CN105679650B - 一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法 - Google Patents
一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法 Download PDFInfo
- Publication number
- CN105679650B CN105679650B CN201610029138.3A CN201610029138A CN105679650B CN 105679650 B CN105679650 B CN 105679650B CN 201610029138 A CN201610029138 A CN 201610029138A CN 105679650 B CN105679650 B CN 105679650B
- Authority
- CN
- China
- Prior art keywords
- temperature
- source
- group
- gan
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 28
- 229910002704 AlGaN Inorganic materials 0.000 title claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 25
- 239000001257 hydrogen Substances 0.000 claims description 25
- 230000033228 biological regulation Effects 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 7
- 230000003139 buffering effect Effects 0.000 claims 2
- 230000007547 defect Effects 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 6
- 238000000927 vapour-phase epitaxy Methods 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract description 2
- 238000001534 heteroepitaxy Methods 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 27
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 20
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 19
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 18
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 230000006911 nucleation Effects 0.000 description 6
- 238000010899 nucleation Methods 0.000 description 6
- 235000012431 wafers Nutrition 0.000 description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 150000002902 organometallic compounds Chemical class 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02505—Layer structure consisting of more than two layers
- H01L21/02507—Alternating layers, e.g. superlattice
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/0251—Graded layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
Abstract
本发明提供一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法。先在Si衬底上采用金属有机化学气相外延技术生长20nm‑30nm低温AlN成核层;然后生长高温200nm‑300nm AlN缓冲层,在此基础上变温生长300nm Al0.2Ga0.8N应力调控层:生长800nm‑1000nm高阻GaN外延层;生长10‑20个周期Al0.2Ga0.8N/GaN应力调控层;生长800nm‑1000nm高阻GaN外延层;然后生长15nmAlGaN/1nmGaN。本发明,有效地解决至今异质外延技术尚且存在的应力、翘曲及缺陷,获得无裂纹、高迁移率AlGaN/GaN电子功率器件。
Description
技术领域
本发明属于半导体光电子技术领域,涉及一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法,尤其涉及一种在Si衬底上采用变温AlN缓冲层,AlGaN/GaN超晶格应力调控层制备高迁移率AlGaN/GaN电子功率器件的方法。
背景技术
Si衬底尺寸大、价廉可以降低外延生长成本。对比硬度大、导热差的绝缘蓝宝石衬底,导电的Si衬底可以有效简化衬底减薄加工工艺,降低光电子器件制作工艺成本。在Si上金属有机物气相外延(metalorganic vapor phase epitaxy,MOVPE)生长GaN的难点在于:GaN纤维锌矿结构的(0001)与金刚石结构的Si(111)衬底的晶格失配为20.4%,会产生大量的位错;GaN与Si之间的热失配高达56%,外延生长结束后的降温工程中,外延层将承受很大的张应力。由于外延层厚度远小于衬底厚度,所以在外延层中会产生微裂纹,严重影响GaN器件特性。Si衬底上直接生长GaN时,NH3容易与衬底Si发生反应而在衬底表面形成非晶态的SiN,影响GaN的生长质量。金属Ga与衬底Si之间也有很强的化学反应,会对衬底造成回溶,从而破坏界面的平整。在高温生长时,衬底中的Si会扩散至缓冲层表面,如果控制不当,将会影响GaN的生长模式,从而破坏晶体质量。此外由于Si是非极性半导体,在其上生长GaN、AlN或其他极性半导体时将会产生一些化合物极性相关的问题。
采用合适的缓冲层是解决Si衬底生长GaN时晶格失配、Si扩散和极性问题的有效手段,同时在一定程度上也可以缓解薄膜中的应力。为此人们尝试过许多方法,如AlAs、AlN、以及AlGaN/AlN等复合缓冲层。其中AlN结果最好,其主要优点是既可以和GaN在同一反应室进行生长,又可以避免高温生长时SiN的形成。根据其应力释放机理提出许多解决方法:
(1)缓冲层应力补偿法:通过缓冲层对上层GaN提供一个压应力来补偿热失配造成的张应力。结果表明裂纹密度明显减少,且光学特性也有较大提高。
(2)插入层应力剪裁法:通过插入层来调节薄膜内部的应力状态,或阻挡由于热失配从衬底传入的张应力的传播。如超晶格插入层法:插入10个周期的AlN/GaN超晶格作插入层,生长GaN总厚度为2μm,随着超晶格插入层层数的增加,张应变减少。TEM显示位错密度随厚度变化而减小。
然而采用目前主流的插入层方法不能够完全消除应力,且存在缺陷密度大,翘曲等问题。
本发明,在大尺寸Si衬底上,采用多层其Al组分梯度渐变的应力调控层方法制备无裂纹GaN薄膜,可以有效地解决至今技术中仍存在的不良应力及缺陷,有效地缓解翘曲。
发明内容
一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法,其特征在于,先在Si衬底上采用金属有机化学气相外延技术生长低温AlN成核层;然后生长高温 AlN缓冲层,在此基础上生长Al0.2Ga0.8N应力调控层:生长高阻GaN外延层;生长10-20个周期Al0.2GaN0.8/GaN应力调控层;再生长高阻GaN外延层。然后生长15nmAlGaN/1nmGaN异质结。有效地解决至今异质外延技术尚且存在的应力、翘曲及缺陷,获得无裂纹、高迁移率AlGaN/GaN电子功率器件。
本发明一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法,按以下步骤进行:
步骤一,在金属有机化合物气相外延反应室中,在氢气(H2)气氛、温度950℃~1000℃、反应室压力50torr-100torr下,通入TMAl作为III族源,NH3作为V族源(取V/III比为50~1000),在Si衬底101上面,生长20nm-30nm 低温AlN成核层102;
步骤二,在氢气(H2)气氛,温度1070℃~1100℃,反应室压力50torr-100torr下,通入TMAl作为III族源,NH3作为V族源(取V/III比为100~1000),生长200nm-300nm高温AlN缓冲层103;
步骤三,在氢气(H2)气氛、温度1060℃~1070℃、反应室压力75torr-100torr下,通入TMAl、TMGa作为III族源,NH3作为V族源(取V/III比为100~4000),变温生长300nmAl0.2Ga0.8N应力调控层104,生长温度从1070℃线性变化到1060℃;
步骤四,在氢气(H2)气氛、温度1050℃~1060℃、反应室压力100torr-150torr下,通入TMGa作为III族源,NH3作为V族源(取V/III比为1000~10000),生长800nm-1000nm 高阻GaN外延层105;
步骤五,在氢气(H2)气氛、温度1050℃~1060℃、反应室压力75torr-100torr下,通入TMGa、TMAl作为III族源,NH3作为V族源(取V/III比为1000~10000),生长10-20个周期3nmAl0.2Ga0.8N/3nmGaN应力调控层106;
步骤六,在氢气(H2)气氛、温度1050℃~1060℃、反应室压力150torr-200torr下,通入TMGa作为III族源,NH3作为V族源(取V/III比为1000~10000),生长800nm -1000nm高阻GaN外延层107;
步骤七,在氢气(H2)气氛、温度1060℃~1070℃、反应室压力75torr-100torr下,通入TMGa、TMAl作为III族源,NH3作为V族源(取V/III比为1000~10000),生长1nm AlN/15nmAlGaN/1nmGaN异质结108。
应当指出的是,(1)在Si衬底上采用变温AlN缓冲层,首先采用950℃-1000℃,生长20nm-30nm 低温AlN成核层(102),然后在此基础上采用1070℃~1100℃生长200nm-300nm高温AlN缓冲层(103);(2)采用变温300nm Al0.2Ga0.8N应力调控层(104),其生长温度从1070℃线性变化到1060℃;(3)采用10-20个周期3nmAl0.2Ga0.8N/3nmGaN应力调控层(106),其结构为为超晶格结构。
附图说明
图1是本发明实施例1方法,一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的剖面结构示意图;
图1中,101:Si衬底 102:低温AlN成核层 103:高温AlN缓冲层 104:变温Al0.2Ga0.8N应力调控层 105:高阻GaN外延层 106:Al0.2Ga0.8N/GaN应力调控层 107:高阻GaN外延层 108:AlN/AlGaN/GaN异质结。
图2是采用本发明方法在Si衬底上制备的高迁移率AlGaN/GaN电子功率器件外延片的显微照片;其中,样品1是采用普通方法制备的四英寸Si衬底上AlGaN/GaN电子功率器件外延片的显微照片;样品2是采用本专利技术方案多步插入层方法制备的四英寸Si衬底上AlGaN/GaN电子功率器件外延片的显微照片。
具体实施方式
本发明提供一种在Si衬底上制备无裂纹GaN的方法。使用三甲基镓(TMGa),三甲基铝(TMAl)作为III族源,氨气(NH3)作为V族源,硅烷(SiH4)作为n型掺杂源,在Si衬底上采用(1)变温AlN缓冲层,(2)变温300nm Al0.2Ga0.8N应力调控层,(3)(3nm)AlGaN/(3nm)GaN应力调控层为超晶格结构。这样一来,有效地解决至今异质外延技术尚且存在的应力、翘曲及缺陷,获得无裂纹、高晶体质量的GaN薄膜,制备高迁移率AlGaN/GaN HEMT 器件。
实施例1
使用Aixtron公司产品-紧耦合垂直反应室MOCVD生长系统;在生长过程中,使用三甲基镓(TMGa)、三甲基铝(TMAl)作为III族源,氨气(NH3)作为V族源,硅烷(SiH4)作为n型掺杂源,二茂镁(Cp2Mg)作为p型掺杂源;
首先,在MOCVD反应室中将Si衬底101加热到1080℃,在H2气氛下,高温处理5-10分钟后,在金属有机化合物气相外延反应室中,在氢气(H2)气氛、温度950℃、反应室压力50torr下,通入TMAl作为III族源,NH3作为V族源(取V/III比为50~1000),在Si衬底101上面,生长20nm 低温AlN成核层102; 在氢气(H2)气氛,温度1070℃,反应室压力50torr下,通入TMAl作为III族源,NH3作为V族源(取V/III比为100~1000),生长200nm高温AlN缓冲层103;在氢气(H2)气氛、温度1060℃~1070℃、反应室压力75torr下,通入TMAl、TMGa作为III族源,NH3作为V族源(取V/III比为100~4000),变温生长300nm Al0.2Ga0.8N应力调控层104,生长温度从1070℃线性变化到1060℃. 在氢气(H2)气氛、温度1050℃、反应室压力100torr下,通入TMGa作为III族源,NH3作为V族源(取V/III比为1000),生长800nm 高阻GaN外延层105; 在氢气(H2)气氛、温度1050℃、反应室压力75torr下,通入TMGa、TMAl作为III族源,NH3作为V族源(取V/III比为1000),生长10个周期(3nm)Al0.2Ga0.8N/(3nm)GaN应力调控层106;在氢气(H2)气氛、温度1050℃、反应室压力150torr下,通入TMGa作为III族源,NH3作为V族源(取V/III比为1000),生长800nm 高阻GaN外延层107;在氢气(H2)气氛、温度1060℃、反应室压力75torr下,通入TMGa、TMAl作为III族源,NH3作为V族源(取V/III比为1000),生长AlN(1nm)/15nmAlGaN/1nmGaN异质结108。
实施例2
使用Aixtron公司产品-紧耦合垂直反应室MOCVD生长系统;在生长过程中,使用三甲基镓(TMGa)、三甲基铝(TMAl)作为III族源,氨气(NH3)作为V族源,硅烷(SiH4)作为n型掺杂源,二茂镁(Cp2Mg)作为p型掺杂源;
首先,在MOCVD反应室中将Si衬底101加热到1080℃,在H2气氛下,高温处理5-10分钟后,在金属有机化合物气相外延反应室中,在氢气(H2)气氛、温度1000℃、反应室压力100torr下,通入TMAl作为III族源,NH3作为V族源(取V/III比为1000),在Si衬底101上面,生长30nm 低温AlN成核层102; 在氢气(H2)气氛,温度1100℃,反应室压力100torr下,通入TMAl作为III族源,NH3作为V族源(取V/III比为1000),生长300nm高温AlN缓冲层103;在氢气(H2)气氛、温度1070℃、反应室压力100torr下,通入TMAl、TMGa作为III族源,NH3作为V族源(取V/III比为4000),变温生长300nm Al0.2Ga0.8N应力调控层104,生长温度从1070℃线性变化到1060℃. 在氢气(H2)气氛、温度1060℃、反应室压力150torr下,通入TMGa作为III族源,NH3作为V族源(取V/III比为10000),生长1000nm 高阻GaN外延层105; 在氢气(H2)气氛、温度1060℃、反应室压力100torr下,通入TMGa、TMAl作为III族源,NH3作为V族源(取V/III比为10000),生长20个周期(3nm)Al0.2Ga0.8N/(3nm)GaN应力调控层106; 在氢气(H2)气氛、温度1060℃、反应室压力200torr下,通入TMGa作为III族源,NH3作为V族源(取V/III比为10000),生长1000nm高阻GaN外延层107;在氢气(H2)气氛、温度1070℃、反应室压力100torr下,通入TMGa、TMAl作为III族源,NH3作为V族源(取V/III比为10000),生长AlN(1nm)/15nmAlGaN/1nmGaN异质结108。
从图2中可以看出,样品2采用本专利技术方案多步插入层方法制备的四英寸Si衬底上AlGaN/GaN电子功率器件外延片,表面没有微裂纹,样品1采用普通方法制备的四英寸Si衬底上AlGaN/GaN电子功率器件外延片,在其表面发现大量微裂纹。采用本专利技术方案可有效地解决至今异质外延技术尚且存在的应力、翘曲及缺陷,获得无裂纹、高迁移率AlGaN/GaN电子功率器件。霍尔测试结果显示采用本专利方法制备的AlGaN/GaN电子功率器件迁移率大于1800cm2/v.s。
以上所述的实施例仅为说明本发明的技术思想及特点,其描述较为具体和详细,其目的在于使本领域的普通技术人员能够了解本发明的内容并据以实施,因此不能仅以此来限定本发明的专利范围,但并不能因此而理解为对本发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,即凡依据本发明所揭示的精神所作的变化,仍应涵盖在本发明的专利范围内。
Claims (4)
1.一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法,其特征在于,按以下步骤进行:
步骤一,在金属有机化合物气相外延反应室中,在氢气(H2)气氛、温度950℃~1000℃、反应室压力50torr-100torr下,通入TMAl作为III族源,NH3作为V族源,取V/III比为50~1000,在Si衬底(101)上面,生长20nm-30nm 低温AlN成核层(102);
步骤二,在氢气(H2)气氛,温度1070℃~1100℃,反应室压力50torr-100torr下,通入TMAl作为III族源,NH3作为V族源,取V/III比为100~1000,生长200nm-300nm高温AlN缓冲层(103);
步骤三,在氢气(H2)气氛、温度1060℃~1070℃、反应室压力75torr-100torr下,通入TMAl、TMGa作为III族源,NH3作为V族源,取V/III比为100~4000,变温生长300nmAl0.2Ga0.8N应力调控层(104),生长温度从1070℃线性变化到1060℃;
步骤四,在氢气(H2)气氛、温度1050℃~1060℃、反应室压力100torr-150torr下,通入TMGa作为III族源,NH3作为V族源,取V/III比为1000~10000,生长800nm-1000nm 高阻GaN外延层(105);
步骤五,在氢气(H2)气氛、温度1050℃~1060℃、反应室压力75torr-100torr下,通入TMGa、TMAl作为III族源,NH3作为V族源,取V/III比为1000~10000,生长10-20个周期3nmAl0.2Ga0.8N/3nmGaN应力调控层(106);
步骤六,在氢气(H2)气氛、温度1050℃~1060℃、反应室压力150torr-200torr下,通入TMGa作为III族源,NH3作为V族源,取V/III比为1000~10000,生长800nm -1000nm高阻GaN外延层(107);
步骤七,在氢气(H2)气氛、温度1060℃~1070℃、反应室压力75torr-100torr下,通入TMGa、TMAl作为III族源,NH3作为V族源,取V/III比为1000~10000,生长1nm AlN/15nmAlGaN/1nmGaN异质结(108)。
2.根据权利要求1所述的一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法,其特征在于,在Si衬底上采用变温AlN缓冲层,首先采用950℃-1000℃,生长20nm-30nm低温AlN成核层(102);然后在此基础上采用1070℃~1100℃生长200nm-300nm高温AlN缓冲层(103)。
3.根据权利要求1所述的一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法,其特征在于,采用变温300nm Al0.2Ga0.8N应力调控层(104),其生长温度从1070℃线性变化到1060℃。
4.根据权利要求1所述的一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法,其特征在于,采用10-20个周期3nmAl0.2Ga0.8N/(3nm)GaN应力调控层(106)为超晶格结构。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610029138.3A CN105679650B (zh) | 2016-01-15 | 2016-01-15 | 一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610029138.3A CN105679650B (zh) | 2016-01-15 | 2016-01-15 | 一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105679650A CN105679650A (zh) | 2016-06-15 |
CN105679650B true CN105679650B (zh) | 2018-06-08 |
Family
ID=56301116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610029138.3A Active CN105679650B (zh) | 2016-01-15 | 2016-01-15 | 一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105679650B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109524292A (zh) * | 2018-10-30 | 2019-03-26 | 江苏晶曌半导体有限公司 | 一种在硅衬底上生长高质量氮化镓薄膜的方法 |
CN110541157A (zh) * | 2019-09-09 | 2019-12-06 | 温州大学 | 一种Si衬底上外延生长GaN薄膜的方法 |
CN114784089B (zh) * | 2022-04-13 | 2024-12-24 | 闽都创新实验室 | 一种氮化镓半导体外延及其制备方法与功率及射频器件 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101515619A (zh) * | 2009-03-31 | 2009-08-26 | 西安电子科技大学 | 基于蓝宝石衬底的AlGaN基多量子阱uv-LED器件及制作方法 |
CN102361053A (zh) * | 2011-11-01 | 2012-02-22 | 东南大学 | 一种光子晶体结构发光二极管 |
WO2014176283A1 (en) * | 2013-04-22 | 2014-10-30 | Ostendo Technologies, Inc. | Semi-polar iii-nitride films and materials and method for making the same |
-
2016
- 2016-01-15 CN CN201610029138.3A patent/CN105679650B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101515619A (zh) * | 2009-03-31 | 2009-08-26 | 西安电子科技大学 | 基于蓝宝石衬底的AlGaN基多量子阱uv-LED器件及制作方法 |
CN102361053A (zh) * | 2011-11-01 | 2012-02-22 | 东南大学 | 一种光子晶体结构发光二极管 |
WO2014176283A1 (en) * | 2013-04-22 | 2014-10-30 | Ostendo Technologies, Inc. | Semi-polar iii-nitride films and materials and method for making the same |
Also Published As
Publication number | Publication date |
---|---|
CN105679650A (zh) | 2016-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101111945B (zh) | 氮化物半导体元件和氮化物半导体结晶层的生长方法 | |
CN105023979B (zh) | 一种GaN基LED外延片及其制备方法 | |
GB2485418A (en) | GaN on Si device substrate with GaN layer including sub-10nm SiNx interlayers that promote crystal growth with reduced threading dislocations | |
WO2006086471A2 (en) | A method to grow iii-nitride materials using no buffer layer | |
CN103952683A (zh) | 含有SiNx插入层的半极性m面GaN基的半导体器件的制备方法 | |
CN105702826B (zh) | 一种在Si衬底上制备无裂纹GaN薄膜的方法 | |
CN103794687B (zh) | 氮化镓led制备方法、氮化镓led和芯片 | |
Zhang et al. | Fast growth of high quality AlN films on sapphire using a dislocation filtering layer for ultraviolet light-emitting diodes | |
WO2023087543A1 (zh) | N极性GaN/AlGaN异质结外延结构及其制备方法 | |
CN105679650B (zh) | 一种在Si衬底上制备高迁移率AlGaN/GaN电子功率器件的方法 | |
JP3753068B2 (ja) | 電界効果トランジスタ用エピタキシャルウェハの製造方法 | |
WO2023231566A1 (zh) | 半导体外延结构及其制备方法、半导体器件 | |
CN101871098B (zh) | 一种高晶体质量高阻GaN外延层的生长方法 | |
CN110034174A (zh) | 高电子迁移率晶体管外延片及其制备方法 | |
CN101901756A (zh) | 基于c面Al2O3衬底上极性c面GaN薄膜的MOCVD生长方法 | |
CN102222690B (zh) | 氮化物系半导体晶片以及氮化物系半导体装置 | |
CN107887255B (zh) | 一种高阻GaN薄膜外延生长的方法 | |
CN106252211A (zh) | 一种AlN外延层的制备方法 | |
CN116646248B (zh) | 一种外延片制备方法及其外延片、高电子迁移率晶体管 | |
CN108110093A (zh) | 硅衬底GaN基LED外延生长方法 | |
CN115084329B (zh) | 一种应用于Si衬底上的LED外延片及其生长方法 | |
CN213150800U (zh) | 一种具有纳米夹层的氮化铝成核层结构 | |
CN115565876A (zh) | 基于硅衬底的氮化物外延结构及其制作方法和半导体器件 | |
CN111690907B (zh) | 一种氮化铝膜及其制备方法和应用 | |
CN101736398A (zh) | 一种生长AlInN单晶外延膜的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |