CN105692881B - Aerobic granular sludge reactor - Google Patents
Aerobic granular sludge reactor Download PDFInfo
- Publication number
- CN105692881B CN105692881B CN201410706511.5A CN201410706511A CN105692881B CN 105692881 B CN105692881 B CN 105692881B CN 201410706511 A CN201410706511 A CN 201410706511A CN 105692881 B CN105692881 B CN 105692881B
- Authority
- CN
- China
- Prior art keywords
- granular sludge
- reactor
- aerobic granular
- aerobic
- reaction zone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 79
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 40
- 238000006243 chemical reaction Methods 0.000 claims abstract description 30
- 238000005273 aeration Methods 0.000 claims abstract description 24
- 239000007789 gas Substances 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 8
- 238000004062 sedimentation Methods 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 239000008187 granular material Substances 0.000 claims 1
- 238000009434 installation Methods 0.000 claims 1
- 238000001556 precipitation Methods 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 244000005700 microbiome Species 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
The invention discloses a water treatment process, namely an aerobic granular sludge reactor, which comprises a reactor body, a water inlet device, an aeration device, a sludge discharge device, a water outlet collection device, three separators, a reaction zone and a precipitation zone, wherein the reaction zone is aerated to form aerobic granular sludge. The aerobic granular sludge reactor can form stable aerobic granular sludge, and can apply the aerobic granular sludge technology to engineering practice.
Description
Technical Field
The invention belongs to a water treatment process, and particularly relates to an aerobic granular sludge reactor.
Background
Aerobic Granular Sludge (aerobiotic Granular Sludge) was first discovered by Mishilla et al in 1911. Compared with common activated sludge, the aerobic granular sludge is granular activated sludge formed by the self-coagulation of microorganisms, has the advantages of improving the sludge activity and biomass concentration of a reactor, reducing the discharge amount of residual sludge, being not easy to expand sludge, having good settling property and strong impact resistance, bearing high organic load, integrating microorganisms (aerobic, facultative and anaerobic microorganisms) with different properties and the like, and becomes a research hotspot of scholars at home and abroad. Research results in recent years show that the aerobic granular sludge has good removal effect on organic matters, nitrogen, phosphorus, heavy metals and the like. However, the aerobic granular sludge technology still stays in the experimental stage at present and is not applied to engineering practice. The reactors used for the experimental cultivation of aerobic granular sludge are mostly non-continuous flow SBR reactors and the height to diameter ratio of the SBR reactor needs to be large, which makes it difficult to apply to engineering practice.
Disclosure of Invention
The invention aims to provide a reactor which can form aerobic granular sludge and can be applied to engineering practice.
The technical scheme of the invention is as follows: an aerobic granular sludge reactor comprises a reactor body, a water inlet device, an aeration device, a sludge discharge device, a water outlet collection device, three separators, a reaction area and a settling area, and is characterized in that aerobic granular sludge is formed under the flow state and condition formed by the cooperation of the aeration device and the three separators.
The water to be treated enters the reaction zone through the water inlet device, and the water is uniformly distributed at the bottom of the reactor body. The aeration device aerates in the reaction zone to ensure that the reaction zone is in an aerobic state, and the aeration device is matched with the three separators at the upper part of the reaction zone to form aerobic granular sludge to form a required flow state and conditions. The aerobic sludge in the reaction zone reacts with the water to be treated, and aerobic granular sludge is formed in the reaction zone after several months of culture. The water to be treated reacts with aerobic granular sludge and flocculent sludge in the reaction zone, and enters three separators after being purified. The three separators return the aerobic sludge to the reaction zone, so that a large amount of aerobic sludge can be retained in the reaction zone, the formation of aerobic granular sludge is facilitated, water enters the precipitation zone for precipitation, and gas is led out, so that the separation of solid, liquid and gas is realized. The precipitated water enters the effluent collecting device and is discharged. The effluent collecting device is used for uniformly collecting the effluent on the surface of the settling zone. And discharging the residual sludge by a sludge discharge device.
In order to improve the precipitation effect and efficiency of the precipitation zone, inclined pipes or inclined plates can be arranged in the precipitation zone.
In order to improve the gas separation effect, the three separators can be provided with liquid seals.
The water inlet and outlet mode can be water distribution and inlet at the bottom of the reactor body, water collection and outlet on the surface of the sedimentation zone or water inlet at one end and water outlet at the other end of the reactor body. The water inlet and outlet method is not limited to the above two methods, and the water inlet and outlet method is selected on the principle that the inlet water uniformly passes through the reaction zone and the precipitation zone and does not form short circuit.
The aeration device can be separated from the bottom of the reactor body by a certain height, so that the lower part of the aeration device forms an anaerobic granular sludge area, and the upper part of the aeration device is an aerobic granular sludge area. The height of the aeration device from the bottom of the reactor body is determined according to the height of the anaerobic granular sludge area required, and is generally 1.5m-6 m.
Three separators can be arranged at the upper part of the anaerobic granular sludge area below the aeration device to lead out the gas generated in the anaerobic granular sludge area and play a role in separating the aerobic granular sludge area from the anaerobic granular sludge area.
The aerobic granular sludge reactor of the invention can form stable aerobic granular sludge, continuously feeds water and does not need large height-diameter ratio (height/diameter), thereby leading the aerobic granular sludge technology with a plurality of advantages to be applied to practical engineering.
Drawings
FIG. 1 is a schematic view of the structure of an aerobic granular sludge reactor according to the present invention.
FIG. 2 is a schematic structural diagram of a second embodiment of the aerobic granular sludge reactor according to the present invention.
FIG. 3 is a schematic structural view of a third embodiment of the aerobic granular sludge reactor according to the present invention.
FIG. 4 is a schematic structural diagram of a fourth embodiment of the aerobic granular sludge reactor according to the present invention.
FIG. 5 is a schematic structural diagram of a fifth embodiment of the aerobic granular sludge reactor according to the present invention.
FIG. 6 is a schematic structural diagram of a sixth embodiment of the aerobic granular sludge reactor according to the present invention.
FIG. 1 shows a reactor body; 2 is a water inlet device; 3 is an aeration device; 4, a sludge discharge device; 5 is a discharged water collecting device; 6 is a three-phase separator; 7 is a reaction zone; 8 is a settling zone; 9 is a liquid seal; 10 is an inclined tube or plate; 11 is an aerobic granular sludge zone; 12 is an anaerobic granular sludge zone.
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings.
Detailed description of the invention
Referring to fig. 1, water to be treated enters a reaction zone 7 from a water inlet device 2, and the water is uniformly distributed at the bottom of a reactor body 1. The aeration device 3 aerates the reaction zone 7 to ensure that the reaction zone 7 is in an aerobic state, and forms a flow state and conditions required by formation of aerobic granular sludge by matching with the three separators 6 at the upper part of the reaction zone 7. The aerobic sludge in the reaction zone 7 reacts with the water to be treated and after several months of cultivation, aerobic granular sludge is formed in the reaction zone 7. The water to be treated reacts with aerobic granular sludge and flocculent sludge in the reaction zone 7, and enters the three separators 6 after being purified. The three separators 6 return the aerobic sludge to the reaction zone 7, so that the reaction zone 7 can retain a large amount of aerobic sludge, which is beneficial to the formation of aerobic granular sludge, water enters the sedimentation zone 8 for sedimentation, and gas is led out, thereby realizing the separation of solid, liquid and gas. The precipitated water enters the effluent collecting device 5 and is discharged. The effluent collecting device 5 is used for uniformly collecting the effluent on the surface of the settling zone 8. The excess sludge is discharged by a sludge discharge device 4.
Detailed description of the invention
Referring to fig. 2, in the present embodiment, a liquid seal 9 is disposed after the three separators 6, and the other embodiments are the same as the first embodiment.
Detailed description of the invention
Referring to fig. 3, the present embodiment is provided with an inclined tube or plate 10 in the settling zone 8, and the other embodiments are the same as the first embodiment or the second embodiment.
Detailed description of the invention
Referring to fig. 4, the present embodiment is the same as the first embodiment, the second embodiment, or the third embodiment in that the inflow water enters from one end of the reactor body 1 and exits from the other end.
Detailed description of the invention
Referring to fig. 5, the aeration apparatus 3 is disposed at a certain height from the bottom of the reactor body 1 so that the reaction zone forms an anaerobic granular sludge zone 12 and an aerobic granular sludge zone 11. The other steps are the same as those in the first embodiment, the second embodiment or the third embodiment.
Detailed description of the invention
Referring to fig. 6, the present embodiment is different from the fifth embodiment in that three separators 6 are installed below the aeration apparatus 3 to guide the gas generated in the anaerobic granular sludge zone 12 out of the aerobic granular sludge zone 11, and the fifth embodiment is the same.
Claims (7)
1. The utility model provides an aerobic granule sludge reactor, includes reactor body (1), water installations (2), aeration equipment (3), row's mud device (4), goes out water collection device (5), three-phase separator (6), forms in reactor body (1) inside reaction zone (7), is located sedimentation zone (8) of reaction zone (7) top, and aeration equipment (3) set up in reaction zone (7), characterized by: the number of the three-phase separators (6) is multiple, the three-phase separators (6) are arranged above the aeration device (3), an exhaust channel of the three-phase separators (6) is communicated to the outside of the reactor and only gas in solid, liquid and gas flows through the three-phase separators to realize the separation of the solid, the liquid and the gas, aerobic granular sludge is formed in the reaction zone (7) under the flow state and condition formed by the cooperation of the aeration device (3) and the three-phase separators (6), the aeration device (3) aerates in the reaction zone (7) to enable the reaction zone (7) to be in an aerobic state, and the aeration device (3) and the three-phase separators (6) cooperate to form the flow state and condition required by the formation of the aerobic granular sludge.
2. The aerobic granular sludge reactor as set forth in claim 1, wherein: the sedimentation zone (8) is provided with an inclined pipe or an inclined plate (10).
3. The aerobic granular sludge reactor as claimed in claim 1 or 2, wherein: the three-phase separator (6) is provided with a liquid seal (9).
4. The aerobic granular sludge reactor as claimed in claim 1 or 2, wherein: the water inlet is water distributed at the bottom of the reactor body (1) and water is collected and discharged from the surface of the settling zone (8).
5. The aerobic granular sludge reactor as claimed in claim 1 or 2, wherein: the water inlet is water inlet at one end of the reactor body (1) and water outlet at the other end.
6. The aerobic granular sludge reactor as claimed in claim 1 or 2, wherein: the aeration device (3) is 1.5-6 m away from the bottom of the reactor body (1), an anaerobic granular sludge area (12) is formed below the aeration device (3), and an aerobic granular sludge area (11) is formed above the aeration device (3).
7. The aerobic granular sludge reactor as set forth in claim 6, wherein: a plurality of three-phase separators (6) are also arranged below the aeration device (3) and lead out the gas generated in the anaerobic granular sludge area (12).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410706511.5A CN105692881B (en) | 2014-11-27 | 2014-11-27 | Aerobic granular sludge reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410706511.5A CN105692881B (en) | 2014-11-27 | 2014-11-27 | Aerobic granular sludge reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105692881A CN105692881A (en) | 2016-06-22 |
CN105692881B true CN105692881B (en) | 2020-08-21 |
Family
ID=56230794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410706511.5A Active CN105692881B (en) | 2014-11-27 | 2014-11-27 | Aerobic granular sludge reactor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105692881B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108238673B (en) * | 2016-12-23 | 2022-08-26 | 李彦民 | Method and device for culturing aerobic granular sludge |
CN109293159B (en) * | 2018-11-06 | 2023-09-12 | 北京城市排水集团有限责任公司 | Pressure flow sewage uniform distribution treatment device for aerobic granular sludge system and application method thereof |
CN113716682A (en) * | 2021-08-05 | 2021-11-30 | 河南国威市政工程有限公司 | Aerobic granular sludge sewage treatment system |
CN113968613B (en) * | 2021-11-25 | 2023-09-12 | 北控水务(中国)投资有限公司 | Reactor for screening continuous flow aerobic granular sludge and operation method thereof |
CN117401815B (en) * | 2023-10-23 | 2025-01-24 | 江苏锦德澜环境科技有限公司 | An upflow aerobic granular sludge reactor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6063273A (en) * | 1996-11-06 | 2000-05-16 | Paques B.V. | Apparatus for the biological purification of waste water |
JP2002370099A (en) * | 2001-04-11 | 2002-12-24 | Yoshiki Taki | Methane fermentation treatment apparatus |
CN1986453A (en) * | 2005-12-24 | 2007-06-27 | 张仁志 | UASB biological pneumatic circulation stirring technique |
CN203461878U (en) * | 2013-08-30 | 2014-03-05 | 济南绿创环境技术有限公司 | Aerobic granular sludge internal circulation reactor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101898850B (en) * | 2010-04-14 | 2013-02-27 | 中国环境科学研究院 | A continuous flow aerobic granular sludge membrane bioreactor for the treatment of berberine pharmaceutical wastewater |
CN202246250U (en) * | 2011-10-13 | 2012-05-30 | 苏州欧莱华环保设备有限公司 | Anaerobic reactor with controllable biogas stirring volume |
CN103332784B (en) * | 2013-07-30 | 2014-07-02 | 许中华 | Three-stage circulation aerobic reactor |
-
2014
- 2014-11-27 CN CN201410706511.5A patent/CN105692881B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6063273A (en) * | 1996-11-06 | 2000-05-16 | Paques B.V. | Apparatus for the biological purification of waste water |
JP2002370099A (en) * | 2001-04-11 | 2002-12-24 | Yoshiki Taki | Methane fermentation treatment apparatus |
CN1986453A (en) * | 2005-12-24 | 2007-06-27 | 张仁志 | UASB biological pneumatic circulation stirring technique |
CN203461878U (en) * | 2013-08-30 | 2014-03-05 | 济南绿创环境技术有限公司 | Aerobic granular sludge internal circulation reactor |
Also Published As
Publication number | Publication date |
---|---|
CN105692881A (en) | 2016-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102249415B (en) | Air-lift internal circulation nitrogen and phosphorus removal bioreactor | |
CN105692881B (en) | Aerobic granular sludge reactor | |
CN206014509U (en) | A kind of two-phase laminated flow inner-outer circulation anaerobic reactor | |
CN109052821B (en) | A kind of high-efficiency resource recovery and low-energy consumption pharmaceutical wastewater treatment device and its operation method | |
CN102491511B (en) | Efficient anaerobic bioreactor | |
CN203021356U (en) | Sludge-water separator for sewage treatment | |
CN103951055A (en) | Reactor and method for treating wastewater with low carbon nitrogen ratio by carrying out methanation and denitrification simultaneously | |
CN204874025U (en) | A aeration biological fluidized bed device for high ammonia -nitrogen concentration waste water treatment | |
CN102241434A (en) | Intermittent expansion composite hydrolysis treatment device and method | |
CN203284246U (en) | Anaerobic reactor for landfill leachate treatment | |
CN201077804Y (en) | Intrinsic cycle anaerobic flow equalizing double reaction tower | |
CN204752323U (en) | Vertical integrative sewage treatment device | |
CN201292286Y (en) | A petrochemical sewage treatment device | |
CN101948742B (en) | Angie strain enrichment expansion reactor | |
CN107973399B (en) | High-efficient three-phase separation system | |
CN202054667U (en) | Anaerobic expanded granular sludge bed water treatment device | |
CN104961232A (en) | Vertical integral sewage treatment plant | |
CN104787968A (en) | Aureomycin waste water treatment system | |
CN204702563U (en) | Full mixing mass transfer aerobic reactor | |
CN204939083U (en) | A kind of eddy flow sludge classification anaerobic ammonia oxidation reactor | |
CN201971677U (en) | Augmentin strain enrichment and expanded culture reactor | |
CN108585197B (en) | Village-to-home-level mud film coupling sewage treatment device and treatment method thereof | |
CN102689984B (en) | An improved anaerobic baffle sewage biological treatment equipment | |
CN211595170U (en) | Synchronous decarburization and denitrification anaerobic reactor | |
CN202080989U (en) | Intermittent inflation composite hydrolytic treatment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |