B2 (en) | 2013-07-31 | 2016-08-09 | GM Global Technology Operations LLC | Porous composite structures for lithium-ion battery separators |
CN105765771B (zh) | 2013-08-21 | 2018-11-13 | 通用汽车环球科技运作有限责任公司 | 锂基电池电极 |
US9742028B2 (en) | 2013-08-21 | 2017-08-22 | GM Global Technology Operations LLC | Flexible membranes and coated electrodes for lithium based batteries |
US20150056493A1 (en) | 2013-08-21 | 2015-02-26 | GM Global Technology Operations LLC | Coated porous separators and coated electrodes for lithium batteries |
US9373829B2 (en) | 2013-10-11 | 2016-06-21 | GM Global Technology Operations LLC | Porous interlayer for a lithium-sulfur battery |
KR102163731B1 (ko) * | 2013-11-22 | 2020-10-08 | 삼성전자주식회사 | 리튬 전지용 전해질 및 이를 포함하는 리튬 전지 |
US9252411B2 (en) | 2013-11-22 | 2016-02-02 | GM Global Technology Operations LLC | Multifunction battery separator |
US9647254B2 (en) | 2013-12-05 | 2017-05-09 | GM Global Technology Operations LLC | Coated separator and one-step method for preparing the same |
US20150162602A1 (en) | 2013-12-10 | 2015-06-11 | GM Global Technology Operations LLC | Nanocomposite coatings to obtain high performing silicon anodes |
US9437871B2 (en) | 2014-02-05 | 2016-09-06 | GM Global Technology Operations LLC | Sulfur based active material for a positive electrode |
WO2015126649A1 (en) | 2014-02-18 | 2015-08-27 | GM Global Technology Operations LLC | Electrolytes and methods for using the same |
US10128481B2 (en) | 2014-02-18 | 2018-11-13 | GM Global Technology Operations LLC | Lithium-based battery separator and method for making the same |
US9302914B2 (en) | 2014-02-28 | 2016-04-05 | GM Global Technology Operations LLC | Methods for making hollow carbon materials and active materials for electrodes |
US20150349307A1 (en) | 2014-05-27 | 2015-12-03 | GM Global Technology Operations LLC | Method for preparing a coated lithium battery component |
US10084204B2 (en) | 2014-07-21 | 2018-09-25 | GM Global Technology Operations LLC | Electrolyte solution and sulfur-based or selenium-based batteries including the electrolyte solution |
US9979008B2 (en) | 2014-11-14 | 2018-05-22 | GM Global Technology Operations LLC | Methods for making a solid electrolyte interface layer on a surface of an electrode |
US20160172706A1 (en) | 2014-12-10 | 2016-06-16 | GM Global Technology Operations LLC | Electrolyte and electrode structure |
US20160172710A1 (en) | 2014-12-10 | 2016-06-16 | The Regents Of The University Of California | Electrolyte and negative electrode structure |
US10312501B2 (en) | 2014-12-10 | 2019-06-04 | GM Global Technology Operations LLC | Electrolyte and negative electrode structure |
US10199643B2 (en) | 2014-12-16 | 2019-02-05 | GM Global Technology Operations LLC | Negative electrode for lithium-based batteries |
US9929435B2 (en) | 2015-02-27 | 2018-03-27 | GM Global Technology Operations LLC | Electrolyte structure for metal batteries |
US9985284B2 (en) | 2015-11-18 | 2018-05-29 | GM Global Technology Operations LLC | Forming sulfur-based positive electrode active materials |
US9905847B2 (en) | 2015-11-18 | 2018-02-27 | GM Global Technology Operations LLC | Forming electrode active materials |
US10629941B2 (en) | 2016-01-22 | 2020-04-21 | GM Global Technology Operations LLC | Making a pouch format cell and attaching a tab to an electrode |
US9923189B2 (en) | 2016-02-02 | 2018-03-20 | GM Global Technology Operations LLC | Electrophoretic deposition of an electrode for a lithium-based battery |
US20170271678A1 (en) | 2016-03-15 | 2017-09-21 | GM Global Technology Operations LLC | Primer Surface Coating For High-Performance Silicon-Based Electrodes |
US10367201B2 (en) | 2016-03-30 | 2019-07-30 | GM Global Technology Operations LLC | Negative electrode including a polymeric single-ion conductor coating |
US9896763B2 (en) | 2016-05-13 | 2018-02-20 | GM Global Technology Operations LLC | Particle reactor for atomic layer deposition (ALD) and chemical vapor deposition (CVD) processes |
US10396360B2 (en) | 2016-05-20 | 2019-08-27 | Gm Global Technology Operations Llc. | Polymerization process for forming polymeric ultrathin conformal coatings on electrode materials |
-
2015
- 2015-11-30 US US14/954,181 patent/US10312501B2/en active Active
- 2015-12-08 DE DE102015121342.7A patent/DE102015121342B4/de active Active
- 2015-12-10 CN CN201510910065.4A patent/CN105703006B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1328355A (zh) * | 2000-06-07 | 2001-12-26 | 默克专利股份有限公司 | 作为电化学电池电解质的添加剂的硅烷化合物 |
CN101471455A (zh) * | 2007-12-28 | 2009-07-01 | 张家港市国泰华荣化工新材料有限公司 | 用于锂离子电池非水电解质中的添加剂及用其制备的非水电解质 |
CN103038930A (zh) * | 2010-07-28 | 2013-04-10 | 株式会社Lg化学 | 锂二次电池用非水电解质溶液以及包含其的锂二次电池 |
Also Published As
Publication number | Publication date |
---|---|
US10312501B2 (en) | 2019-06-04 |
US20160172681A1 (en) | 2016-06-16 |
DE102015121342B4 (de) | 2023-10-26 |
CN105703006A (zh) | 2016-06-22 |
DE102015121342A1 (de) | 2016-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105703006B (zh) | 电解质和负极结构 | |
CN105703008B (zh) | 电解质和电极结构 | |
CN103456991B (zh) | 锂离子电池及其凝胶电解质以及其制备方法 | |
KR101764266B1 (ko) | 저온 성능이 향상된 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 | |
TWI722527B (zh) | 用於可充電鋰電池的固態聚合物基電解質(pme)以及用其製造的電池 | |
CN111837259B (zh) | 锂二次电池 | |
CN105703005A (zh) | 电解质和负极结构 | |
CN102005606B (zh) | 锂离子二次电池 | |
JP2016521444A (ja) | リチウムバッテリ用正電極 | |
CN109429535A (zh) | 含有电极保护层的负极和包含该负极的锂二次电池 | |
KR20130117721A (ko) | 전극 및 이를 포함하는 이차전지 | |
JP2015125948A (ja) | リチウムイオン二次電池 | |
CN103931030A (zh) | 锂离子二次电池及其制造方法 | |
TWI635640B (zh) | 鋰二次電池及鋰二次電池用電解液 | |
JP6656370B2 (ja) | リチウムイオン二次電池および組電池 | |
JP5614431B2 (ja) | リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池 | |
US20180241085A1 (en) | Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery using the same | |
JP2017010716A (ja) | リチウムイオン電池及びリチウムイオン電池システム | |
JP4086939B2 (ja) | 高分子固体電解質およびこれを用いたリチウム2次電池と電気2重層キャパシタ | |
JP2009277432A (ja) | 二次電池用電極及びその製造方法並びに二次電池 | |
JP4815845B2 (ja) | ポリマー電池 | |
US9660258B2 (en) | Lithium-ion secondary battery | |
JP2012216500A (ja) | リチウム二次電池 | |
JP5614433B2 (ja) | リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池 | |
KR20240019317A (ko) | 극판, 리튬 이온 배터리, 배터리 모듈, 배터리팩 및 전기 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |